| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #define _CRT_SECURE_NO_WARNINGS |
| |
| #include <limits> |
| |
| #include "base/command_line.h" |
| #include "base/debug/alias.h" |
| #include "base/debug/stack_trace.h" |
| #include "base/file_path.h" |
| #include "base/logging.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/path_service.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "base/process_util.h" |
| #include "base/test/multiprocess_test.h" |
| #include "base/test/test_timeouts.h" |
| #include "base/third_party/dynamic_annotations/dynamic_annotations.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/utf_string_conversions.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "testing/multiprocess_func_list.h" |
| |
| #if defined(OS_LINUX) |
| #include <malloc.h> |
| #include <glib.h> |
| #include <sched.h> |
| #endif |
| #if defined(OS_POSIX) |
| #include <errno.h> |
| #include <dlfcn.h> |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <sys/resource.h> |
| #include <sys/socket.h> |
| #include <sys/wait.h> |
| #endif |
| #if defined(OS_WIN) |
| #include <windows.h> |
| #endif |
| #if defined(OS_MACOSX) |
| #include <mach/vm_param.h> |
| #include <malloc/malloc.h> |
| #include "base/process_util_unittest_mac.h" |
| #endif |
| |
| namespace { |
| |
| #if defined(OS_WIN) |
| const wchar_t kProcessName[] = L"base_unittests.exe"; |
| #else |
| const wchar_t kProcessName[] = L"base_unittests"; |
| #endif // defined(OS_WIN) |
| |
| #if defined(OS_ANDROID) |
| const char kShellPath[] = "/system/bin/sh"; |
| const char kPosixShell[] = "sh"; |
| #else |
| const char kShellPath[] = "/bin/sh"; |
| const char kPosixShell[] = "bash"; |
| #endif |
| |
| const char kSignalFileSlow[] = "SlowChildProcess.die"; |
| const char kSignalFileCrash[] = "CrashingChildProcess.die"; |
| const char kSignalFileKill[] = "KilledChildProcess.die"; |
| |
| #if defined(OS_WIN) |
| const int kExpectedStillRunningExitCode = 0x102; |
| const int kExpectedKilledExitCode = 1; |
| #else |
| const int kExpectedStillRunningExitCode = 0; |
| #endif |
| |
| #if defined(OS_WIN) |
| // HeapQueryInformation function pointer. |
| typedef BOOL (WINAPI* HeapQueryFn) \ |
| (HANDLE, HEAP_INFORMATION_CLASS, PVOID, SIZE_T, PSIZE_T); |
| #endif |
| |
| // Sleeps until file filename is created. |
| void WaitToDie(const char* filename) { |
| FILE* fp; |
| do { |
| base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10)); |
| fp = fopen(filename, "r"); |
| } while (!fp); |
| fclose(fp); |
| } |
| |
| // Signals children they should die now. |
| void SignalChildren(const char* filename) { |
| FILE* fp = fopen(filename, "w"); |
| fclose(fp); |
| } |
| |
| // Using a pipe to the child to wait for an event was considered, but |
| // there were cases in the past where pipes caused problems (other |
| // libraries closing the fds, child deadlocking). This is a simple |
| // case, so it's not worth the risk. Using wait loops is discouraged |
| // in most instances. |
| base::TerminationStatus WaitForChildTermination(base::ProcessHandle handle, |
| int* exit_code) { |
| // Now we wait until the result is something other than STILL_RUNNING. |
| base::TerminationStatus status = base::TERMINATION_STATUS_STILL_RUNNING; |
| const base::TimeDelta kInterval = base::TimeDelta::FromMilliseconds(20); |
| base::TimeDelta waited; |
| do { |
| status = base::GetTerminationStatus(handle, exit_code); |
| base::PlatformThread::Sleep(kInterval); |
| waited += kInterval; |
| } while (status == base::TERMINATION_STATUS_STILL_RUNNING && |
| // Waiting for more time for process termination on android devices. |
| #if defined(OS_ANDROID) |
| waited < TestTimeouts::large_test_timeout()); |
| #else |
| waited < TestTimeouts::action_max_timeout()); |
| #endif |
| |
| return status; |
| } |
| |
| } // namespace |
| |
| class ProcessUtilTest : public base::MultiProcessTest { |
| public: |
| #if defined(OS_POSIX) |
| // Spawn a child process that counts how many file descriptors are open. |
| int CountOpenFDsInChild(); |
| #endif |
| // Converts the filename to a platform specific filepath. |
| // On Android files can not be created in arbitrary directories. |
| static std::string GetSignalFilePath(const char* filename); |
| }; |
| |
| std::string ProcessUtilTest::GetSignalFilePath(const char* filename) { |
| #if !defined(OS_ANDROID) |
| return filename; |
| #else |
| FilePath tmp_dir; |
| PathService::Get(base::DIR_CACHE, &tmp_dir); |
| tmp_dir = tmp_dir.Append(filename); |
| return tmp_dir.value(); |
| #endif |
| } |
| |
| MULTIPROCESS_TEST_MAIN(SimpleChildProcess) { |
| return 0; |
| } |
| |
| TEST_F(ProcessUtilTest, SpawnChild) { |
| base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false); |
| ASSERT_NE(base::kNullProcessHandle, handle); |
| EXPECT_TRUE(base::WaitForSingleProcess( |
| handle, TestTimeouts::action_max_timeout())); |
| base::CloseProcessHandle(handle); |
| } |
| |
| MULTIPROCESS_TEST_MAIN(SlowChildProcess) { |
| WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileSlow).c_str()); |
| return 0; |
| } |
| |
| TEST_F(ProcessUtilTest, KillSlowChild) { |
| const std::string signal_file = |
| ProcessUtilTest::GetSignalFilePath(kSignalFileSlow); |
| remove(signal_file.c_str()); |
