| /* |
| ******************************************************************************* |
| * Copyright (C) 1996-2015, International Business Machines Corporation and * |
| * others. All Rights Reserved. * |
| ******************************************************************************* |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include "itrbnf.h" |
| |
| #include "unicode/umachine.h" |
| |
| #include "unicode/tblcoll.h" |
| #include "unicode/coleitr.h" |
| #include "unicode/ures.h" |
| #include "unicode/ustring.h" |
| #include "unicode/decimfmt.h" |
| #include "unicode/udata.h" |
| #include "putilimp.h" |
| #include "testutil.h" |
| |
| #include <string.h> |
| |
| // import com.ibm.text.RuleBasedNumberFormat; |
| // import com.ibm.test.TestFmwk; |
| |
| // import java.util.Locale; |
| // import java.text.NumberFormat; |
| |
| // current macro not in icu1.8.1 |
| #define TESTCASE(id,test) \ |
| case id: \ |
| name = #test; \ |
| if (exec) { \ |
| logln(#test "---"); \ |
| logln(); \ |
| test(); \ |
| } \ |
| break |
| |
| void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) |
| { |
| if (exec) logln("TestSuite RuleBasedNumberFormat"); |
| switch (index) { |
| #if U_HAVE_RBNF |
| TESTCASE(0, TestEnglishSpellout); |
| TESTCASE(1, TestOrdinalAbbreviations); |
| TESTCASE(2, TestDurations); |
| TESTCASE(3, TestSpanishSpellout); |
| TESTCASE(4, TestFrenchSpellout); |
| TESTCASE(5, TestSwissFrenchSpellout); |
| TESTCASE(6, TestItalianSpellout); |
| TESTCASE(7, TestGermanSpellout); |
| TESTCASE(8, TestThaiSpellout); |
| TESTCASE(9, TestAPI); |
| TESTCASE(10, TestFractionalRuleSet); |
| TESTCASE(11, TestSwedishSpellout); |
| TESTCASE(12, TestBelgianFrenchSpellout); |
| TESTCASE(13, TestSmallValues); |
| TESTCASE(14, TestLocalizations); |
| TESTCASE(15, TestAllLocales); |
| TESTCASE(16, TestHebrewFraction); |
| TESTCASE(17, TestPortugueseSpellout); |
| TESTCASE(18, TestMultiplierSubstitution); |
| TESTCASE(19, TestSetDecimalFormatSymbols); |
| TESTCASE(20, TestPluralRules); |
| TESTCASE(21, TestMultiplePluralRules); |
| TESTCASE(22, TestInfinityNaN); |
| TESTCASE(23, TestVariableDecimalPoint); |
| #else |
| TESTCASE(0, TestRBNFDisabled); |
| #endif |
| default: |
| name = ""; |
| break; |
| } |
| } |
| |
| #if U_HAVE_RBNF |
| |
| void IntlTestRBNF::TestHebrewFraction() { |
| |
| // this is the expected output for 123.45, with no '<' in it. |
| UChar text1[] = { |
| 0x05de, 0x05d0, 0x05d4, 0x0020, |
| 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, |
| 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, |
| 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, |
| 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, |
| 0x05d7, 0x05de, 0x05e9, 0x0000, |
| }; |
| UChar text2[] = { |
| 0x05DE, 0x05D0, 0x05D4, 0x0020, |
| 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, |
| 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, |
| 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, |
| 0x05D0, 0x05E4, 0x05E1, 0x0020, |
| 0x05D0, 0x05E4, 0x05E1, 0x0020, |
| 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, |
| 0x05D7, 0x05DE, 0x05E9, 0x0000, |
| }; |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status); |
| if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { |
| errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status)); |
| delete formatter; |
| return; |
| } |
| UnicodeString result; |
| Formattable parseResult; |
| ParsePosition pp(0); |
| { |
| UnicodeString expected(text1); |
| formatter->format(123.45, result); |
| if (result != expected) { |
| errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); |
| } else { |
| // formatter->parse(result, parseResult, pp); |
| // if (parseResult.getDouble() != 123.45) { |
| // errln("expected 123.45 but got: %g", parseResult.getDouble()); |
| // } |
| } |
| } |
| { |
| UnicodeString expected(text2); |
| result.remove(); |
| formatter->format(123.0045, result); |
| if (result != expected) { |
| errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); |
| } else { |
| pp.setIndex(0); |
| // formatter->parse(result, parseResult, pp); |
| // if (parseResult.getDouble() != 123.0045) { |
| // errln("expected 123.0045 but got: %g", parseResult.getDouble()); |
| // } |
| } |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestAPI() { |
| // This test goes through the APIs that were not tested before. |
| // These tests are too small to have separate test classes/functions |
| |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); |
| if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { |
| dataerrln("Unable to create formatter. - %s", u_errorName(status)); |
| delete formatter; |
| return; |
| } |
| |
| logln("RBNF API test starting"); |
| // test clone |
| { |
| logln("Testing Clone"); |
| RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone(); |
| if(rbnfClone != NULL) { |
| if(!(*rbnfClone == *formatter)) { |
| errln("Clone should be semantically equivalent to the original!"); |
| } |
| delete rbnfClone; |
| } else { |
| errln("Cloning failed!"); |
| } |
| } |
| |
| // test assignment |
| { |
| logln("Testing assignment operator"); |
| RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); |
| assignResult = *formatter; |
| if(!(assignResult == *formatter)) { |
| errln("Assignment result should be semantically equivalent to the original!"); |
| } |
| } |
| |
| // test rule constructor |
| { |
| logln("Testing rule constructor"); |
| LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status)); |
| if(U_FAILURE(status)) { |
| errln("Unable to access resource bundle with data!"); |
| } else { |
| int32_t ruleLen = 0; |
| int32_t len = 0; |
| LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status)); |
| LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status)); |
| UnicodeString desc; |
| while (ures_hasNext(ruleSets.getAlias())) { |
| const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status); |
| ruleLen += len; |
| desc.append(currentString); |
| } |
| |
| const UChar *spelloutRules = desc.getTerminatedBuffer(); |
| |
| if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { |
| errln("Unable to access the rules string!"); |
| } else { |
| UParseError perror; |
| RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); |
| if(!(ruleCtorResult == *formatter)) { |
| errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); |
| } |
| |
| // Jitterbug 4452, for coverage |
| RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status); |
| if(!(nf == *formatter)) { |
| errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); |
| } |
| } |
| } |
| } |
| |
| // test getRules |
| { |
| logln("Testing getRules function"); |
| UnicodeString rules = formatter->getRules(); |
| UParseError perror; |
| RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); |
| |
| if(!(fromRulesResult == *formatter)) { |
| errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); |
| } |
| } |
| |
| |
| { |
| logln("Testing copy constructor"); |
| RuleBasedNumberFormat copyCtorResult(*formatter); |
| if(!(copyCtorResult == *formatter)) { |
| errln("Copy constructor result result should be semantically equivalent to the original!"); |
| } |
| } |
| |
| #if !UCONFIG_NO_COLLATION |
| // test ruleset names |
| { |
| logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); |
| int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); |
| if(noOfRuleSetNames == 0) { |
| errln("Number of rule set names should be more than zero"); |
| } |
| UnicodeString ruleSetName; |
| int32_t i = 0; |
| int32_t intFormatNum = 34567; |
| double doubleFormatNum = 893411.234; |
| logln("number of rule set names is %i", noOfRuleSetNames); |
| for(i = 0; i < noOfRuleSetNames; i++) { |
| FieldPosition pos1, pos2; |
| UnicodeString intFormatResult, doubleFormatResult; |
| Formattable intParseResult, doubleParseResult; |
| |
| ruleSetName = formatter->getRuleSetName(i); |
| log("Rule set name %i is ", i); |
| log(ruleSetName); |
| logln(". Format results are: "); |
| intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); |
| doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); |
| if(U_FAILURE(status)) { |
| errln("Format using a rule set failed"); |
| break; |
| } |
| logln(intFormatResult); |
| logln(doubleFormatResult); |
| formatter->setLenient(TRUE); |
| formatter->parse(intFormatResult, intParseResult, status); |
| formatter->parse(doubleFormatResult, doubleParseResult, status); |
| |
| logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); |
| |
| formatter->setLenient(FALSE); |
| formatter->parse(intFormatResult, intParseResult, status); |
| formatter->parse(doubleFormatResult, doubleParseResult, status); |
| |
| logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); |
