| /* |
| ******************************************************************************* |
| * Copyright (C) 2004 - 2008, International Business Machines Corporation and |
| * others. All Rights Reserved. |
| ******************************************************************************* |
| */ |
| |
| #ifndef UTMSCALE_H |
| #define UTMSCALE_H |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| /** |
| * \file |
| * \brief C API: Universal Time Scale |
| * |
| * There are quite a few different conventions for binary datetime, depending on different |
| * platforms and protocols. Some of these have severe drawbacks. For example, people using |
| * Unix time (seconds since Jan 1, 1970) think that they are safe until near the year 2038. |
| * But cases can and do arise where arithmetic manipulations causes serious problems. Consider |
| * the computation of the average of two datetimes, for example: if one calculates them with |
| * <code>averageTime = (time1 + time2)/2</code>, there will be overflow even with dates |
| * around the present. Moreover, even if these problems don't occur, there is the issue of |
| * conversion back and forth between different systems. |
| * |
| * <p> |
| * Binary datetimes differ in a number of ways: the datatype, the unit, |
| * and the epoch (origin). We'll refer to these as time scales. For example: |
| * |
| * <table border="1" cellspacing="0" cellpadding="4"> |
| * <caption>Table 1: Binary Time Scales</caption> |
| * <tr> |
| * <th align="left">Source</th> |
| * <th align="left">Datatype</th> |
| * <th align="left">Unit</th> |
| * <th align="left">Epoch</th> |
| * </tr> |
| * |
| * <tr> |
| * <td>UDTS_JAVA_TIME</td> |
| * <td>int64_t</td> |
| * <td>milliseconds</td> |
| * <td>Jan 1, 1970</td> |
| * </tr> |
| * <tr> |
| * |
| * <td>UDTS_UNIX_TIME</td> |
| * <td>int32_t or int64_t</td> |
| * <td>seconds</td> |
| * <td>Jan 1, 1970</td> |
| * </tr> |
| * <tr> |
| * <td>UDTS_ICU4C_TIME</td> |
| * |
| * <td>double</td> |
| * <td>milliseconds</td> |
| * <td>Jan 1, 1970</td> |
| * </tr> |
| * <tr> |
| * <td>UDTS_WINDOWS_FILE_TIME</td> |
| * <td>int64_t</td> |
| * |
| * <td>ticks (100 nanoseconds)</td> |
| * <td>Jan 1, 1601</td> |
| * </tr> |
| * <tr> |
| * <td>UDTS_DOTNET_DATE_TIME</td> |
| * <td>int64_t</td> |
| * <td>ticks (100 nanoseconds)</td> |
| * |
| * <td>Jan 1, 0001</td> |
| * </tr> |
| * <tr> |
| * <td>UDTS_MAC_OLD_TIME</td> |
| * <td>int32_t or int64_t</td> |
| * <td>seconds</td> |
| * <td>Jan 1, 1904</td> |
| * |
| * </tr> |
| * <tr> |
| * <td>UDTS_MAC_TIME</td> |
| * <td>double</td> |
| * <td>seconds</td> |
| * <td>Jan 1, 2001</td> |
| * </tr> |
| * |
| * <tr> |
| * <td>UDTS_EXCEL_TIME</td> |
| * <td>?</td> |
| * <td>days</td> |
| * <td>Dec 31, 1899</td> |
| * </tr> |
| * <tr> |
| * |
| * <td>UDTS_DB2_TIME</td> |
| * <td>?</td> |
| * <td>days</td> |
| * <td>Dec 31, 1899</td> |
| * </tr> |
| * |
| * <tr> |
| * <td>UDTS_UNIX_MICROSECONDS_TIME</td> |
| * <td>int64_t</td> |
| * <td>microseconds</td> |
| * <td>Jan 1, 1970</td> |
| * </tr> |
| * </table> |
| * |
| * <p> |
| * All of the epochs start at 00:00 am (the earliest possible time on the day in question), |
| * and are assumed to be UTC. |
| * |
| * <p> |
| * The ranges for different datatypes are given in the following table (all values in years). |
| * The range of years includes the entire range expressible with positive and negative |
| * values of the datatype. The range of years for double is the range that would be allowed |
| * without losing precision to the corresponding unit. |
| * |
| * <table border="1" cellspacing="0" cellpadding="4"> |
| * <tr> |
| * <th align="left">Units</th> |
| * <th align="left">int64_t</th> |
| * <th align="left">double</th> |
| * <th align="left">int32_t</th> |
| * </tr> |
| * |
| * <tr> |
| * <td>1 sec</td> |
| * <td align="right">5.84542x10<sup>11</sup></td> |
| * <td align="right">285,420,920.94</td> |
| * <td align="right">136.10</td> |
| * </tr> |
| * <tr> |
| * |
| * <td>1 millisecond</td> |
| * <td align="right">584,542,046.09</td> |
| * <td align="right">285,420.92</td> |
| * <td align="right">0.14</td> |
| * </tr> |
| * <tr> |
| * <td>1 microsecond</td> |
| * |
| * <td align="right">584,542.05</td> |
| * <td align="right">285.42</td> |
| * <td align="right">0.00</td> |
| * </tr> |
| * <tr> |
| * <td>100 nanoseconds (tick)</td> |
| * <td align="right">58,454.20</td> |
| * <td align="right">28.54</td> |
| * <td align="right">0.00</td> |
| * </tr> |
| * <tr> |
| * <td>1 nanosecond</td> |
| * <td align="right">584.5420461</td> |
| * <td align="right">0.2854</td> |
| * <td align="right">0.00</td> |