| base::ProcessHandle handle = this->SpawnChild("SlowChildProcess", false); |
| ASSERT_NE(base::kNullProcessHandle, handle); |
| SignalChildren(signal_file.c_str()); |
| EXPECT_TRUE(base::WaitForSingleProcess( |
| handle, TestTimeouts::action_max_timeout())); |
| base::CloseProcessHandle(handle); |
| remove(signal_file.c_str()); |
| } |
| |
| // Times out on Linux and Win, flakes on other platforms, http://crbug.com/95058 |
| TEST_F(ProcessUtilTest, DISABLED_GetTerminationStatusExit) { |
| const std::string signal_file = |
| ProcessUtilTest::GetSignalFilePath(kSignalFileSlow); |
| remove(signal_file.c_str()); |
| base::ProcessHandle handle = this->SpawnChild("SlowChildProcess", false); |
| ASSERT_NE(base::kNullProcessHandle, handle); |
| |
| int exit_code = 42; |
| EXPECT_EQ(base::TERMINATION_STATUS_STILL_RUNNING, |
| base::GetTerminationStatus(handle, &exit_code)); |
| EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); |
| |
| SignalChildren(signal_file.c_str()); |
| exit_code = 42; |
| base::TerminationStatus status = |
| WaitForChildTermination(handle, &exit_code); |
| EXPECT_EQ(base::TERMINATION_STATUS_NORMAL_TERMINATION, status); |
| EXPECT_EQ(0, exit_code); |
| base::CloseProcessHandle(handle); |
| remove(signal_file.c_str()); |
| } |
| |
| #if defined(OS_WIN) |
| // TODO(cpu): figure out how to test this in other platforms. |
| TEST_F(ProcessUtilTest, GetProcId) { |
| base::ProcessId id1 = base::GetProcId(GetCurrentProcess()); |
| EXPECT_NE(0ul, id1); |
| base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false); |
| ASSERT_NE(base::kNullProcessHandle, handle); |
| base::ProcessId id2 = base::GetProcId(handle); |
| EXPECT_NE(0ul, id2); |
| EXPECT_NE(id1, id2); |
| base::CloseProcessHandle(handle); |
| } |
| |
| TEST_F(ProcessUtilTest, GetModuleFromAddress) { |
| // Since the unit tests are their own EXE, this should be |
| // equivalent to the EXE's HINSTANCE. |
| // |
| // kExpectedKilledExitCode is a constant in this file and |
| // therefore within the unit test EXE. |
| EXPECT_EQ(::GetModuleHandle(NULL), |
| base::GetModuleFromAddress( |
| const_cast<int*>(&kExpectedKilledExitCode))); |
| |
| // Any address within the kernel32 module should return |
| // kernel32's HMODULE. Our only assumption here is that |
| // kernel32 is larger than 4 bytes. |
| HMODULE kernel32 = ::GetModuleHandle(L"kernel32.dll"); |
| HMODULE kernel32_from_address = |
| base::GetModuleFromAddress(reinterpret_cast<DWORD*>(kernel32) + 1); |
| EXPECT_EQ(kernel32, kernel32_from_address); |
| } |
| #endif |
| |
| #if !defined(OS_MACOSX) |
| // This test is disabled on Mac, since it's flaky due to ReportCrash |
| // taking a variable amount of time to parse and load the debug and |
| // symbol data for this unit test's executable before firing the |
| // signal handler. |
| // |
| // TODO(gspencer): turn this test process into a very small program |
| // with no symbols (instead of using the multiprocess testing |
| // framework) to reduce the ReportCrash overhead. |
| |
| MULTIPROCESS_TEST_MAIN(CrashingChildProcess) { |
| WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileCrash).c_str()); |
| #if defined(OS_POSIX) |
| // Have to disable to signal handler for segv so we can get a crash |
| // instead of an abnormal termination through the crash dump handler. |
| ::signal(SIGSEGV, SIG_DFL); |
| #endif |
| // Make this process have a segmentation fault. |
| volatile int* oops = NULL; |
| *oops = 0xDEAD; |
| return 1; |
| } |
| |
| // This test intentionally crashes, so we don't need to run it under |
| // AddressSanitizer. |
| #if defined(ADDRESS_SANITIZER) |
| #define MAYBE_GetTerminationStatusCrash DISABLED_GetTerminationStatusCrash |
| #else |
| #define MAYBE_GetTerminationStatusCrash GetTerminationStatusCrash |
| #endif |
| TEST_F(ProcessUtilTest, MAYBE_GetTerminationStatusCrash) { |
| const std::string signal_file = |
| ProcessUtilTest::GetSignalFilePath(kSignalFileCrash); |
| remove(signal_file.c_str()); |
| base::ProcessHandle handle = this->SpawnChild("CrashingChildProcess", |
| false); |
| ASSERT_NE(base::kNullProcessHandle, handle); |
| |
| int exit_code = 42; |
| EXPECT_EQ(base::TERMINATION_STATUS_STILL_RUNNING, |
| base::GetTerminationStatus(handle, &exit_code)); |
| EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); |
| |
| SignalChildren(signal_file.c_str()); |
| exit_code = 42; |
| base::TerminationStatus status = |
| WaitForChildTermination(handle, &exit_code); |
| EXPECT_EQ(base::TERMINATION_STATUS_PROCESS_CRASHED, status); |
| |
| #if defined(OS_WIN) |
| EXPECT_EQ(0xc0000005, exit_code); |
| #elif defined(OS_POSIX) |
| int signaled = WIFSIGNALED(exit_code); |
| EXPECT_NE(0, signaled); |
| int signal = WTERMSIG(exit_code); |
| EXPECT_EQ(SIGSEGV, signal); |
| #endif |
| base::CloseProcessHandle(handle); |
| |
| // Reset signal handlers back to "normal". |
| base::debug::EnableInProcessStackDumping(); |
| remove(signal_file.c_str()); |
| } |
| #endif // !defined(OS_MACOSX) |
| |
| MULTIPROCESS_TEST_MAIN(KilledChildProcess) { |
| WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileKill).c_str()); |
| #if defined(OS_WIN) |
| // Kill ourselves. |
| HANDLE handle = ::OpenProcess(PROCESS_ALL_ACCESS, 0, ::GetCurrentProcessId()); |
| ::TerminateProcess(handle, kExpectedKilledExitCode); |