| |
| if(U_FAILURE(status)) { |
| errln("Error during parsing"); |
| } |
| |
| intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); |
| if(U_SUCCESS(status)) { |
| errln("Using invalid rule set name should have failed"); |
| break; |
| } |
| status = U_ZERO_ERROR; |
| doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); |
| if(U_SUCCESS(status)) { |
| errln("Using invalid rule set name should have failed"); |
| break; |
| } |
| status = U_ZERO_ERROR; |
| } |
| status = U_ZERO_ERROR; |
| } |
| #endif |
| |
| // test API |
| UnicodeString expected("four point five",""); |
| logln("Testing format(double)"); |
| UnicodeString result; |
| formatter->format(4.5,result); |
| if(result != expected) { |
| errln("Formatted 4.5, expected " + expected + " got " + result); |
| } else { |
| logln("Formatted 4.5, expected " + expected + " got " + result); |
| } |
| result.remove(); |
| expected = "four"; |
| formatter->format((int32_t)4,result); |
| if(result != expected) { |
| errln("Formatted 4, expected " + expected + " got " + result); |
| } else { |
| logln("Formatted 4, expected " + expected + " got " + result); |
| } |
| |
| result.remove(); |
| FieldPosition pos; |
| formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); |
| if(result != expected) { |
| errln("Formatted 4 int64_t, expected " + expected + " got " + result); |
| } else { |
| logln("Formatted 4 int64_t, expected " + expected + " got " + result); |
| } |
| |
| //Jitterbug 4452, for coverage |
| result.remove(); |
| FieldPosition pos2; |
| formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR); |
| if(result != expected) { |
| errln("Formatted 4 int64_t, expected " + expected + " got " + result); |
| } else { |
| logln("Formatted 4 int64_t, expected " + expected + " got " + result); |
| } |
| |
| // clean up |
| logln("Cleaning up"); |
| delete formatter; |
| } |
| |
| /** |
| * Perform a simple spot check on the parsing going into an infinite loop for alternate rules. |
| */ |
| void IntlTestRBNF::TestMultiplePluralRules() { |
| // This is trying to model the feminine form, but don't worry about the details too much. |
| // We're trying to test the plural rules where there are different prefixes. |
| UnicodeString rules("%spellout-cardinal-feminine-genitive:" |
| "0: zero;" |
| "1: ono;" |
| "2: two;" |
| "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" |
| "%spellout-cardinal-feminine:" |
| "x.x: [<< $(cardinal,one{singleton}other{plurality})$ ]>%%fractions>;" |
| "0: zero;" |
| "1: one;" |
| "2: two;" |
| "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" |
| "%%fractions:" |
| "10: <%spellout-cardinal-feminine< $(cardinal,one{oneth}other{tenth})$;" |
| "100: <%spellout-cardinal-feminine< $(cardinal,one{1hundredth}other{hundredth})$;"); |
| UErrorCode status = U_ZERO_ERROR; |
| UParseError pError; |
| RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status); |
| Formattable result; |
| UnicodeString resultStr; |
| FieldPosition pos; |
| |
| if (U_FAILURE(status)) { |
| dataerrln("Unable to create formatter - %s", u_errorName(status)); |
| return; |
| } |
| |
| formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status); |
| if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { |
| errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong()); |
| errln(resultStr); |
| } |
| resultStr.remove(); |
| formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status); |
| if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) { |
| errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong()); |
| errln(resultStr); |
| } |
| resultStr.remove(); |
| formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status); |
| if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { |
| errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong()); |
| errln(resultStr); |
| } |
| static const char* const testData[][2] = { |
| { "0", "zero" }, |
| { "1", "one" }, |
| { "2", "two" }, |
| { "0.1", "one oneth" }, |
| { "0.2", "two tenth" }, |
| { "1.1", "one singleton one oneth" }, |
| { "1.2", "one singleton two tenth" }, |
| { "2.1", "two plurality one oneth" }, |
| { "2.2", "two plurality two tenth" }, |
| { "0.01", "one 1hundredth" }, |
| { "0.02", "two hundredth" }, |
| { NULL, NULL } |
| }; |
| doTest(&formatter, testData, TRUE); |
| } |
| |
| void IntlTestRBNF::TestFractionalRuleSet() |
| { |
| UnicodeString fracRules( |
| "%main:\n" |
| // this rule formats the number if it's 1 or more. It formats |
| // the integral part using a DecimalFormat ("#,##0" puts |
| // thousands separators in the right places) and the fractional |
| // part using %%frac. If there is no fractional part, it |
| // just shows the integral part. |
| " x.0: <#,##0<[ >%%frac>];\n" |
| // this rule formats the number if it's between 0 and 1. It |
| // shows only the fractional part (0.5 shows up as "1/2," not |
| // "0 1/2") |
| " 0.x: >%%frac>;\n" |
| // the fraction rule set. This works the same way as the one in the |
| // preceding example: We multiply the fractional part of the number |
| // being formatted by each rule's base value and use the rule that |
| // produces the result closest to 0 (or the first rule that produces 0). |
| // Since we only provide rules for the numbers from 2 to 10, we know |
| // we'll get a fraction with a denominator between 2 and 10. |
| // "<0<" causes the numerator of the fraction to be formatted |
| // using numerals |
| "%%frac:\n" |
| " 2: 1/2;\n" |
| " 3: <0</3;\n" |
| " 4: <0</4;\n" |
| " 5: <0</5;\n" |
| " 6: <0</6;\n" |
| " 7: <0</7;\n" |
| " 8: <0</8;\n" |
| " 9: <0</9;\n" |
| " 10: <0</10;\n"); |
| |
| // mondo hack |
| int len = fracRules.length(); |
| int change = 2; |
| for (int i = 0; i < len; ++i) { |
| UChar ch = fracRules.charAt(i); |
| if (ch == '\n') { |
| change = 2; // change ok |
| } else if (ch == ':') { |
| change = 1; // change, but once we hit a non-space char, don't change |
| } else if (ch == ' ') { |
| if (change != 0) { |
| fracRules.setCharAt(i, (UChar)0x200e); |
| } |
| } else { |
| if (change == 1) { |
| change = 0; |
| } |
| } |
| } |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UParseError perror; |
| RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status); |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "0", "0" }, |
| { ".1", "1/10" }, |
| { ".11", "1/9" }, |
| { ".125", "1/8" }, |
| { ".1428", "1/7" }, |
| { ".1667", "1/6" }, |
| { ".2", "1/5" }, |
| { ".25", "1/4" }, |
| { ".333", "1/3" }, |
| { ".5", "1/2" }, |
| { "1.1", "1 1/10" }, |
| { "2.11", "2 1/9" }, |
| { "3.125", "3 1/8" }, |
| { "4.1428", "4 1/7" }, |
| { "5.1667", "5 1/6" }, |
| { "6.2", "6 1/5" }, |
| { "7.25", "7 1/4" }, |
| { "8.333", "8 1/3" }, |
| { "9.5", "9 1/2" }, |
| { ".2222", "2/9" }, |
| { ".4444", "4/9" }, |
| { ".5555", "5/9" }, |
| { "1.2856", "1 2/7" }, |
| { NULL, NULL } |
| }; |
| doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions |
| } |
| } |
| |
| #if 0 |
| #define LLAssert(a) \ |
| if (!(a)) errln("FAIL: " #a) |
| |
| void IntlTestRBNF::TestLLongConstructors() |
| { |
| logln("Testing constructors"); |
| |
| // constant (shouldn't really be public) |
| LLAssert(llong(llong::kD32).asDouble() == llong::kD32); |
| |
| // internal constructor (shouldn't really be public) |
| LLAssert(llong(0, 1).asDouble() == 1); |
| LLAssert(llong(1, 0).asDouble() == llong::kD32); |
| LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1); |
| |
| // public empty constructor |
| LLAssert(llong().asDouble() == 0); |
| |
| // public int32_t constructor |
| LLAssert(llong((int32_t)0).asInt() == (int32_t)0); |
| LLAssert(llong((int32_t)1).asInt() == (int32_t)1); |
| LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1); |
| LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff); |
| LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1); |
| LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000); |
| |
| // public int16_t constructor |
| LLAssert(llong((int16_t)0).asInt() == (int16_t)0); |
| LLAssert(llong((int16_t)1).asInt() == (int16_t)1); |
| LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1); |
| LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff); |
| LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff); |
| LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000); |
| |
| // public int8_t constructor |
| LLAssert(llong((int8_t)0).asInt() == (int8_t)0); |
| LLAssert(llong((int8_t)1).asInt() == (int8_t)1); |
| LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1); |
| LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f); |
| LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff); |
| LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80); |
| |
| // public uint16_t constructor |
| LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0); |
| LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1); |
| LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1); |
| LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff); |
| LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff); |
| LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000); |
| |
| // public uint32_t constructor |
| LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0); |
| LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1); |
| LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1); |
| LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff); |
| LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1); |
| LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000); |
| |
| // public double constructor |
| LLAssert(llong((double)0).asDouble() == (double)0); |
| LLAssert(llong((double)1).asDouble() == (double)1); |
| LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff); |
| LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000); |
| LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001); |
| |
| // can't access uprv_maxmantissa, so fake it |
| double maxmantissa = (llong((int32_t)1) << 40).asDouble(); |
| LLAssert(llong(maxmantissa).asDouble() == maxmantissa); |
| LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa); |
| |
| // copy constructor |
| LLAssert(llong(llong(0, 1)).asDouble() == 1); |
| LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32); |
| LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1); |
| |
| // asInt - test unsigned to signed narrowing conversion |
| LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff); |
| LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000); |
| |
| // asUInt - test signed to unsigned narrowing conversion |
| LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1); |
| LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000); |
| |
| // asDouble already tested |
| |
| } |
| |
| void IntlTestRBNF::TestLLongSimpleOperators() |
| { |
| logln("Testing simple operators"); |
| |
| // operator== |
| LLAssert(llong() == llong(0, 0)); |
| LLAssert(llong(1,0) == llong(1, 0)); |
| LLAssert(llong(0,1) == llong(0, 1)); |
| |
| // operator!= |
| LLAssert(llong(1,0) != llong(1,1)); |
| LLAssert(llong(0,1) != llong(1,1)); |
| LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff)); |
| |
| // unsigned > |
| LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); |
| |
| // unsigned < |
| LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); |
| |
| // unsigned >= |
| LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); |
| LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); |
| |
| // unsigned <= |
| LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); |
| LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); |
| |
| // operator> |
| LLAssert(llong(1, 1) > llong(1, 0)); |
| LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); |
| LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); |
| LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); |
| LLAssert(llong(1, 0) > llong(0, 0xffffffff)); |
| LLAssert(llong(0, 0) > llong(0x80000000, 1)); |
| |
| // operator< |
| LLAssert(llong(1, 0) < llong(1, 1)); |
| LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); |
| LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); |
| LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); |
| LLAssert(llong(0, 0xffffffff) < llong(1, 0)); |
| LLAssert(llong(0x80000000, 1) < llong(0, 0)); |
| |
| // operator>= |
| LLAssert(llong(1, 1) >= llong(1, 0)); |
| LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); |
| LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); |
| LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); |
| LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); |
| LLAssert(llong(0, 0) >= llong(0x80000000, 1)); |
| LLAssert(llong() >= llong(0, 0)); |
| LLAssert(llong(1,0) >= llong(1, 0)); |
| LLAssert(llong(0,1) >= llong(0, 1)); |
| |
| // operator<= |
| LLAssert(llong(1, 0) <= llong(1, 1)); |
| LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); |
| LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); |
| LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); |
| LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); |
| LLAssert(llong(0x80000000, 1) <= llong(0, 0)); |
| LLAssert(llong() <= llong(0, 0)); |
| LLAssert(llong(1,0) <= llong(1, 0)); |
| LLAssert(llong(0,1) <= llong(0, 1)); |
| |
| // operator==(int32) |
| LLAssert(llong() == (int32_t)0); |
| LLAssert(llong(0,1) == (int32_t)1); |
| |
| // operator!=(int32) |
| LLAssert(llong(1,0) != (int32_t)0); |
| LLAssert(llong(0,1) != (int32_t)2); |
| LLAssert(llong(0,0xffffffff) != (int32_t)-1); |
| |
| llong negOne(0xffffffff, 0xffffffff); |
| |
| // operator>(int32) |
| LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); |
| LLAssert(negOne > (int32_t)-2); |
| LLAssert(llong(1, 0) > (int32_t)0x7fffffff); |
| LLAssert(llong(0, 0) > (int32_t)-1); |
| |
| // operator<(int32) |
| LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); |
| LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); |
| |
| // operator>=(int32) |
| LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); |
| LLAssert(negOne >= (int32_t)-2); |
| LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); |
| LLAssert(llong(0, 0) >= (int32_t)-1); |
| LLAssert(llong() >= (int32_t)0); |
| LLAssert(llong(0,1) >= (int32_t)1); |
| |
| // operator<=(int32) |
| LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); |
| LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); |
| LLAssert(llong() <= (int32_t)0); |
| LLAssert(llong(0,1) <= (int32_t)1); |
| |
| // operator= |
| LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); |
| |
| // operator <<= |
| LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); |
| LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); |
| LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); |
| LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); |
| LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used |
| LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used |
| |
| // operator << |
| LLAssert((llong((int32_t)1) << 5).asUInt() == 32); |
| |
| // operator >>= (sign extended) |
| LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); |
| LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); |
| LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); |
| LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); |
| LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used |
| LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used |
| |
| // operator >> sign extended) |
| LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); |
| |
| // ushr (right shift without sign extension) |
| LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); |
| LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); |
| LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); |
| LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); |
| LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used |
| LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used |
| |
| // operator&(llong) |
| LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); |
| |
| // operator|(llong) |
| LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); |
| |
| // operator^(llong) |
| LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); |
| |
| // operator&(uint32) |
| LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); |
| |
| // operator|(uint32) |
| LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); |
| |
| // operator^(uint32) |
| LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); |
| |
| // operator~ |
| LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); |
| |
| // operator&=(llong) |
| LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); |
| |
| // operator|=(llong) |
| LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); |
| |
| // operator^=(llong) |
| LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); |
| |
| // operator&=(uint32) |
| LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); |
| |
| // operator|=(uint32) |
| LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); |
| |
| // operator^=(uint32) |
| LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); |
| |
| // prefix inc |
| LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); |
| |
| // prefix dec |
| LLAssert(llong(0,0xffffffff) == --llong(1, 0)); |
| |
| // postfix inc |
| { |
| llong n(0, 0xffffffff); |
| LLAssert(llong(0, 0xffffffff) == n++); |
| LLAssert(llong(1, 0) == n); |
| } |
| |
| // postfix dec |
| { |
| llong n(1, 0); |
| LLAssert(llong(1, 0) == n--); |
