blob: a9098dc245b37646dd1d0ad85702421728d646a7 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an "AS
* IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language
* governing permissions and limitations under the License.
*/
#include "perfetto/ext/tracing/core/shared_memory_abi.h"
#include "perfetto/base/build_config.h"
#include "perfetto/base/time.h"
#if !PERFETTO_BUILDFLAG(PERFETTO_OS_WIN)
#include <sys/mman.h>
#endif
#include "perfetto/ext/base/utils.h"
#include "perfetto/ext/tracing/core/basic_types.h"
namespace perfetto {
namespace {
constexpr int kRetryAttempts = 64;
inline void WaitBeforeNextAttempt(int attempt) {
if (attempt < kRetryAttempts / 2) {
std::this_thread::yield();
} else {
base::SleepMicroseconds((unsigned(attempt) / 10) * 1000);
}
}
// Returns the largest 4-bytes aligned chunk size <= |page_size| / |divider|
// for each divider in PageLayout.
constexpr size_t GetChunkSize(size_t page_size, size_t divider) {
return ((page_size - sizeof(SharedMemoryABI::PageHeader)) / divider) & ~3UL;
}
// Initializer for the const |chunk_sizes_| array.
std::array<uint16_t, SharedMemoryABI::kNumPageLayouts> InitChunkSizes(
size_t page_size) {
static_assert(SharedMemoryABI::kNumPageLayouts ==
base::ArraySize(SharedMemoryABI::kNumChunksForLayout),
"kNumPageLayouts out of date");
std::array<uint16_t, SharedMemoryABI::kNumPageLayouts> res = {};
for (size_t i = 0; i < SharedMemoryABI::kNumPageLayouts; i++) {
size_t num_chunks = SharedMemoryABI::kNumChunksForLayout[i];
size_t size = num_chunks == 0 ? 0 : GetChunkSize(page_size, num_chunks);
PERFETTO_CHECK(size <= std::numeric_limits<uint16_t>::max());
res[i] = static_cast<uint16_t>(size);
}
return res;
}
inline void ClearChunkHeader(SharedMemoryABI::ChunkHeader* header) {
header->writer_id.store(0u, std::memory_order_relaxed);
header->chunk_id.store(0u, std::memory_order_relaxed);
header->packets.store({}, std::memory_order_release);
}
} // namespace
SharedMemoryABI::SharedMemoryABI() = default;
SharedMemoryABI::SharedMemoryABI(uint8_t* start,
size_t size,
size_t page_size) {
Initialize(start, size, page_size);
}
void SharedMemoryABI::Initialize(uint8_t* start,
size_t size,
size_t page_size) {
start_ = start;
size_ = size;
page_size_ = page_size;
num_pages_ = size / page_size;
chunk_sizes_ = InitChunkSizes(page_size);
static_assert(sizeof(PageHeader) == 8, "PageHeader size");
static_assert(sizeof(ChunkHeader) == 8, "ChunkHeader size");
static_assert(sizeof(ChunkHeader::chunk_id) == sizeof(ChunkID),
"ChunkID size");
static_assert(sizeof(ChunkHeader::Packets) == 2, "ChunkHeader::Packets size");
static_assert(alignof(ChunkHeader) == kChunkAlignment,
"ChunkHeader alignment");
// In theory std::atomic does not guarantee that the underlying type
// consists only of the actual atomic word. Theoretically it could have
// locks or other state. In practice most implementations just implement
// them without extra state. The code below overlays the atomic into the
// SMB, hence relies on this implementation detail. This should be fine
// pragmatically (Chrome's base makes the same assumption), but let's have a
// check for this.
static_assert(sizeof(std::atomic<uint32_t>) == sizeof(uint32_t) &&
sizeof(std::atomic<uint16_t>) == sizeof(uint16_t),
"Incompatible STL <atomic> implementation");
// Chec that the kAllChunks(Complete,Free) are consistent with the
// ChunkState enum values.