| #elif defined(OS_POSIX) |
| // Send a SIGKILL to this process, just like the OOM killer would. |
| ::kill(getpid(), SIGKILL); |
| #endif |
| return 1; |
| } |
| |
| TEST_F(ProcessUtilTest, GetTerminationStatusKill) { |
| const std::string signal_file = |
| ProcessUtilTest::GetSignalFilePath(kSignalFileKill); |
| remove(signal_file.c_str()); |
| base::ProcessHandle handle = this->SpawnChild("KilledChildProcess", |
| false); |
| ASSERT_NE(base::kNullProcessHandle, handle); |
| |
| int exit_code = 42; |
| EXPECT_EQ(base::TERMINATION_STATUS_STILL_RUNNING, |
| base::GetTerminationStatus(handle, &exit_code)); |
| EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); |
| |
| SignalChildren(signal_file.c_str()); |
| exit_code = 42; |
| base::TerminationStatus status = |
| WaitForChildTermination(handle, &exit_code); |
| EXPECT_EQ(base::TERMINATION_STATUS_PROCESS_WAS_KILLED, status); |
| #if defined(OS_WIN) |
| EXPECT_EQ(kExpectedKilledExitCode, exit_code); |
| #elif defined(OS_POSIX) |
| int signaled = WIFSIGNALED(exit_code); |
| EXPECT_NE(0, signaled); |
| int signal = WTERMSIG(exit_code); |
| EXPECT_EQ(SIGKILL, signal); |
| #endif |
| base::CloseProcessHandle(handle); |
| remove(signal_file.c_str()); |
| } |
| |
| // Ensure that the priority of a process is restored correctly after |
| // backgrounding and restoring. |
| // Note: a platform may not be willing or able to lower the priority of |
| // a process. The calls to SetProcessBackground should be noops then. |
| TEST_F(ProcessUtilTest, SetProcessBackgrounded) { |
| base::ProcessHandle handle = this->SpawnChild("SimpleChildProcess", false); |
| base::Process process(handle); |
| int old_priority = process.GetPriority(); |
| #if defined(OS_WIN) |
| EXPECT_TRUE(process.SetProcessBackgrounded(true)); |
| EXPECT_TRUE(process.IsProcessBackgrounded()); |
| EXPECT_TRUE(process.SetProcessBackgrounded(false)); |
| EXPECT_FALSE(process.IsProcessBackgrounded()); |
| #else |
| process.SetProcessBackgrounded(true); |
| process.SetProcessBackgrounded(false); |
| #endif |
| int new_priority = process.GetPriority(); |
| EXPECT_EQ(old_priority, new_priority); |
| } |
| |
| // Same as SetProcessBackgrounded but to this very process. It uses |
| // a different code path at least for Windows. |
| TEST_F(ProcessUtilTest, SetProcessBackgroundedSelf) { |
| base::Process process(base::Process::Current().handle()); |
| int old_priority = process.GetPriority(); |
| #if defined(OS_WIN) |
| EXPECT_TRUE(process.SetProcessBackgrounded(true)); |
| EXPECT_TRUE(process.IsProcessBackgrounded()); |
| EXPECT_TRUE(process.SetProcessBackgrounded(false)); |
| EXPECT_FALSE(process.IsProcessBackgrounded()); |
| #else |
| process.SetProcessBackgrounded(true); |
| process.SetProcessBackgrounded(false); |
| #endif |
| int new_priority = process.GetPriority(); |
| EXPECT_EQ(old_priority, new_priority); |
| } |
| |
| // TODO(estade): if possible, port these 2 tests. |
| #if defined(OS_WIN) |
| TEST_F(ProcessUtilTest, EnableLFH) { |
| ASSERT_TRUE(base::EnableLowFragmentationHeap()); |
| if (IsDebuggerPresent()) { |
| // Under these conditions, LFH can't be enabled. There's no point to test |
| // anything. |
| const char* no_debug_env = getenv("_NO_DEBUG_HEAP"); |
| if (!no_debug_env || strcmp(no_debug_env, "1")) |
| return; |
| } |
| HMODULE kernel32 = GetModuleHandle(L"kernel32.dll"); |
| ASSERT_TRUE(kernel32 != NULL); |
| HeapQueryFn heap_query = reinterpret_cast<HeapQueryFn>(GetProcAddress( |
| kernel32, |
| "HeapQueryInformation")); |
| |
| // On Windows 2000, the function is not exported. This is not a reason to |
| // fail but we won't be able to retrieves information about the heap, so we |
| // should stop here. |
| if (heap_query == NULL) |
| return; |
| |
| HANDLE heaps[1024] = { 0 }; |
| unsigned number_heaps = GetProcessHeaps(1024, heaps); |
| EXPECT_GT(number_heaps, 0u); |
| for (unsigned i = 0; i < number_heaps; ++i) { |
| ULONG flag = 0; |
| SIZE_T length; |
| ASSERT_NE(0, heap_query(heaps[i], |
| HeapCompatibilityInformation, |
| &flag, |
| sizeof(flag), |
| &length)); |
| // If flag is 0, the heap is a standard heap that does not support |
| // look-asides. If flag is 1, the heap supports look-asides. If flag is 2, |
| // the heap is a low-fragmentation heap (LFH). Note that look-asides are not |
| // supported on the LFH. |
| |
| // We don't have any documented way of querying the HEAP_NO_SERIALIZE flag. |
| EXPECT_LE(flag, 2u); |
| EXPECT_NE(flag, 1u); |
| } |
| } |
| |
| TEST_F(ProcessUtilTest, CalcFreeMemory) { |
| scoped_ptr<base::ProcessMetrics> metrics( |
| base::ProcessMetrics::CreateProcessMetrics(::GetCurrentProcess())); |
| ASSERT_TRUE(NULL != metrics.get()); |
| |
| // Typical values here is ~1900 for total and ~1000 for largest. Obviously |
| // it depends in what other tests have done to this process. |
| base::FreeMBytes free_mem1 = {0}; |
| EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem1)); |
| EXPECT_LT(10u, free_mem1.total); |
| EXPECT_LT(10u, free_mem1.largest); |
| EXPECT_GT(2048u, free_mem1.total); |
| EXPECT_GT(2048u, free_mem1.largest); |
| EXPECT_GE(free_mem1.total, free_mem1.largest); |
| EXPECT_TRUE(NULL != free_mem1.largest_ptr); |
| |
| // Allocate 20M and check again. It should have gone down. |