| LLAssert(llong(0, 0xffffffff) == n); |
| } |
| |
| // unary minus |
| LLAssert(llong(0, 0) == -llong(0, 0)); |
| LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); |
| LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); |
| LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); |
| LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow |
| |
| // operator-= |
| { |
| llong n; |
| LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); |
| LLAssert(n == llong(0xffffffff, 0xffffffff)); |
| |
| n = llong(1, 0); |
| LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); |
| LLAssert(n == llong(0, 0xffffffff)); |
| } |
| |
| // operator- |
| { |
| llong n; |
| LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); |
| LLAssert(n == llong(0, 0)); |
| |
| n = llong(1, 0); |
| LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); |
| LLAssert(n == llong(1, 0)); |
| } |
| |
| // operator+= |
| { |
| llong n(0xffffffff, 0xffffffff); |
| LLAssert((n += llong(0, 1)) == llong(0, 0)); |
| LLAssert(n == llong(0, 0)); |
| |
| n = llong(0, 0xffffffff); |
| LLAssert((n += llong(0, 1)) == llong(1, 0)); |
| LLAssert(n == llong(1, 0)); |
| } |
| |
| // operator+ |
| { |
| llong n(0xffffffff, 0xffffffff); |
| LLAssert((n + llong(0, 1)) == llong(0, 0)); |
| LLAssert(n == llong(0xffffffff, 0xffffffff)); |
| |
| n = llong(0, 0xffffffff); |
| LLAssert((n + llong(0, 1)) == llong(1, 0)); |
| LLAssert(n == llong(0, 0xffffffff)); |
| } |
| |
| } |
| |
| void IntlTestRBNF::TestLLong() |
| { |
| logln("Starting TestLLong"); |
| |
| TestLLongConstructors(); |
| |
| TestLLongSimpleOperators(); |
| |
| logln("Testing operator*=, operator*"); |
| |
| // operator*=, operator* |
| // small and large values, positive, &NEGative, zero |
| // also test commutivity |
| { |
| const llong ZERO; |
| const llong ONE(0, 1); |
| const llong NEG_ONE((int32_t)-1); |
| const llong THREE(0, 3); |
| const llong NEG_THREE((int32_t)-3); |
| const llong TWO_TO_16(0, 0x10000); |
| const llong NEG_TWO_TO_16 = -TWO_TO_16; |
| const llong TWO_TO_32(1, 0); |
| const llong NEG_TWO_TO_32 = -TWO_TO_32; |
| |
| const llong NINE(0, 9); |
| const llong NEG_NINE = -NINE; |
| |
| const llong TWO_TO_16X3(0, 0x00030000); |
| const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; |
| |
| const llong TWO_TO_32X3(3, 0); |
| const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; |
| |
| const llong TWO_TO_48(0x10000, 0); |
| const llong NEG_TWO_TO_48 = -TWO_TO_48; |
| |
| const int32_t VALUE_WIDTH = 9; |
| const llong* values[VALUE_WIDTH] = { |
| &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 |
| }; |
| |
| const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { |
| &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, |
| &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, |
| &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, |
| &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, |
| &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, |
| &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, |
| &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, |
| &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, |
| &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO |
| }; |
| |
| for (int i = 0; i < VALUE_WIDTH; ++i) { |
| for (int j = 0; j < VALUE_WIDTH; ++j) { |
| llong lhs = *values[i]; |
| llong rhs = *values[j]; |
| llong ans = *answers[i*VALUE_WIDTH + j]; |
| |
| llong n = lhs; |
| |
| LLAssert((n *= rhs) == ans); |
| LLAssert(n == ans); |
| |
| n = lhs; |
| LLAssert((n * rhs) == ans); |
| LLAssert(n == lhs); |
| } |
| } |
| } |
| |
| logln("Testing operator/=, operator/"); |
| // operator/=, operator/ |
| // test num = 0, div = 0, pos/neg, > 2^32, div > num |
| { |
| const llong ZERO; |
| const llong ONE(0, 1); |
| const llong NEG_ONE = -ONE; |
| const llong MAX(0x7fffffff, 0xffffffff); |
| const llong MIN(0x80000000, 0); |
| const llong TWO(0, 2); |
| const llong NEG_TWO = -TWO; |
| const llong FIVE(0, 5); |
| const llong NEG_FIVE = -FIVE; |
| const llong TWO_TO_32(1, 0); |
| const llong NEG_TWO_TO_32 = -TWO_TO_32; |
| const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); |
| const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; |
| const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; |
| const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; |
| |
| const llong* tuples[] = { // lhs, rhs, ans |
| &ZERO, &ZERO, &ZERO, |
| &ONE, &ZERO,&MAX, |
| &NEG_ONE, &ZERO, &MIN, |
| &ONE, &ONE, &ONE, |
| &ONE, &NEG_ONE, &NEG_ONE, |
| &NEG_ONE, &ONE, &NEG_ONE, |
| &NEG_ONE, &NEG_ONE, &ONE, |
| &FIVE, &TWO, &TWO, |
| &FIVE, &NEG_TWO, &NEG_TWO, |
| &NEG_FIVE, &TWO, &NEG_TWO, |
| &NEG_FIVE, &NEG_TWO, &TWO, |
| &TWO, &FIVE, &ZERO, |
| &TWO, &NEG_FIVE, &ZERO, |
| &NEG_TWO, &FIVE, &ZERO, |
| &NEG_TWO, &NEG_FIVE, &ZERO, |
| &TWO_TO_32, &TWO_TO_32, &ONE, |
| &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, |
| &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, |
| &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, |
| &TWO_TO_32, &FIVE, &TWO_TO_32d5, |
| &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, |
| &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, |
| &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, |
| &TWO_TO_32X5, &FIVE, &TWO_TO_32, |
| &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, |
| &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, |
| &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, |
| &TWO_TO_32X5, &TWO_TO_32, &FIVE, |
| &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, |
| &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, |
| &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE |
| }; |
| const int TUPLE_WIDTH = 3; |
| const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; |
| for (int i = 0; i < TUPLE_COUNT; ++i) { |
| const llong lhs = *tuples[i*TUPLE_WIDTH+0]; |
| const llong rhs = *tuples[i*TUPLE_WIDTH+1]; |
| const llong ans = *tuples[i*TUPLE_WIDTH+2]; |
| |
| llong n = lhs; |
| if (!((n /= rhs) == ans)) { |
| errln("fail: (n /= rhs) == ans"); |
| } |
| LLAssert(n == ans); |
| |
| n = lhs; |
| LLAssert((n / rhs) == ans); |
| LLAssert(n == lhs); |
| } |
| } |
| |
| logln("Testing operator%%=, operator%%"); |
| //operator%=, operator% |
| { |
| const llong ZERO; |
| const llong ONE(0, 1); |
| const llong TWO(0, 2); |
| const llong THREE(0,3); |
| const llong FOUR(0, 4); |
| const llong FIVE(0, 5); |
| const llong SIX(0, 6); |
| |
| const llong NEG_ONE = -ONE; |
| const llong NEG_TWO = -TWO; |
| const llong NEG_THREE = -THREE; |
| const llong NEG_FOUR = -FOUR; |
| const llong NEG_FIVE = -FIVE; |
| const llong NEG_SIX = -SIX; |
| |
| const llong NINETY_NINE(0, 99); |
| const llong HUNDRED(0, 100); |
| const llong HUNDRED_ONE(0, 101); |
| |
| const llong BIG(0x12345678, 0x9abcdef0); |
| const llong BIG_FIVE(BIG * FIVE); |
| const llong BIG_FIVEm1 = BIG_FIVE - ONE; |
| const llong BIG_FIVEp1 = BIG_FIVE + ONE; |
| |
| const llong* tuples[] = { |
| &ZERO, &FIVE, &ZERO, |
| &ONE, &FIVE, &ONE, |
| &TWO, &FIVE, &TWO, |
| &THREE, &FIVE, &THREE, |
| &FOUR, &FIVE, &FOUR, |
| &FIVE, &FIVE, &ZERO, |
| &SIX, &FIVE, &ONE, |
| &ZERO, &NEG_FIVE, &ZERO, |
| &ONE, &NEG_FIVE, &ONE, |
| &TWO, &NEG_FIVE, &TWO, |
| &THREE, &NEG_FIVE, &THREE, |
| &FOUR, &NEG_FIVE, &FOUR, |
| &FIVE, &NEG_FIVE, &ZERO, |
| &SIX, &NEG_FIVE, &ONE, |
| &NEG_ONE, &FIVE, &NEG_ONE, |
| &NEG_TWO, &FIVE, &NEG_TWO, |
| &NEG_THREE, &FIVE, &NEG_THREE, |
| &NEG_FOUR, &FIVE, &NEG_FOUR, |
| &NEG_FIVE, &FIVE, &ZERO, |
| &NEG_SIX, &FIVE, &NEG_ONE, |
| &NEG_ONE, &NEG_FIVE, &NEG_ONE, |
| &NEG_TWO, &NEG_FIVE, &NEG_TWO, |
| &NEG_THREE, &NEG_FIVE, &NEG_THREE, |
| &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, |
| &NEG_FIVE, &NEG_FIVE, &ZERO, |
| &NEG_SIX, &NEG_FIVE, &NEG_ONE, |
| &NINETY_NINE, &FIVE, &FOUR, |
| &HUNDRED, &FIVE, &ZERO, |
| &HUNDRED_ONE, &FIVE, &ONE, |
| &BIG_FIVEm1, &FIVE, &FOUR, |
| &BIG_FIVE, &FIVE, &ZERO, |
| &BIG_FIVEp1, &FIVE, &ONE |
| }; |
| const int TUPLE_WIDTH = 3; |
| const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; |
| for (int i = 0; i < TUPLE_COUNT; ++i) { |
| const llong lhs = *tuples[i*TUPLE_WIDTH+0]; |
| const llong rhs = *tuples[i*TUPLE_WIDTH+1]; |
| const llong ans = *tuples[i*TUPLE_WIDTH+2]; |
| |
| llong n = lhs; |
| if (!((n %= rhs) == ans)) { |
| errln("fail: (n %= rhs) == ans"); |
| } |
| LLAssert(n == ans); |
| |
| n = lhs; |
| LLAssert((n % rhs) == ans); |
| LLAssert(n == lhs); |
| } |
| } |
| |
| logln("Testing pow"); |
| // pow |
| LLAssert(llong(0, 0).pow(0) == llong(0, 0)); |
| LLAssert(llong(0, 0).pow(2) == llong(0, 0)); |
| LLAssert(llong(0, 2).pow(0) == llong(0, 1)); |
| LLAssert(llong(0, 2).pow(2) == llong(0, 4)); |
| LLAssert(llong(0, 2).pow(32) == llong(1, 0)); |
| LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); |
| |
| // absolute value |
| { |
| const llong n(0xffffffff,0xffffffff); |
| LLAssert(n.abs() == llong(0, 1)); |
| } |
| |
| #ifdef RBNF_DEBUG |
| logln("Testing atoll"); |
| // atoll |
| const char empty[] = ""; |
| const char zero[] = "0"; |
| const char neg_one[] = "-1"; |
| const char neg_12345[] = "-12345"; |
| const char big1[] = "123456789abcdef0"; |
| const char big2[] = "fFfFfFfFfFfFfFfF"; |
| LLAssert(llong::atoll(empty) == llong(0, 0)); |
| LLAssert(llong::atoll(zero) == llong(0, 0)); |
| LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); |
| LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); |
| LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); |
| LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); |
| #endif |
| |
| // u_atoll |
| const UChar uempty[] = { 0 }; |
| const UChar uzero[] = { 0x30, 0 }; |
| const UChar uneg_one[] = { 0x2d, 0x31, 0 }; |
| const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; |
| const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; |
| const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; |
| LLAssert(llong::utoll(uempty) == llong(0, 0)); |
| LLAssert(llong::utoll(uzero) == llong(0, 0)); |
| LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); |
| LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); |
| LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); |
| LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); |
| |
| #ifdef RBNF_DEBUG |
| logln("Testing lltoa"); |
| // lltoa |
| { |
| char buf[64]; // ascii |
| LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); |
| LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); |
| LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); |
| LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); |
| } |
| #endif |
| |
| logln("Testing u_lltoa"); |
| // u_lltoa |
| { |
| UChar buf[64]; |
| LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); |
| LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); |
| LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); |
| LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); |
| } |
| } |
| |
| /* if 0 */ |
| #endif |
| |
| void |
| IntlTestRBNF::TestEnglishSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "one" }, |
| { "2", "two" }, |
| { "15", "fifteen" }, |
| { "20", "twenty" }, |
| { "23", "twenty-three" }, |
| { "73", "seventy-three" }, |
| { "88", "eighty-eight" }, |
| { "100", "one hundred" }, |
| { "106", "one hundred six" }, |
| { "127", "one hundred twenty-seven" }, |
| { "200", "two hundred" }, |
| { "579", "five hundred seventy-nine" }, |
| { "1,000", "one thousand" }, |
| { "2,000", "two thousand" }, |
| { "3,004", "three thousand four" }, |
| { "4,567", "four thousand five hundred sixty-seven" }, |
| { "15,943", "fifteen thousand nine hundred forty-three" }, |
| { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" }, |
| { "-36", "minus thirty-six" }, |
| { "234.567", "two hundred thirty-four point five six seven" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| |
| #if !UCONFIG_NO_COLLATION |
| if( !logKnownIssue("9503") ) { |
| formatter->setLenient(TRUE); |
| static const char* lpTestData[][2] = { |
| { "fifty-7", "57" }, |
| { " fifty-7", "57" }, |
| { " fifty-7", "57" }, |
| { "2 thousand six HUNDRED fifty-7", "2,657" }, |
| { "fifteen hundred and zero", "1,500" }, |
| { "FOurhundred thiRTY six", "436" }, |
| { NULL, NULL} |
| }; |
| doLenientParseTest(formatter, lpTestData); |
| } |
| #endif |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestOrdinalAbbreviations() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "1st" }, |
| { "2", "2nd" }, |
| { "3", "3rd" }, |
| { "4", "4th" }, |
| { "7", "7th" }, |
| { "10", "10th" }, |
| { "11", "11th" }, |
| { "13", "13th" }, |
| { "20", "20th" }, |
| { "21", "21st" }, |
| { "22", "22nd" }, |
| { "23", "23rd" }, |
| { "24", "24th" }, |
| { "33", "33rd" }, |
| { "102", "102nd" }, |
| { "312", "312th" }, |
| { "12,345", "12,345th" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, FALSE); |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestDurations() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "3,600", "1:00:00" }, //move me and I fail |
| { "0", "0 sec." }, |
| { "1", "1 sec." }, |
| { "24", "24 sec." }, |
| { "60", "1:00" }, |
| { "73", "1:13" }, |
| { "145", "2:25" }, |
| { "666", "11:06" }, |
| // { "3,600", "1:00:00" }, |
| { "3,740", "1:02:20" }, |
| { "10,293", "2:51:33" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| |
| #if !UCONFIG_NO_COLLATION |
| formatter->setLenient(TRUE); |
| static const char* lpTestData[][2] = { |
| { "2-51-33", "10,293" }, |
| { NULL, NULL} |
| }; |
| doLenientParseTest(formatter, lpTestData); |
| #endif |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestSpanishSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "uno" }, |
| { "6", "seis" }, |
| { "16", "diecis\\u00e9is" }, |
| { "20", "veinte" }, |
| { "24", "veinticuatro" }, |
| { "26", "veintis\\u00e9is" }, |
| { "73", "setenta y tres" }, |
| { "88", "ochenta y ocho" }, |
| { "100", "cien" }, |
| { "106", "ciento seis" }, |
| { "127", "ciento veintisiete" }, |
| { "200", "doscientos" }, |
| { "579", "quinientos setenta y nueve" }, |
| { "1,000", "mil" }, |
| { "2,000", "dos mil" }, |
| { "3,004", "tres mil cuatro" }, |
| { "4,567", "cuatro mil quinientos sesenta y siete" }, |
| { "15,943", "quince mil novecientos cuarenta y tres" }, |
| { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, |
| { "-36", "menos treinta y seis" }, |
| { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestFrenchSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "un" }, |
| { "15", "quinze" }, |
| { "20", "vingt" }, |
| { "21", "vingt-et-un" }, |
| { "23", "vingt-trois" }, |
| { "62", "soixante-deux" }, |
| { "70", "soixante-dix" }, |
| { "71", "soixante-et-onze" }, |
| { "73", "soixante-treize" }, |
| { "80", "quatre-vingts" }, |
| { "88", "quatre-vingt-huit" }, |
| { "100", "cent" }, |
| { "106", "cent six" }, |
| { "127", "cent vingt-sept" }, |
| { "200", "deux cents" }, |
| { "579", "cinq cent soixante-dix-neuf" }, |
| { "1,000", "mille" }, |
| { "1,123", "mille cent vingt-trois" }, |
| { "1,594", "mille cinq cent quatre-vingt-quatorze" }, |
| { "2,000", "deux mille" }, |
| { "3,004", "trois mille quatre" }, |
| { "4,567", "quatre mille cinq cent soixante-sept" }, |
| { "15,943", "quinze mille neuf cent quarante-trois" }, |
| { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" }, |
| { "-36", "moins trente-six" }, |
| { "234.567", "deux cent trente-quatre virgule cinq six sept" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| |
| #if !UCONFIG_NO_COLLATION |
| formatter->setLenient(TRUE); |
| static const char* lpTestData[][2] = { |
| { "trente-et-un", "31" }, |
| { "un cent quatre vingt dix huit", "198" }, |
| { NULL, NULL} |
| }; |
| doLenientParseTest(formatter, lpTestData); |
| #endif |
| } |
| delete formatter; |
| } |
| |
| static const char* const swissFrenchTestData[][2] = { |
| { "1", "un" }, |
| { "15", "quinze" }, |
| { "20", "vingt" }, |
| { "21", "vingt-et-un" }, |
| { "23", "vingt-trois" }, |
| { "62", "soixante-deux" }, |
| { "70", "septante" }, |
| { "71", "septante-et-un" }, |
| { "73", "septante-trois" }, |
| { "80", "huitante" }, |
| { "88", "huitante-huit" }, |
| { "100", "cent" }, |
| { "106", "cent six" }, |
| { "127", "cent vingt-sept" }, |
| { "200", "deux cents" }, |
| { "579", "cinq cent septante-neuf" }, |
| { "1,000", "mille" }, |
| { "1,123", "mille cent vingt-trois" }, |
| { "1,594", "mille cinq cent nonante-quatre" }, |
| { "2,000", "deux mille" }, |
| { "3,004", "trois mille quatre" }, |
| { "4,567", "quatre mille cinq cent soixante-sept" }, |
| { "15,943", "quinze mille neuf cent quarante-trois" }, |
| { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, |
| { "-36", "moins trente-six" }, |
| { "234.567", "deux cent trente-quatre virgule cinq six sept" }, |
| { NULL, NULL} |
| }; |
| |
| void |
| IntlTestRBNF::TestSwissFrenchSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| doTest(formatter, swissFrenchTestData, TRUE); |
| } |
| delete formatter; |
| } |
| |
| static const char* const belgianFrenchTestData[][2] = { |
| { "1", "un" }, |
| { "15", "quinze" }, |
| { "20", "vingt" }, |
| { "21", "vingt-et-un" }, |
| { "23", "vingt-trois" }, |
| { "62", "soixante-deux" }, |
| { "70", "septante" }, |
| { "71", "septante-et-un" }, |
| { "73", "septante-trois" }, |
| { "80", "quatre-vingts" }, |
| { "88", "quatre-vingt huit" }, |
| { "90", "nonante" }, |
| { "91", "nonante-et-un" }, |
| { "95", "nonante-cinq" }, |
| { "100", "cent" }, |
| { "106", "cent six" }, |