// These must be zero because rely on zero-initialized memory being
// interpreted as "free".
static_assert(kChunkFree == 0 && kAllChunksFree == 0,
"kChunkFree/kAllChunksFree and must be 0");
static_assert((kAllChunksComplete & kChunkMask) == kChunkComplete,
"kAllChunksComplete out of sync with kChunkComplete");
// Check the consistency of the kMax... constants.
static_assert(sizeof(ChunkHeader::writer_id) == sizeof(WriterID),
"WriterID size");
ChunkHeader chunk_header{};
chunk_header.chunk_id.store(static_cast<uint32_t>(-1));
PERFETTO_CHECK(chunk_header.chunk_id.load() == kMaxChunkID);
chunk_header.writer_id.store(static_cast<uint16_t>(-1));
PERFETTO_CHECK(kMaxWriterID <= chunk_header.writer_id.load());
PERFETTO_CHECK(page_size >= kMinPageSize);
PERFETTO_CHECK(page_size <= kMaxPageSize);
PERFETTO_CHECK(page_size % kMinPageSize == 0);
PERFETTO_CHECK(reinterpret_cast<uintptr_t>(start) % kMinPageSize == 0);
PERFETTO_CHECK(size % page_size == 0);
}
SharedMemoryABI::Chunk SharedMemoryABI::GetChunkUnchecked(size_t page_idx,
uint32_t page_layout,
size_t chunk_idx) {
const size_t num_chunks = GetNumChunksForLayout(page_layout);
PERFETTO_DCHECK(chunk_idx < num_chunks);
// Compute the chunk virtual address and write it into |chunk|.
const uint16_t chunk_size = GetChunkSizeForLayout(page_layout);
size_t chunk_offset_in_page = sizeof(PageHeader) + chunk_idx * chunk_size;
Chunk chunk(page_start(page_idx) + chunk_offset_in_page, chunk_size,
static_cast<uint8_t>(chunk_idx));
PERFETTO_DCHECK(chunk.end() <= end());
return chunk;
}
SharedMemoryABI::Chunk SharedMemoryABI::TryAcquireChunk(
size_t page_idx,
size_t chunk_idx,
ChunkState desired_chunk_state,
const ChunkHeader* header) {
PERFETTO_DCHECK(desired_chunk_state == kChunkBeingRead ||
desired_chunk_state == kChunkBeingWritten);
PageHeader* phdr = page_header(page_idx);
for (int attempt = 0; attempt < kRetryAttempts; attempt++) {
uint32_t layout = phdr->layout.load(std::memory_order_acquire);
const size_t num_chunks = GetNumChunksForLayout(layout);
// The page layout has changed (or the page is free).
if (chunk_idx >= num_chunks)
return Chunk();
// Verify that the chunk is still in a state that allows the transition to
// |desired_chunk_state|. The only allowed transitions are:
// 1. kChunkFree -> kChunkBeingWritten (Producer).
// 2. kChunkComplete -> kChunkBeingRead (Service).
ChunkState expected_chunk_state =
desired_chunk_state == kChunkBeingWritten ? kChunkFree : kChunkComplete;
auto cur_chunk_state = (layout >> (chunk_idx * kChunkShift)) & kChunkMask;
if (cur_chunk_state != expected_chunk_state)
return Chunk();
uint32_t next_layout = layout;
next_layout &= ~(kChunkMask << (chunk_idx * kChunkShift));
next_layout |= (desired_chunk_state << (chunk_idx * kChunkShift));
if (phdr->layout.compare_exchange_strong(layout, next_layout,
std::memory_order_acq_rel)) {
// Compute the chunk virtual address and write it into |chunk|.
Chunk chunk = GetChunkUnchecked(page_idx, layout, chunk_idx);
if (desired_chunk_state == kChunkBeingWritten) {
PERFETTO_DCHECK(header);
ChunkHeader* new_header = chunk.header();
new_header->writer_id.store(header->writer_id,
std::memory_order_relaxed);
new_header->chunk_id.store(header->chunk_id, std::memory_order_relaxed);
new_header->packets.store(header->packets, std::memory_order_release);
}
return chunk;
}
WaitBeforeNextAttempt(attempt);
}
return Chunk(); // All our attempts failed.
}
bool SharedMemoryABI::TryPartitionPage(size_t page_idx, PageLayout layout) {
PERFETTO_DCHECK(layout >= kPageDiv1 && layout <= kPageDiv14);
uint32_t expected_layout = 0; // Free page.
uint32_t next_layout = (layout << kLayoutShift) & kLayoutMask;
PageHeader* phdr = page_header(page_idx);
if (!phdr->layout.compare_exchange_strong(expected_layout, next_layout,
std::memory_order_acq_rel)) {
return false;
}
return true;
}
uint32_t SharedMemoryABI::GetFreeChunks(size_t page_idx) {
uint32_t layout =
page_header(page_idx)->layout.load(std::memory_order_relaxed);
const uint32_t num_chunks = GetNumChunksForLayout(layout);
uint32_t res = 0;
for (uint32_t i = 0; i < num_chunks; i++) {
res |= ((layout & kChunkMask) == kChunkFree) ? (1 << i) : 0;
layout >>= kChunkShift;
}
return res;
}
size_t SharedMemoryABI::ReleaseChunk(Chunk chunk,
ChunkState desired_chunk_state) {
PERFETTO_DCHECK(desired_chunk_state == kChunkComplete ||
desired_chunk_state == kChunkFree);
size_t page_idx;
size_t chunk_idx;
std::tie(page_idx, chunk_idx) = GetPageAndChunkIndex(chunk);
// Reset header fields, so that the service can identify when the chunk's
// header has been initialized by the producer.