| const int kAllocMB = 20; |
| scoped_array<char> alloc(new char[kAllocMB * 1024 * 1024]); |
| size_t expected_total = free_mem1.total - kAllocMB; |
| size_t expected_largest = free_mem1.largest; |
| |
| base::FreeMBytes free_mem2 = {0}; |
| EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem2)); |
| EXPECT_GE(free_mem2.total, free_mem2.largest); |
| EXPECT_GE(expected_total, free_mem2.total); |
| EXPECT_GE(expected_largest, free_mem2.largest); |
| EXPECT_TRUE(NULL != free_mem2.largest_ptr); |
| } |
| |
| TEST_F(ProcessUtilTest, GetAppOutput) { |
| // Let's create a decently long message. |
| std::string message; |
| for (int i = 0; i < 1025; i++) { // 1025 so it does not end on a kilo-byte |
| // boundary. |
| message += "Hello!"; |
| } |
| // cmd.exe's echo always adds a \r\n to its output. |
| std::string expected(message); |
| expected += "\r\n"; |
| |
| FilePath cmd(L"cmd.exe"); |
| CommandLine cmd_line(cmd); |
| cmd_line.AppendArg("/c"); |
| cmd_line.AppendArg("echo " + message + ""); |
| std::string output; |
| ASSERT_TRUE(base::GetAppOutput(cmd_line, &output)); |
| EXPECT_EQ(expected, output); |
| |
| // Let's make sure stderr is ignored. |
| CommandLine other_cmd_line(cmd); |
| other_cmd_line.AppendArg("/c"); |
| // http://msdn.microsoft.com/library/cc772622.aspx |
| cmd_line.AppendArg("echo " + message + " >&2"); |
| output.clear(); |
| ASSERT_TRUE(base::GetAppOutput(other_cmd_line, &output)); |
| EXPECT_EQ("", output); |
| } |
| |
| TEST_F(ProcessUtilTest, LaunchAsUser) { |
| base::UserTokenHandle token; |
| ASSERT_TRUE(OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &token)); |
| std::wstring cmdline = |
| this->MakeCmdLine("SimpleChildProcess", false).GetCommandLineString(); |
| base::LaunchOptions options; |
| options.as_user = token; |
| EXPECT_TRUE(base::LaunchProcess(cmdline, options, NULL)); |
| } |
| |
| #endif // defined(OS_WIN) |
| |
| #if defined(OS_MACOSX) |
| |
| // For the following Mac tests: |
| // Note that base::EnableTerminationOnHeapCorruption() is called as part of |
| // test suite setup and does not need to be done again, else mach_override |
| // will fail. |
| |
| #if !defined(ADDRESS_SANITIZER) |
| // The following code tests the system implementation of malloc() thus no need |
| // to test it under AddressSanitizer. |
| TEST_F(ProcessUtilTest, MacMallocFailureDoesNotTerminate) { |
| // Install the OOM killer. |
| base::EnableTerminationOnOutOfMemory(); |
| |
| // Test that ENOMEM doesn't crash via CrMallocErrorBreak two ways: the exit |
| // code and lack of the error string. The number of bytes is one less than |
| // MALLOC_ABSOLUTE_MAX_SIZE, more than which the system early-returns NULL and |
| // does not call through malloc_error_break(). See the comment at |
| // EnableTerminationOnOutOfMemory() for more information. |
| void* buf = NULL; |
| ASSERT_EXIT( |
| buf = malloc(std::numeric_limits<size_t>::max() - (2 * PAGE_SIZE) - 1), |
| testing::KilledBySignal(SIGTRAP), |
| "\\*\\*\\* error: can't allocate region.*" |
| "(Terminating process due to a potential for future heap " |
| "corruption){0}"); |
| |
| base::debug::Alias(buf); |
| } |
| #endif // !defined(ADDRESS_SANITIZER) |
| |
| TEST_F(ProcessUtilTest, MacTerminateOnHeapCorruption) { |
| // Assert that freeing an unallocated pointer will crash the process. |
| char buf[3]; |
| asm("" : "=r" (buf)); // Prevent clang from being too smart. |
| #if !defined(ADDRESS_SANITIZER) |
| ASSERT_DEATH(free(buf), "being freed.*" |
| "\\*\\*\\* set a breakpoint in malloc_error_break to debug.*" |
| "Terminating process due to a potential for future heap corruption"); |
| #else |
| // AddressSanitizer replaces malloc() and prints a different error message on |
| // heap corruption. |
| ASSERT_DEATH(free(buf), "attempting free on address which " |
| "was not malloc\\(\\)-ed"); |
| #endif // !defined(ADDRESS_SANITIZER) |
| } |
| |
| #endif // defined(OS_MACOSX) |
| |
| #if defined(OS_POSIX) |
| |
| namespace { |
| |
| // Returns the maximum number of files that a process can have open. |
| // Returns 0 on error. |
| int GetMaxFilesOpenInProcess() { |
| struct rlimit rlim; |
| if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) { |
| return 0; |
| } |
| |
| // rlim_t is a uint64 - clip to maxint. We do this since FD #s are ints |
| // which are all 32 bits on the supported platforms. |
| rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32>::max()); |
| if (rlim.rlim_cur > max_int) { |
| return max_int; |
| } |
| |
| return rlim.rlim_cur; |
| } |
| |
| const int kChildPipe = 20; // FD # for write end of pipe in child process. |
| |
| } // namespace |
| |
| MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) { |
| // This child process counts the number of open FDs, it then writes that |
| // number out to a pipe connected to the parent. |
| int num_open_files = 0; |
| int write_pipe = kChildPipe; |
| int max_files = GetMaxFilesOpenInProcess(); |
| for (int i = STDERR_FILENO + 1; i < max_files; i++) { |
| if (i != kChildPipe) { |
| int fd; |
| if ((fd = HANDLE_EINTR(dup(i))) != -1) { |
| close(fd); |
| num_open_files += 1; |
| } |
| } |
| } |
| |
| int written = HANDLE_EINTR(write(write_pipe, &num_open_files, |
| sizeof(num_open_files))); |