| { "127", "cent vingt-sept" }, |
| { "200", "deux cents" }, |
| { "579", "cinq cent septante-neuf" }, |
| { "1,000", "mille" }, |
| { "1,123", "mille cent vingt-trois" }, |
| { "1,594", "mille cinq cent nonante-quatre" }, |
| { "2,000", "deux mille" }, |
| { "3,004", "trois mille quatre" }, |
| { "4,567", "quatre mille cinq cent soixante-sept" }, |
| { "15,943", "quinze mille neuf cent quarante-trois" }, |
| { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, |
| { "-36", "moins trente-six" }, |
| { "234.567", "deux cent trente-quatre virgule cinq six sept" }, |
| { NULL, NULL} |
| }; |
| |
| |
| void |
| IntlTestRBNF::TestBelgianFrenchSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status)); |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| // Belgian french should match Swiss french. |
| doTest(formatter, belgianFrenchTestData, TRUE); |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestItalianSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "uno" }, |
| { "15", "quindici" }, |
| { "20", "venti" }, |
| { "23", "venti\\u00ADtr\\u00E9" }, |
| { "73", "settanta\\u00ADtr\\u00E9" }, |
| { "88", "ottant\\u00ADotto" }, |
| { "100", "cento" }, |
| { "101", "cento\\u00ADuno" }, |
| { "103", "cento\\u00ADtr\\u00E9" }, |
| { "106", "cento\\u00ADsei" }, |
| { "108", "cent\\u00ADotto" }, |
| { "127", "cento\\u00ADventi\\u00ADsette" }, |
| { "181", "cent\\u00ADottant\\u00ADuno" }, |
| { "200", "due\\u00ADcento" }, |
| { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, |
| { "1,000", "mille" }, |
| { "2,000", "due\\u00ADmila" }, |
| { "3,004", "tre\\u00ADmila\\u00ADquattro" }, |
| { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" }, |
| { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" }, |
| { "-36", "meno trenta\\u00ADsei" }, |
| { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestPortugueseSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "um" }, |
| { "15", "quinze" }, |
| { "20", "vinte" }, |
| { "23", "vinte e tr\\u00EAs" }, |
| { "73", "setenta e tr\\u00EAs" }, |
| { "88", "oitenta e oito" }, |
| { "100", "cem" }, |
| { "106", "cento e seis" }, |
| { "108", "cento e oito" }, |
| { "127", "cento e vinte e sete" }, |
| { "181", "cento e oitenta e um" }, |
| { "200", "duzentos" }, |
| { "579", "quinhentos e setenta e nove" }, |
| { "1,000", "mil" }, |
| { "2,000", "dois mil" }, |
| { "3,004", "tr\\u00EAs mil e quatro" }, |
| { "4,567", "quatro mil e quinhentos e sessenta e sete" }, |
| { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, |
| { "-36", "menos trinta e seis" }, |
| { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| } |
| delete formatter; |
| } |
| void |
| IntlTestRBNF::TestGermanSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "1", "eins" }, |
| { "15", "f\\u00fcnfzehn" }, |
| { "20", "zwanzig" }, |
| { "23", "drei\\u00ADund\\u00ADzwanzig" }, |
| { "73", "drei\\u00ADund\\u00ADsiebzig" }, |
| { "88", "acht\\u00ADund\\u00ADachtzig" }, |
| { "100", "ein\\u00ADhundert" }, |
| { "106", "ein\\u00ADhundert\\u00ADsechs" }, |
| { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, |
| { "200", "zwei\\u00ADhundert" }, |
| { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" }, |
| { "1,000", "ein\\u00ADtausend" }, |
| { "2,000", "zwei\\u00ADtausend" }, |
| { "3,004", "drei\\u00ADtausend\\u00ADvier" }, |
| { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" }, |
| { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" }, |
| { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| |
| #if !UCONFIG_NO_COLLATION |
| formatter->setLenient(TRUE); |
| static const char* lpTestData[][2] = { |
| { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, |
| { NULL, NULL} |
| }; |
| doLenientParseTest(formatter, lpTestData); |
| #endif |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestThaiSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testData[][2] = { |
| { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, |
| { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, |
| { "10", "\\u0e2a\\u0e34\\u0e1a" }, |
| { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, |
| { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, |
| { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, |
| { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, |
| { NULL, NULL} |
| }; |
| |
| doTest(formatter, testData, TRUE); |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestSwedishSpellout() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* testDataDefault[][2] = { |
| { "101", "ett\\u00adhundra\\u00adett" }, |
| { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, |
| { "1,001", "et\\u00adtusen ett" }, |
| { "1,100", "et\\u00adtusen ett\\u00adhundra" }, |
| { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, |
| { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" }, |
| { "10,001", "tio\\u00adtusen ett" }, |
| { "11,000", "elva\\u00adtusen" }, |
| { "12,000", "tolv\\u00adtusen" }, |
| { "20,000", "tjugo\\u00adtusen" }, |
| { "21,000", "tjugo\\u00adet\\u00adtusen" }, |
| { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, |
| { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, |
| { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, |
| { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" }, |
| { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, |
| { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, |
| { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, |
| { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" }, |
| { NULL, NULL } |
| }; |
| doTest(formatter, testDataDefault, TRUE); |
| |
| static const char* testDataNeutrum[][2] = { |
| { "101", "ett\\u00adhundra\\u00adett" }, |
| { "1,001", "et\\u00adtusen ett" }, |
| { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, |
| { "10,001", "tio\\u00adtusen ett" }, |
| { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, |
| { NULL, NULL } |
| }; |
| |
| formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); |
| if (U_SUCCESS(status)) { |
| logln(" testing spellout-cardinal-neuter rules"); |
| doTest(formatter, testDataNeutrum, TRUE); |
| } |
| else { |
| errln("Can't test spellout-cardinal-neuter rules"); |
| } |
| |
| static const char* testDataYear[][2] = { |
| { "101", "ett\\u00adhundra\\u00adett" }, |
| { "900", "nio\\u00adhundra" }, |
| { "1,001", "et\\u00adtusen ett" }, |
| { "1,100", "elva\\u00adhundra" }, |
| { "1,101", "elva\\u00adhundra\\u00adett" }, |
| { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, |
| { "2,001", "tjugo\\u00adhundra\\u00adett" }, |
| { "10,001", "tio\\u00adtusen ett" }, |
| { NULL, NULL } |
| }; |
| |
| status = U_ZERO_ERROR; |
| formatter->setDefaultRuleSet("%spellout-numbering-year", status); |
| if (U_SUCCESS(status)) { |
| logln("testing year rules"); |
| doTest(formatter, testDataYear, TRUE); |
| } |
| else { |
| errln("Can't test year rules"); |
| } |
| |
| } |
| delete formatter; |
| } |
| |
| void |
| IntlTestRBNF::TestSmallValues() |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* formatter |
| = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); |
| |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| static const char* const testDataDefault[][2] = { |
| { "0.001", "zero point zero zero one" }, |
| { "0.0001", "zero point zero zero zero one" }, |
| { "0.00001", "zero point zero zero zero zero one" }, |
| { "0.000001", "zero point zero zero zero zero zero one" }, |
| { "0.0000001", "zero point zero zero zero zero zero zero one" }, |
| { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, |
| { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, |
| { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, |
| { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, |
| { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, |
| { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, |
| { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, |
| { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, |
| { "10,000,000.001", "ten million point zero zero one" }, |
| { "10,000,000.0001", "ten million point zero zero zero one" }, |
| { "10,000,000.00001", "ten million point zero zero zero zero one" }, |
| { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, |
| { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, |
| // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, |
| // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, |
| { "10,000,000", "ten million" }, |
| // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, |
| // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, |
| // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, |
| { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" }, |
| { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" }, |
| { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" }, |
| { "1,234.4321", "one thousand two hundred thirty-four point four three two one" }, |
| { "123.321", "one hundred twenty-three point three two one" }, |
| { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, |
| { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, |
| { NULL, NULL } |
| }; |
| |
| doTest(formatter, testDataDefault, TRUE); |
| |
| delete formatter; |
| } |
| } |
| |
| void |
| IntlTestRBNF::TestLocalizations(void) |
| { |
| int i; |
| UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" |
| "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UParseError perror; |
| RuleBasedNumberFormat formatter(rules, perror, status); |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); |
| } else { |
| { |
| static const char* const testData[][2] = { |
| { "0", "nada" }, |
| { "5", "yah, some" }, |
| { "423", "plenty" }, |
| { "12345", "more'n you'll ever need" }, |
| { NULL, NULL } |
| }; |
| doTest(&formatter, testData, FALSE); |
| } |
| |
| { |
| UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>"); |
| static const char* const testData[][2] = { |
| { "0", "no" }, |
| { "5", "some" }, |
| { "423", "a lot" }, |
| { "12345", "tons" }, |
| { NULL, NULL } |
| }; |
| RuleBasedNumberFormat formatter0(rules, loc, perror, status); |
| if (U_FAILURE(status)) { |
| errln("failed to build second formatter"); |
| } else { |
| doTest(&formatter0, testData, FALSE); |
| |
| { |
| // exercise localization info |
| Locale locale0("en__VALLEY@turkey=gobblegobble"); |
| Locale locale1("de_DE_FOO"); |
| Locale locale2("ja_JP"); |
| UnicodeString name = formatter0.getRuleSetName(0); |
| if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" |
| && formatter0.getRuleSetDisplayName(0, locale1) == "das Main" |
| && formatter0.getRuleSetDisplayName(0, locale2) == "%main" |
| && formatter0.getRuleSetDisplayName(name, locale0) == "Main" |
| && formatter0.getRuleSetDisplayName(name, locale1) == "das Main" |
| && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){ |
| logln("getRuleSetDisplayName tested"); |
| }else { |
| errln("failed to getRuleSetDisplayName"); |
| } |
| } |
| |
| for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) { |
| Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status); |
| if (U_SUCCESS(status)) { |
| for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) { |
| UnicodeString name = formatter0.getRuleSetName(j); |
| UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale); |
| UnicodeString msg = locale.getName(); |
| msg.append(": "); |
| msg.append(name); |
| msg.append(" = "); |
| msg.append(lname); |
| logln(msg); |
| } |
| } |
| } |
| } |
| } |
| |
| { |
| static const char* goodLocs[] = { |
| "", // zero-length ok, same as providing no localization data |
| "<<>>", // no public rule sets ok |
| "<<%main>>", // no localizations ok |
| "<<%main,>,<en, Main,>>", // comma before close angle ok |
| "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote |
| "<<%main>,<'en', \"it's ok\">>", // double quotes work too |
| " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok |
| }; |
| int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]); |
| |
| static const char* badLocs[] = { |
| " ", // non-zero length |
| "<>", // empty array |
| "<", // unclosed outer array |
| "<<", // unclosed inner array |
| "<<,>>", // unexpected comma |
| "<<''>>", // empty string |
| " x<<%main>>", // first non space char not open angle bracket |
| "<%main>", // missing inner array |
| "<<%main %other>>", // elements missing separating commma (spaces must be quoted) |
| "<<%main><en, Main>>", // arrays missing separating comma |
| "<<%main>,<en, main, foo>>", // too many elements in locale data |
| "<<%main>,<en>>", // too few elements in locale data |
| "<<<%main>>>", // unexpected open angle |
| "<<%main<>>>", // unexpected open angle |
| "<<%main, %other>,<en,,>>", // implicit empty strings |
| "<<%main>,<en,''>>", // empty string |
| "<<%main>, < en, '>>", // unterminated quote |
| "<<%main>, < en, \"<>>", // unterminated quote |
| "<<%main\">>", // quote in string |
| "<<%main'>>", // quote in string |
| "<<%main<>>", // open angle in string |
| "<<%main>> x", // extra non-space text at end |
| |
| }; |
| int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]); |
| |
| for (i = 0; i < goodLocsLen; ++i) { |
| logln("[%d] '%s'", i, goodLocs[i]); |
| UErrorCode status = U_ZERO_ERROR; |
| UnicodeString loc(goodLocs[i]); |
| RuleBasedNumberFormat fmt(rules, loc, perror, status); |
| if (U_FAILURE(status)) { |
| errln("Failed parse of good localization string: '%s'", goodLocs[i]); |
| } |
| } |
| |
| for (i = 0; i < badLocsLen; ++i) { |
| logln("[%d] '%s'", i, badLocs[i]); |
| UErrorCode status = U_ZERO_ERROR; |
| UnicodeString loc(badLocs[i]); |
| RuleBasedNumberFormat fmt(rules, loc, perror, status); |
| if (U_SUCCESS(status)) { |
| errln("Successful parse of bad localization string: '%s'", badLocs[i]); |
| } |
| } |
| } |
| } |
| } |
| |
| void |
| IntlTestRBNF::TestAllLocales() |
| { |
| const char* names[] = { |
| " (spellout) ", |
| " (ordinal) " |
| // " (duration) " // This is English only, and it's not really supported in CLDR anymore. |
| }; |
| double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; |
| |
| int32_t count = 0; |
| const Locale* locales = Locale::getAvailableLocales(count); |
| for (int i = 0; i < count; ++i) { |
| const Locale* loc = &locales[i]; |
| |
| for (int j = 0; j < 2; ++j) { |
| UErrorCode status = U_ZERO_ERROR; |
| RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status); |
| |
| if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) { |
| // Skip it. |
| delete f; |
| break; |
| } |
| if (U_FAILURE(status)) { |
| errln(UnicodeString(loc->getName()) + names[j] |
| + "ERROR could not instantiate -> " + u_errorName(status)); |
| continue; |
| } |
| #if !UCONFIG_NO_COLLATION |
| for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) { |
| double n = numbers[numidx]; |
| UnicodeString str; |
| f->format(n, str); |
| |
| if (verbose) { |
| logln(UnicodeString(loc->getName()) + names[j] |
| + "success: " + n + " -> " + str); |
| } |
| |
| // We do not validate the result in this test case, |
| // because there are cases which do not round trip by design. |
| Formattable num; |
| |
| // regular parse |
| status = U_ZERO_ERROR; |
| f->setLenient(FALSE); |
| f->parse(str, num, status); |
| if (U_FAILURE(status)) { |
| errln(UnicodeString(loc->getName()) + names[j] |
| + "ERROR could not parse '" + str + "' -> " + u_errorName(status)); |
| } |
| // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. |
| if (j == 0) { |
| if (num.getType() == Formattable::kLong && num.getLong() != n) { |
| errln(UnicodeString(loc->getName()) + names[j] |
| + UnicodeString("ERROR could not roundtrip ") + n |
| + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); |
| } |
| else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { |
| // The epsilon difference is too high. |
| errln(UnicodeString(loc->getName()) + names[j] |
| + UnicodeString("ERROR could not roundtrip ") + n |
| + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); |
| } |
| } |
| if (!quick && !logKnownIssue("9503") ) { |
| // lenient parse |
| status = U_ZERO_ERROR; |
| f->setLenient(TRUE); |
| f->parse(str, num, status); |
| if (U_FAILURE(status)) { |
| errln(UnicodeString(loc->getName()) + names[j] |
| + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status)); |
| } |
| // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. |
| if (j == 0) { |
| if (num.getType() == Formattable::kLong && num.getLong() != n) { |
| errln(UnicodeString(loc->getName()) + names[j] |
| + UnicodeString("ERROR could not roundtrip ") + n |
| + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); |
| } |
| else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { |
| // The epsilon difference is too high. |
| errln(UnicodeString(loc->getName()) + names[j] |
| + UnicodeString("ERROR could not roundtrip ") + n |
| + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); |
| } |
| } |
| } |
| } |
| #endif |
| delete f; |
| } |
| } |
| } |
| |
| void |
| IntlTestRBNF::TestMultiplierSubstitution(void) { |
| UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); |
| UErrorCode status = U_ZERO_ERROR; |
| UParseError parse_error; |
| RuleBasedNumberFormat *rbnf = |
| new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); |
| if (U_SUCCESS(status)) { |
| UnicodeString res; |
| FieldPosition pos; |
| double n = 1234000.0; |
| rbnf->format(n, res, pos); |
| delete rbnf; |
| |
| UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million")); |
| if (expected != res) { |