| * </tr> |
| * </table> |
| * |
| * <p> |
| * These functions implement a universal time scale which can be used as a 'pivot', |
| * and provide conversion functions to and from all other major time scales. |
| * This datetimes to be converted to the pivot time, safely manipulated, |
| * and converted back to any other datetime time scale. |
| * |
| *<p> |
| * So what to use for this pivot? Java time has plenty of range, but cannot represent |
| * .NET <code>System.DateTime</code> values without severe loss of precision. ICU4C time addresses this by using a |
| * <code>double</code> that is otherwise equivalent to the Java time. However, there are disadvantages |
| * with <code>doubles</code>. They provide for much more graceful degradation in arithmetic operations. |
| * But they only have 53 bits of accuracy, which means that they will lose precision when |
| * converting back and forth to ticks. What would really be nice would be a |
| * <code>long double</code> (80 bits -- 64 bit mantissa), but that is not supported on most systems. |
| * |
| *<p> |
| * The Unix extended time uses a structure with two components: time in seconds and a |
| * fractional field (microseconds). However, this is clumsy, slow, and |
| * prone to error (you always have to keep track of overflow and underflow in the |
| * fractional field). <code>BigDecimal</code> would allow for arbitrary precision and arbitrary range, |
| * but we do not want to use this as the normal type, because it is slow and does not |
| * have a fixed size. |
| * |
| *<p> |
| * Because of these issues, we ended up concluding that the .NET framework's |
| * <code>System.DateTime</code> would be the best pivot. However, we use the full range |
| * allowed by the datatype, allowing for datetimes back to 29,000 BC and up to 29,000 AD. |
| * This time scale is very fine grained, does not lose precision, and covers a range that |
| * will meet almost all requirements. It will not handle the range that Java times do, |
| * but frankly, being able to handle dates before 29,000 BC or after 29,000 AD is of very limited interest. |
| * |
| */ |
| |
| /** |
| * <code>UDateTimeScale</code> values are used to specify the time scale used for |
| * conversion into or out if the universal time scale. |
| * |
| * @stable ICU 3.2 |
| */ |
| typedef enum UDateTimeScale { |
| /** |
| * Used in the JDK. Data is a Java <code>long</code> (<code>int64_t</code>). Value |
| * is milliseconds since January 1, 1970. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_JAVA_TIME = 0, |
| |
| /** |
| * Used on Unix systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value |
| * is seconds since January 1, 1970. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_UNIX_TIME, |
| |
| /** |
| * Used in IUC4C. Data is a <code>double</code>. Value |
| * is milliseconds since January 1, 1970. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_ICU4C_TIME, |
| |
| /** |
| * Used in Windows for file times. Data is an <code>int64_t</code>. Value |
| * is ticks (1 tick == 100 nanoseconds) since January 1, 1601. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_WINDOWS_FILE_TIME, |
| |
| /** |
| * Used in the .NET framework's <code>System.DateTime</code> structure. Data is an <code>int64_t</code>. Value |
| * is ticks (1 tick == 100 nanoseconds) since January 1, 0001. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_DOTNET_DATE_TIME, |
| |
| /** |
| * Used in older Macintosh systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value |
| * is seconds since January 1, 1904. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_MAC_OLD_TIME, |
| |
| /** |
| * Used in newer Macintosh systems. Data is a <code>double</code>. Value |
| * is seconds since January 1, 2001. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_MAC_TIME, |
| |
| /** |
| * Used in Excel. Data is an <code>?unknown?</code>. Value |
| * is days since December 31, 1899. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_EXCEL_TIME, |
| |
| /** |
| * Used in DB2. Data is an <code>?unknown?</code>. Value |
| * is days since December 31, 1899. |
| * |
| * @stable ICU 3.2 |
| */ |
| UDTS_DB2_TIME, |
| |
| /** |
| * Data is a <code>long</code>. Value is microseconds since January 1, 1970. |
| * Similar to Unix time (linear value from 1970) and struct timeval |
| * (microseconds resolution). |
| * |
| * @stable ICU 3.8 |
| */ |
| UDTS_UNIX_MICROSECONDS_TIME, |
| |
| /** |
| * The first unused time scale value. The limit of this enum |
| */ |
| UDTS_MAX_SCALE |
| } UDateTimeScale; |
| |
| /** |
| * <code>UTimeScaleValue</code> values are used to specify the time scale values |