| DCHECK_EQ(static_cast<size_t>(written), sizeof(num_open_files)); |
| int ret = HANDLE_EINTR(close(write_pipe)); |
| DPCHECK(ret == 0); |
| |
| return 0; |
| } |
| |
| int ProcessUtilTest::CountOpenFDsInChild() { |
| int fds[2]; |
| if (pipe(fds) < 0) |
| NOTREACHED(); |
| |
| base::FileHandleMappingVector fd_mapping_vec; |
| fd_mapping_vec.push_back(std::pair<int, int>(fds[1], kChildPipe)); |
| base::ProcessHandle handle = this->SpawnChild( |
| "ProcessUtilsLeakFDChildProcess", fd_mapping_vec, false); |
| CHECK(handle); |
| int ret = HANDLE_EINTR(close(fds[1])); |
| DPCHECK(ret == 0); |
| |
| // Read number of open files in client process from pipe; |
| int num_open_files = -1; |
| ssize_t bytes_read = |
| HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files))); |
| CHECK_EQ(bytes_read, static_cast<ssize_t>(sizeof(num_open_files))); |
| |
| #if defined(THREAD_SANITIZER) |
| // Compiler-based ThreadSanitizer makes this test slow. |
| CHECK(base::WaitForSingleProcess(handle, base::TimeDelta::FromSeconds(3))); |
| #else |
| CHECK(base::WaitForSingleProcess(handle, base::TimeDelta::FromSeconds(1))); |
| #endif |
| base::CloseProcessHandle(handle); |
| ret = HANDLE_EINTR(close(fds[0])); |
| DPCHECK(ret == 0); |
| |
| return num_open_files; |
| } |
| |
| TEST_F(ProcessUtilTest, FDRemapping) { |
| int fds_before = CountOpenFDsInChild(); |
| |
| // open some dummy fds to make sure they don't propagate over to the |
| // child process. |
| int dev_null = open("/dev/null", O_RDONLY); |
| int sockets[2]; |
| socketpair(AF_UNIX, SOCK_STREAM, 0, sockets); |
| |
| int fds_after = CountOpenFDsInChild(); |
| |
| ASSERT_EQ(fds_after, fds_before); |
| |
| int ret; |
| ret = HANDLE_EINTR(close(sockets[0])); |
| DPCHECK(ret == 0); |
| ret = HANDLE_EINTR(close(sockets[1])); |
| DPCHECK(ret == 0); |
| ret = HANDLE_EINTR(close(dev_null)); |
| DPCHECK(ret == 0); |
| } |
| |
| namespace { |
| |
| std::string TestLaunchProcess(const base::EnvironmentVector& env_changes, |
| const int clone_flags) { |
| std::vector<std::string> args; |
| base::FileHandleMappingVector fds_to_remap; |
| |
| args.push_back(kPosixShell); |
| args.push_back("-c"); |
| args.push_back("echo $BASE_TEST"); |
| |
| int fds[2]; |
| PCHECK(pipe(fds) == 0); |
| |
| fds_to_remap.push_back(std::make_pair(fds[1], 1)); |
| base::LaunchOptions options; |
| options.wait = true; |
| options.environ = &env_changes; |
| options.fds_to_remap = &fds_to_remap; |
| #if defined(OS_LINUX) |
| options.clone_flags = clone_flags; |
| #else |
| CHECK_EQ(0, clone_flags); |
| #endif // OS_LINUX |
| EXPECT_TRUE(base::LaunchProcess(args, options, NULL)); |
| PCHECK(HANDLE_EINTR(close(fds[1])) == 0); |
| |
| char buf[512]; |
| const ssize_t n = HANDLE_EINTR(read(fds[0], buf, sizeof(buf))); |
| PCHECK(n > 0); |
| |
| PCHECK(HANDLE_EINTR(close(fds[0])) == 0); |
| |
| return std::string(buf, n); |
| } |
| |
| const char kLargeString[] = |
| "0123456789012345678901234567890123456789012345678901234567890123456789" |
| "0123456789012345678901234567890123456789012345678901234567890123456789" |
| "0123456789012345678901234567890123456789012345678901234567890123456789" |
| "0123456789012345678901234567890123456789012345678901234567890123456789" |
| "0123456789012345678901234567890123456789012345678901234567890123456789" |
| "0123456789012345678901234567890123456789012345678901234567890123456789" |
| "0123456789012345678901234567890123456789012345678901234567890123456789"; |
| |
| } // namespace |
| |
| TEST_F(ProcessUtilTest, LaunchProcess) { |
| base::EnvironmentVector env_changes; |
| const int no_clone_flags = 0; |
| |
| env_changes.push_back(std::make_pair(std::string("BASE_TEST"), |
| std::string("bar"))); |
| EXPECT_EQ("bar\n", TestLaunchProcess(env_changes, no_clone_flags)); |
| env_changes.clear(); |
| |
| EXPECT_EQ(0, setenv("BASE_TEST", "testing", 1 /* override */)); |
| EXPECT_EQ("testing\n", TestLaunchProcess(env_changes, no_clone_flags)); |
| |
| env_changes.push_back(std::make_pair(std::string("BASE_TEST"), |
| std::string(""))); |
| EXPECT_EQ("\n", TestLaunchProcess(env_changes, no_clone_flags)); |
| |
| env_changes[0].second = "foo"; |
| EXPECT_EQ("foo\n", TestLaunchProcess(env_changes, no_clone_flags)); |
| |
| env_changes.clear(); |
| EXPECT_EQ(0, setenv("BASE_TEST", kLargeString, 1 /* override */)); |
| EXPECT_EQ(std::string(kLargeString) + "\n", |
| TestLaunchProcess(env_changes, no_clone_flags)); |
| |
| env_changes.push_back(std::make_pair(std::string("BASE_TEST"), |
| std::string("wibble"))); |
| EXPECT_EQ("wibble\n", TestLaunchProcess(env_changes, no_clone_flags)); |
| |
| #if defined(OS_LINUX) |
| // Test a non-trival value for clone_flags. |
| // Don't test on Valgrind as it has limited support for clone(). |
| if (!RunningOnValgrind()) { |
| EXPECT_EQ("wibble\n", TestLaunchProcess(env_changes, CLONE_FS | SIGCHLD)); |
| } |
| #endif |
| } |
| |
| TEST_F(ProcessUtilTest, AlterEnvironment) { |
| const char* const empty[] = { NULL }; |
| const char* const a2[] = { "A=2", NULL }; |
| base::EnvironmentVector changes; |
| char** e; |
| |
| e = base::AlterEnvironment(changes, empty); |
| EXPECT_TRUE(e[0] == NULL); |
| delete[] e; |
| |
| changes.push_back(std::make_pair(std::string("A"), std::string("1"))); |