if (desired_chunk_state == kChunkFree)
ClearChunkHeader(chunk.header());
for (int attempt = 0; attempt < kRetryAttempts; attempt++) {
PageHeader* phdr = page_header(page_idx);
uint32_t layout = phdr->layout.load(std::memory_order_relaxed);
const size_t page_chunk_size = GetChunkSizeForLayout(layout);
// TODO(primiano): this should not be a CHECK, because a malicious producer
// could crash us by putting the chunk in an invalid state. This should
// gracefully fail. Keep a CHECK until then.
PERFETTO_CHECK(chunk.size() == page_chunk_size);
const uint32_t chunk_state =
((layout >> (chunk_idx * kChunkShift)) & kChunkMask);
// Verify that the chunk is still in a state that allows the transition to
// |desired_chunk_state|. The only allowed transitions are:
// 1. kChunkBeingWritten -> kChunkComplete (Producer).
// 2. kChunkBeingRead -> kChunkFree (Service).
ChunkState expected_chunk_state;
if (desired_chunk_state == kChunkComplete) {
expected_chunk_state = kChunkBeingWritten;
} else {
expected_chunk_state = kChunkBeingRead;
}
// TODO(primiano): should not be a CHECK (same rationale of comment above).
PERFETTO_CHECK(chunk_state == expected_chunk_state);
uint32_t next_layout = layout;
next_layout &= ~(kChunkMask << (chunk_idx * kChunkShift));
next_layout |= (desired_chunk_state << (chunk_idx * kChunkShift));
// If we are freeing a chunk and all the other chunks in the page are free
// we should de-partition the page and mark it as clear.
if ((next_layout & kAllChunksMask) == kAllChunksFree)
next_layout = 0;
if (phdr->layout.compare_exchange_strong(layout, next_layout,
std::memory_order_acq_rel)) {
return page_idx;
}
WaitBeforeNextAttempt(attempt);
}
// Too much contention on this page. Give up. This page will be left pending
// forever but there isn't much more we can do at this point.
PERFETTO_DFATAL("Too much contention on page.");
return kInvalidPageIdx;
}
SharedMemoryABI::Chunk::Chunk() = default;
SharedMemoryABI::Chunk::Chunk(uint8_t* begin, uint16_t size, uint8_t chunk_idx)
: begin_(begin), size_(size), chunk_idx_(chunk_idx) {
PERFETTO_CHECK(reinterpret_cast<uintptr_t>(begin) % kChunkAlignment == 0);
PERFETTO_CHECK(size > 0);
}
SharedMemoryABI::Chunk::Chunk(Chunk&& o) noexcept {
*this = std::move(o);
}
SharedMemoryABI::Chunk& SharedMemoryABI::Chunk::operator=(Chunk&& o) {
begin_ = o.begin_;
size_ = o.size_;
chunk_idx_ = o.chunk_idx_;
o.begin_ = nullptr;
o.size_ = 0;
o.chunk_idx_ = 0;
return *this;
}
std::pair<size_t, size_t> SharedMemoryABI::GetPageAndChunkIndex(
const Chunk& chunk) {
PERFETTO_DCHECK(chunk.is_valid());
PERFETTO_DCHECK(chunk.begin() >= start_);
PERFETTO_DCHECK(chunk.end() <= start_ + size_);
// TODO(primiano): The divisions below could be avoided if we cached
// |page_shift_|.
const uintptr_t rel_addr = static_cast<uintptr_t>(chunk.begin() - start_);
const size_t page_idx = rel_addr / page_size_;
const size_t offset = rel_addr % page_size_;
PERFETTO_DCHECK(offset >= sizeof(PageHeader));
PERFETTO_DCHECK(offset % kChunkAlignment == 0);
PERFETTO_DCHECK((offset - sizeof(PageHeader)) % chunk.size() == 0);
const size_t chunk_idx = (offset - sizeof(PageHeader)) / chunk.size();
PERFETTO_DCHECK(chunk_idx < kMaxChunksPerPage);
PERFETTO_DCHECK(chunk_idx < GetNumChunksForLayout(GetPageLayout(page_idx)));
return std::make_pair(page_idx, chunk_idx);
}
} // namespace perfetto