| * to <code>utmscale_getTimeScaleValue</code>. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| typedef enum UTimeScaleValue { |
| /** |
| * The constant used to select the units vale |
| * for a time scale. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| UTSV_UNITS_VALUE = 0, |
| |
| /** |
| * The constant used to select the epoch offset value |
| * for a time scale. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| UTSV_EPOCH_OFFSET_VALUE=1, |
| |
| /** |
| * The constant used to select the minimum from value |
| * for a time scale. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| UTSV_FROM_MIN_VALUE=2, |
| |
| /** |
| * The constant used to select the maximum from value |
| * for a time scale. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| UTSV_FROM_MAX_VALUE=3, |
| |
| /** |
| * The constant used to select the minimum to value |
| * for a time scale. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| UTSV_TO_MIN_VALUE=4, |
| |
| /** |
| * The constant used to select the maximum to value |
| * for a time scale. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @stable ICU 3.2 |
| */ |
| UTSV_TO_MAX_VALUE=5, |
| |
| #ifndef U_HIDE_INTERNAL_API |
| /** |
| * The constant used to select the epoch plus one value |
| * for a time scale. |
| * |
| * NOTE: This is an internal value. DO NOT USE IT. May not |
| * actually be equal to the epoch offset value plus one. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @internal ICU 3.2 |
| */ |
| UTSV_EPOCH_OFFSET_PLUS_1_VALUE=6, |
| |
| /** |
| * The constant used to select the epoch plus one value |
| * for a time scale. |
| * |
| * NOTE: This is an internal value. DO NOT USE IT. May not |
| * actually be equal to the epoch offset value plus one. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @internal ICU 3.2 |
| */ |
| UTSV_EPOCH_OFFSET_MINUS_1_VALUE=7, |
| |
| /** |
| * The constant used to select the units round value |
| * for a time scale. |
| * |
| * NOTE: This is an internal value. DO NOT USE IT. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @internal ICU 3.2 |
| */ |
| UTSV_UNITS_ROUND_VALUE=8, |
| |
| /** |
| * The constant used to select the minimum safe rounding value |
| * for a time scale. |
| * |
| * NOTE: This is an internal value. DO NOT USE IT. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @internal ICU 3.2 |
| */ |
| UTSV_MIN_ROUND_VALUE=9, |
| |
| /** |
| * The constant used to select the maximum safe rounding value |
| * for a time scale. |
| * |
| * NOTE: This is an internal value. DO NOT USE IT. |
| * |
| * @see utmscale_getTimeScaleValue |
| * |
| * @internal ICU 3.2 |
| */ |
| UTSV_MAX_ROUND_VALUE=10, |
| |
| #endif /* U_HIDE_INTERNAL_API */ |
| |
| /** |
| * The number of time scale values, in other words limit of this enum. |
| * |
| * @see utmscale_getTimeScaleValue |
| */ |
| UTSV_MAX_SCALE_VALUE=11 |
| |
| } UTimeScaleValue; |
| |
| /** |
| * Get a value associated with a particular time scale. |
| * |
| * @param timeScale The time scale |
| * @param value A constant representing the value to get |
| * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if arguments are invalid. |
| * @return - the value. |
| * |
| * @stable ICU 3.2 |
| */ |
| U_STABLE int64_t U_EXPORT2 |
| utmscale_getTimeScaleValue(UDateTimeScale timeScale, UTimeScaleValue value, UErrorCode *status); |
| |
| /* Conversion to 'universal time scale' */ |
| |
| /** |
| * Convert a <code>int64_t</code> datetime from the given time scale to the universal time scale. |
| * |
| * @param otherTime The <code>int64_t</code> datetime |
| * @param timeScale The time scale to convert from |
| * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range. |
| * |
| * @return The datetime converted to the universal time scale |
| * |
| * @stable ICU 3.2 |
| */ |
| U_STABLE int64_t U_EXPORT2 |
| utmscale_fromInt64(int64_t otherTime, UDateTimeScale timeScale, UErrorCode *status); |
| |
| /* Conversion from 'universal time scale' */ |
| |
| /** |
| * Convert a datetime from the universal time scale to a <code>int64_t</code> in the given time scale. |
| * |
| * @param universalTime The datetime in the universal time scale |
| * @param timeScale The time scale to convert to |
| * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range. |
| * |
| * @return The datetime converted to the given time scale |
| * |
| * @stable ICU 3.2 |
| */ |
| U_STABLE int64_t U_EXPORT2 |
| utmscale_toInt64(int64_t universalTime, UDateTimeScale timeScale, UErrorCode *status); |
| |
| #endif /* #if !UCONFIG_NO_FORMATTING */ |
| |
| #endif |
| |