| e = base::AlterEnvironment(changes, empty); |
| EXPECT_EQ(std::string("A=1"), e[0]); |
| EXPECT_TRUE(e[1] == NULL); |
| delete[] e; |
| |
| changes.clear(); |
| changes.push_back(std::make_pair(std::string("A"), std::string(""))); |
| e = base::AlterEnvironment(changes, empty); |
| EXPECT_TRUE(e[0] == NULL); |
| delete[] e; |
| |
| changes.clear(); |
| e = base::AlterEnvironment(changes, a2); |
| EXPECT_EQ(std::string("A=2"), e[0]); |
| EXPECT_TRUE(e[1] == NULL); |
| delete[] e; |
| |
| changes.clear(); |
| changes.push_back(std::make_pair(std::string("A"), std::string("1"))); |
| e = base::AlterEnvironment(changes, a2); |
| EXPECT_EQ(std::string("A=1"), e[0]); |
| EXPECT_TRUE(e[1] == NULL); |
| delete[] e; |
| |
| changes.clear(); |
| changes.push_back(std::make_pair(std::string("A"), std::string(""))); |
| e = base::AlterEnvironment(changes, a2); |
| EXPECT_TRUE(e[0] == NULL); |
| delete[] e; |
| } |
| |
| TEST_F(ProcessUtilTest, GetAppOutput) { |
| std::string output; |
| |
| #if defined(OS_ANDROID) |
| std::vector<std::string> argv; |
| argv.push_back("sh"); // Instead of /bin/sh, force path search to find it. |
| argv.push_back("-c"); |
| |
| argv.push_back("exit 0"); |
| EXPECT_TRUE(base::GetAppOutput(CommandLine(argv), &output)); |
| EXPECT_STREQ("", output.c_str()); |
| |
| argv[2] = "exit 1"; |
| EXPECT_FALSE(base::GetAppOutput(CommandLine(argv), &output)); |
| EXPECT_STREQ("", output.c_str()); |
| |
| argv[2] = "echo foobar42"; |
| EXPECT_TRUE(base::GetAppOutput(CommandLine(argv), &output)); |
| EXPECT_STREQ("foobar42\n", output.c_str()); |
| #else |
| EXPECT_TRUE(base::GetAppOutput(CommandLine(FilePath("true")), &output)); |
| EXPECT_STREQ("", output.c_str()); |
| |
| EXPECT_FALSE(base::GetAppOutput(CommandLine(FilePath("false")), &output)); |
| |
| std::vector<std::string> argv; |
| argv.push_back("/bin/echo"); |
| argv.push_back("-n"); |
| argv.push_back("foobar42"); |
| EXPECT_TRUE(base::GetAppOutput(CommandLine(argv), &output)); |
| EXPECT_STREQ("foobar42", output.c_str()); |
| #endif // defined(OS_ANDROID) |
| } |
| |
| TEST_F(ProcessUtilTest, GetAppOutputRestricted) { |
| // Unfortunately, since we can't rely on the path, we need to know where |
| // everything is. So let's use /bin/sh, which is on every POSIX system, and |
| // its built-ins. |
| std::vector<std::string> argv; |
| argv.push_back(std::string(kShellPath)); // argv[0] |
| argv.push_back("-c"); // argv[1] |
| |
| // On success, should set |output|. We use |/bin/sh -c 'exit 0'| instead of |
| // |true| since the location of the latter may be |/bin| or |/usr/bin| (and we |
| // need absolute paths). |
| argv.push_back("exit 0"); // argv[2]; equivalent to "true" |
| std::string output = "abc"; |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 100)); |
| EXPECT_STREQ("", output.c_str()); |
| |
| argv[2] = "exit 1"; // equivalent to "false" |
| output = "before"; |
| EXPECT_FALSE(base::GetAppOutputRestricted(CommandLine(argv), |
| &output, 100)); |
| EXPECT_STREQ("", output.c_str()); |
| |
| // Amount of output exactly equal to space allowed. |
| argv[2] = "echo 123456789"; // (the sh built-in doesn't take "-n") |
| output.clear(); |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10)); |
| EXPECT_STREQ("123456789\n", output.c_str()); |
| |
| // Amount of output greater than space allowed. |
| output.clear(); |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 5)); |
| EXPECT_STREQ("12345", output.c_str()); |
| |
| // Amount of output less than space allowed. |
| output.clear(); |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 15)); |
| EXPECT_STREQ("123456789\n", output.c_str()); |
| |
| // Zero space allowed. |
| output = "abc"; |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 0)); |
| EXPECT_STREQ("", output.c_str()); |
| } |
| |
| #if !defined(OS_MACOSX) && !defined(OS_OPENBSD) |
| // TODO(benwells): GetAppOutputRestricted should terminate applications |
| // with SIGPIPE when we have enough output. http://crbug.com/88502 |
| TEST_F(ProcessUtilTest, GetAppOutputRestrictedSIGPIPE) { |
| std::vector<std::string> argv; |
| std::string output; |
| |
| argv.push_back(std::string(kShellPath)); // argv[0] |
| argv.push_back("-c"); |
| #if defined(OS_ANDROID) |
| argv.push_back("while echo 12345678901234567890; do :; done"); |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10)); |
| EXPECT_STREQ("1234567890", output.c_str()); |
| #else |
| argv.push_back("yes"); |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10)); |
| EXPECT_STREQ("y\ny\ny\ny\ny\n", output.c_str()); |
| #endif |
| } |
| #endif |
| |
| TEST_F(ProcessUtilTest, GetAppOutputRestrictedNoZombies) { |
| std::vector<std::string> argv; |
| |
| argv.push_back(std::string(kShellPath)); // argv[0] |
| argv.push_back("-c"); // argv[1] |
| argv.push_back("echo 123456789012345678901234567890"); // argv[2] |
| |
| // Run |GetAppOutputRestricted()| 300 (> default per-user processes on Mac OS |
| // 10.5) times with an output buffer big enough to capture all output. |
| for (int i = 0; i < 300; i++) { |
| std::string output; |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 100)); |
| EXPECT_STREQ("123456789012345678901234567890\n", output.c_str()); |
| } |
| |
| // Ditto, but with an output buffer too small to capture all output. |
| for (int i = 0; i < 300; i++) { |
| std::string output; |
| EXPECT_TRUE(base::GetAppOutputRestricted(CommandLine(argv), &output, 10)); |
| EXPECT_STREQ("1234567890", output.c_str()); |
| } |
| } |
| |
| TEST_F(ProcessUtilTest, GetAppOutputWithExitCode) { |
| // Test getting output from a successful application. |
| std::vector<std::string> argv; |
| std::string output; |
| int exit_code; |
| argv.push_back(std::string(kShellPath)); // argv[0] |
| argv.push_back("-c"); // argv[1] |
| argv.push_back("echo foo"); // argv[2]; |
| EXPECT_TRUE(base::GetAppOutputWithExitCode(CommandLine(argv), &output, |
| &exit_code)); |
| EXPECT_STREQ("foo\n", output.c_str()); |
| EXPECT_EQ(exit_code, 0); |
| |
| // Test getting output from an application which fails with a specific exit |
| // code. |
| output.clear(); |
| argv[2] = "echo foo; exit 2"; |
| EXPECT_TRUE(base::GetAppOutputWithExitCode(CommandLine(argv), &output, |
| &exit_code)); |
| EXPECT_STREQ("foo\n", output.c_str()); |
| EXPECT_EQ(exit_code, 2); |
| } |
| |
| TEST_F(ProcessUtilTest, GetParentProcessId) { |
| base::ProcessId ppid = base::GetParentProcessId(base::GetCurrentProcId()); |
| EXPECT_EQ(ppid, getppid()); |
| } |
| |
| #if defined(OS_LINUX) || defined(OS_ANDROID) |
| TEST_F(ProcessUtilTest, ParseProcStatCPU) { |
| // /proc/self/stat for a process running "top". |
| const char kTopStat[] = "960 (top) S 16230 960 16230 34818 960 " |
| "4202496 471 0 0 0 " |
| "12 16 0 0 " // <- These are the goods. |
| "20 0 1 0 121946157 15077376 314 18446744073709551615 4194304 " |
| "4246868 140733983044336 18446744073709551615 140244213071219 " |
| "0 0 0 138047495 0 0 0 17 1 0 0 0 0 0"; |
| EXPECT_EQ(12 + 16, base::ParseProcStatCPU(kTopStat)); |
| |
| // cat /proc/self/stat on a random other machine I have. |
| const char kSelfStat[] = "5364 (cat) R 5354 5364 5354 34819 5364 " |
| "0 142 0 0 0 " |
| "0 0 0 0 " // <- No CPU, apparently. |
| "16 0 1 0 1676099790 2957312 114 4294967295 134512640 134528148 " |
| "3221224832 3221224344 3086339742 0 0 0 0 0 0 0 17 0 0 0"; |
| |
| EXPECT_EQ(0, base::ParseProcStatCPU(kSelfStat)); |
| } |
| #endif // defined(OS_LINUX) || defined(OS_ANDROID) |
| |
| // TODO(port): port those unit tests. |
| bool IsProcessDead(base::ProcessHandle child) { |
| // waitpid() will actually reap the process which is exactly NOT what we |
| // want to test for. The good thing is that if it can't find the process |
| // we'll get a nice value for errno which we can test for. |
| const pid_t result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG)); |
| return result == -1 && errno == ECHILD; |
| } |
| |
| TEST_F(ProcessUtilTest, DelayedTermination) { |
| base::ProcessHandle child_process = |
| SpawnChild("process_util_test_never_die", false); |
| ASSERT_TRUE(child_process); |
| base::EnsureProcessTerminated(child_process); |
| base::WaitForSingleProcess(child_process, base::TimeDelta::FromSeconds(5)); |
| |
| // Check that process was really killed. |
| EXPECT_TRUE(IsProcessDead(child_process)); |
| base::CloseProcessHandle(child_process); |
| } |
| |
| MULTIPROCESS_TEST_MAIN(process_util_test_never_die) { |
| while (1) { |
| sleep(500); |
| } |
| return 0; |
| } |
| |
| TEST_F(ProcessUtilTest, ImmediateTermination) { |
| base::ProcessHandle child_process = |
| SpawnChild("process_util_test_die_immediately", false); |
| ASSERT_TRUE(child_process); |
| // Give it time to die. |
| sleep(2); |
| base::EnsureProcessTerminated(child_process); |
| |
| // Check that process was really killed. |
| EXPECT_TRUE(IsProcessDead(child_process)); |
| base::CloseProcessHandle(child_process); |
| } |
| |
| MULTIPROCESS_TEST_MAIN(process_util_test_die_immediately) { |
| return 0; |
| } |
| |
| #endif // defined(OS_POSIX) |
| |
| // Android doesn't implement set_new_handler, so we can't use the |
| // OutOfMemoryTest cases. |
| // OpenBSD does not support these tests either. |
| // AddressSanitizer defines the malloc()/free()/etc. functions so that they |
| // don't crash if the program is out of memory, so the OOM tests aren't supposed |
| // to work. |
| // TODO(vandebo) make this work on Windows too. |
| #if !defined(OS_ANDROID) && !defined(OS_OPENBSD) && \ |
| !defined(OS_WIN) && !defined(ADDRESS_SANITIZER) |
| |
| #if defined(USE_TCMALLOC) |
| extern "C" { |
| int tc_set_new_mode(int mode); |
| } |
| #endif // defined(USE_TCMALLOC) |
| |
| class OutOfMemoryDeathTest : public testing::Test { |
| public: |
| OutOfMemoryDeathTest() |
| : value_(NULL), |
| // Make test size as large as possible minus a few pages so |
| // that alignment or other rounding doesn't make it wrap. |
| test_size_(std::numeric_limits<std::size_t>::max() - 12 * 1024), |
| signed_test_size_(std::numeric_limits<ssize_t>::max()) { |
| } |
| |
| #if defined(USE_TCMALLOC) |
| virtual void SetUp() OVERRIDE { |
| tc_set_new_mode(1); |
| } |
| |
| virtual void TearDown() OVERRIDE { |
| tc_set_new_mode(0); |
| } |
| #endif // defined(USE_TCMALLOC) |
| |
| void SetUpInDeathAssert() { |
| // Must call EnableTerminationOnOutOfMemory() because that is called from |
| // chrome's main function and therefore hasn't been called yet. |
| // Since this call may result in another thread being created and death |
| // tests shouldn't be started in a multithread environment, this call |
| // should be done inside of the ASSERT_DEATH. |
| base::EnableTerminationOnOutOfMemory(); |
| } |
| |
| void* value_; |
| size_t test_size_; |
| ssize_t signed_test_size_; |
| }; |
| |
| TEST_F(OutOfMemoryDeathTest, New) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = operator new(test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, NewArray) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = new char[test_size_]; |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, Malloc) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = malloc(test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, Realloc) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = realloc(NULL, test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, Calloc) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = calloc(1024, test_size_ / 1024L); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, Valloc) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = valloc(test_size_); |
| }, ""); |
| } |
| |
| #if defined(OS_LINUX) |
| TEST_F(OutOfMemoryDeathTest, Pvalloc) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = pvalloc(test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, Memalign) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = memalign(4, test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, ViaSharedLibraries) { |
| // g_try_malloc is documented to return NULL on failure. (g_malloc is the |
| // 'safe' default that crashes if allocation fails). However, since we have |
| // hopefully overridden malloc, even g_try_malloc should fail. This tests |
| // that the run-time symbol resolution is overriding malloc for shared |
| // libraries as well as for our code. |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = g_try_malloc(test_size_); |
| }, ""); |
| } |
| #endif // OS_LINUX |
| |
| // Android doesn't implement posix_memalign(). |
| #if defined(OS_POSIX) && !defined(OS_ANDROID) |
| TEST_F(OutOfMemoryDeathTest, Posix_memalign) { |
| // Grab the return value of posix_memalign to silence a compiler warning |
| // about unused return values. We don't actually care about the return |
| // value, since we're asserting death. |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| EXPECT_EQ(ENOMEM, posix_memalign(&value_, 8, test_size_)); |
| }, ""); |
| } |
| #endif // defined(OS_POSIX) && !defined(OS_ANDROID) |
| |
| #if defined(OS_MACOSX) |
| |
| // Purgeable zone tests |
| |
| TEST_F(OutOfMemoryDeathTest, MallocPurgeable) { |
| malloc_zone_t* zone = malloc_default_purgeable_zone(); |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = malloc_zone_malloc(zone, test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, ReallocPurgeable) { |
| malloc_zone_t* zone = malloc_default_purgeable_zone(); |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = malloc_zone_realloc(zone, NULL, test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, CallocPurgeable) { |
| malloc_zone_t* zone = malloc_default_purgeable_zone(); |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = malloc_zone_calloc(zone, 1024, test_size_ / 1024L); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, VallocPurgeable) { |
| malloc_zone_t* zone = malloc_default_purgeable_zone(); |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = malloc_zone_valloc(zone, test_size_); |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, PosixMemalignPurgeable) { |
| malloc_zone_t* zone = malloc_default_purgeable_zone(); |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| value_ = malloc_zone_memalign(zone, 8, test_size_); |
| }, ""); |
| } |
| |
| // Since these allocation functions take a signed size, it's possible that |
| // calling them just once won't be enough to exhaust memory. In the 32-bit |
| // environment, it's likely that these allocation attempts will fail because |
| // not enough contiguous address space is available. In the 64-bit environment, |
| // it's likely that they'll fail because they would require a preposterous |
| // amount of (virtual) memory. |
| |
| TEST_F(OutOfMemoryDeathTest, CFAllocatorSystemDefault) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| while ((value_ = |
| base::AllocateViaCFAllocatorSystemDefault(signed_test_size_))) {} |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, CFAllocatorMalloc) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| while ((value_ = |
| base::AllocateViaCFAllocatorMalloc(signed_test_size_))) {} |
| }, ""); |
| } |
| |
| TEST_F(OutOfMemoryDeathTest, CFAllocatorMallocZone) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| while ((value_ = |
| base::AllocateViaCFAllocatorMallocZone(signed_test_size_))) {} |
| }, ""); |
| } |
| |
| #if !defined(ARCH_CPU_64_BITS) |
| |
| // See process_util_unittest_mac.mm for an explanation of why this test isn't |
| // run in the 64-bit environment. |
| |
| TEST_F(OutOfMemoryDeathTest, PsychoticallyBigObjCObject) { |
| ASSERT_DEATH({ |
| SetUpInDeathAssert(); |
| while ((value_ = base::AllocatePsychoticallyBigObjCObject())) {} |
| }, ""); |
| } |
| |
| #endif // !ARCH_CPU_64_BITS |
| #endif // OS_MACOSX |
| |
| #endif // !defined(OS_ANDROID) && !defined(OS_OPENBSD) && |
| // !defined(OS_WIN) && !defined(ADDRESS_SANITIZER) |