| UnicodeString msg = "Expected: "; |
| msg.append(expected); |
| msg.append(" but got "); |
| msg.append(res); |
| errln(msg); |
| } |
| } |
| } |
| |
| void |
| IntlTestRBNF::TestSetDecimalFormatSymbols() { |
| UErrorCode status = U_ZERO_ERROR; |
| |
| RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); |
| if (U_FAILURE(status)) { |
| dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| |
| DecimalFormatSymbols dfs(Locale::getEnglish(), status); |
| if (U_FAILURE(status)) { |
| errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| |
| UnicodeString expected[] = { |
| UnicodeString("1,001st"), |
| UnicodeString("1&001st") |
| }; |
| |
| double number = 1001; |
| |
| UnicodeString result; |
| |
| rbnf.format(number, result); |
| if (result != expected[0]) { |
| errln("Format Error - Got: " + result + " Expected: " + expected[0]); |
| } |
| |
| result.remove(); |
| |
| /* Set new symbol for testing */ |
| dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE); |
| rbnf.setDecimalFormatSymbols(dfs); |
| |
| rbnf.format(number, result); |
| if (result != expected[1]) { |
| errln("Format Error - Got: " + result + " Expected: " + expected[1]); |
| } |
| } |
| |
| void IntlTestRBNF::TestPluralRules() { |
| UErrorCode status = U_ZERO_ERROR; |
| UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;"); |
| UParseError parseError; |
| RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); |
| if (U_FAILURE(status)) { |
| dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| const char* const enTestData[][2] = { |
| { "1", "1st" }, |
| { "2", "2nd" }, |
| { "3", "3rd" }, |
| { "4", "4th" }, |
| { "11", "11th" }, |
| { "12", "12th" }, |
| { "13", "13th" }, |
| { "14", "14th" }, |
| { "21", "21st" }, |
| { "22", "22nd" }, |
| { "23", "23rd" }, |
| { "24", "24th" }, |
| { NULL, NULL } |
| }; |
| |
| doTest(&enFormatter, enTestData, TRUE); |
| |
| // This is trying to model the feminine form, but don't worry about the details too much. |
| // We're trying to test the plural rules. |
| UnicodeString ruRules("%spellout-numbering:" |
| "-x: minus >>;" |
| "x.x: << point >>;" |
| "0: zero;" |
| "1: one;" |
| "2: two;" |
| "3: three;" |
| "4: four;" |
| "5: five;" |
| "6: six;" |
| "7: seven;" |
| "8: eight;" |
| "9: nine;" |
| "10: ten;" |
| "11: eleven;" |
| "12: twelve;" |
| "13: thirteen;" |
| "14: fourteen;" |
| "15: fifteen;" |
| "16: sixteen;" |
| "17: seventeen;" |
| "18: eighteen;" |
| "19: nineteen;" |
| "20: twenty[->>];" |
| "30: thirty[->>];" |
| "40: forty[->>];" |
| "50: fifty[->>];" |
| "60: sixty[->>];" |
| "70: seventy[->>];" |
| "80: eighty[->>];" |
| "90: ninety[->>];" |
| "100: hundred[ >>];" |
| "200: << hundred[ >>];" |
| "300: << hundreds[ >>];" |
| "500: << hundredss[ >>];" |
| "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];" |
| "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];"); |
| RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status); |
| const char* const ruTestData[][2] = { |
| { "1", "one" }, |
| { "100", "hundred" }, |
| { "125", "hundred twenty-five" }, |
| { "399", "three hundreds ninety-nine" }, |
| { "1,000", "one thousand" }, |
| { "1,001", "one thousand one" }, |
| { "2,000", "two thousands" }, |
| { "2,001", "two thousands one" }, |
| { "2,002", "two thousands two" }, |
| { "3,333", "three thousands three hundreds thirty-three" }, |
| { "5,000", "five thousandss" }, |
| { "11,000", "eleven thousandss" }, |
| { "21,000", "twenty-one thousand" }, |
| { "22,000", "twenty-two thousands" }, |
| { "25,001", "twenty-five thousandss one" }, |
| { NULL, NULL } |
| }; |
| |
| if (U_FAILURE(status)) { |
| errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| doTest(&ruFormatter, ruTestData, TRUE); |
| |
| // Make sure there are no divide by 0 errors. |
| UnicodeString result; |
| RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(21000, result); |
| if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) { |
| errln("Got " + result + " for 21000"); |
| } |
| |
| } |
| |
| void IntlTestRBNF::TestInfinityNaN() { |
| UErrorCode status = U_ZERO_ERROR; |
| UParseError parseError; |
| UnicodeString enRules("%default:" |
| "-x: minus >>;" |
| "Inf: infinite;" |
| "NaN: not a number;" |
| "0: =#,##0=;"); |
| RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); |
| const char * const enTestData[][2] = { |
| {"1", "1"}, |
| {"\\u221E", "infinite"}, |
| {"-\\u221E", "minus infinite"}, |
| {"NaN", "not a number"}, |
| { NULL, NULL } |
| }; |
| if (U_FAILURE(status)) { |
| dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| |
| doTest(&enFormatter, enTestData, true); |
| |
| // Test the default behavior when the rules are undefined. |
| UnicodeString enRules2("%default:" |
| "-x: ->>;" |
| "0: =#,##0=;"); |
| RuleBasedNumberFormat enFormatter2(enRules2, Locale::getEnglish(), parseError, status); |
| if (U_FAILURE(status)) { |
| errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| const char * const enDefaultTestData[][2] = { |
| {"1", "1"}, |
| {"\\u221E", "\\u221E"}, |
| {"-\\u221E", "-\\u221E"}, |
| {"NaN", "NaN"}, |
| { NULL, NULL } |
| }; |
| |
| doTest(&enFormatter2, enDefaultTestData, true); |
| } |
| |
| void IntlTestRBNF::TestVariableDecimalPoint() { |
| UErrorCode status = U_ZERO_ERROR; |
| UParseError parseError; |
| UnicodeString enRules("%spellout-numbering:" |
| "-x: minus >>;" |
| "x.x: << point >>;" |
| "x,x: << comma >>;" |
| "0.x: xpoint >>;" |
| "0,x: xcomma >>;" |
| "0: zero;" |
| "1: one;" |
| "2: two;" |
| "3: three;" |
| "4: four;" |
| "5: five;" |
| "6: six;" |
| "7: seven;" |
| "8: eight;" |
| "9: nine;"); |
| RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); |
| const char * const enTestPointData[][2] = { |
| {"1.1", "one point one"}, |
| {"1.23", "one point two three"}, |
| {"0.4", "xpoint four"}, |
| { NULL, NULL } |
| }; |
| if (U_FAILURE(status)) { |
| dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); |
| return; |
| } |
| doTest(&enFormatter, enTestPointData, true); |
| |
| DecimalFormatSymbols decimalFormatSymbols(Locale::getEnglish(), status); |
| decimalFormatSymbols.setSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol, UNICODE_STRING_SIMPLE(",")); |
| enFormatter.setDecimalFormatSymbols(decimalFormatSymbols); |
| const char * const enTestCommaData[][2] = { |
| {"1.1", "one comma one"}, |
| {"1.23", "one comma two three"}, |
| {"0.4", "xcomma four"}, |
| { NULL, NULL } |
| }; |
| doTest(&enFormatter, enTestCommaData, true); |
| } |
| |
| void |
| IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing) |
| { |
| // man, error reporting would be easier with printf-style syntax for unicode string and formattable |
| |
| UErrorCode status = U_ZERO_ERROR; |
| DecimalFormatSymbols dfs("en", status); |
| // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); |
| DecimalFormat decFmt("#,###.################", dfs, status); |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); |
| } else { |
| for (int i = 0; testData[i][0]; ++i) { |
| const char* numString = testData[i][0]; |
| const char* expectedWords = testData[i][1]; |
| |
| log("[%i] %s = ", i, numString); |
| Formattable expectedNumber; |
| UnicodeString escapedNumString = UnicodeString(numString, -1, US_INV).unescape(); |
| decFmt.parse(escapedNumString, expectedNumber, status); |
| if (U_FAILURE(status)) { |
| errln("FAIL: decFmt could not parse %s", numString); |
| break; |
| } else { |
| UnicodeString actualString; |
| FieldPosition pos; |
| formatter->format(expectedNumber, actualString/* , pos*/, status); |
| if (U_FAILURE(status)) { |
| UnicodeString msg = "Fail: formatter could not format "; |
| decFmt.format(expectedNumber, msg, status); |
| errln(msg); |
| break; |
| } else { |
| UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape(); |
| if (actualString != expectedString) { |
| UnicodeString msg = "FAIL: check failed for "; |
| decFmt.format(expectedNumber, msg, status); |
| msg.append(", expected "); |
| msg.append(expectedString); |
| msg.append(" but got "); |
| msg.append(actualString); |
| errln(msg); |
| break; |
| } else { |
| logln(actualString); |
| if (testParsing) { |
| Formattable parsedNumber; |
| formatter->parse(actualString, parsedNumber, status); |
| if (U_FAILURE(status)) { |
| UnicodeString msg = "FAIL: formatter could not parse "; |
| msg.append(actualString); |
| msg.append(" status code: " ); |
| msg.append(u_errorName(status)); |
| errln(msg); |
| break; |
| } else { |
| if (parsedNumber != expectedNumber |
| && (!uprv_isNaN(parsedNumber.getDouble()) || !uprv_isNaN(expectedNumber.getDouble()))) |
| { |
| UnicodeString msg = "FAIL: parse failed for "; |
| msg.append(actualString); |
| msg.append(", expected "); |
| decFmt.format(expectedNumber, msg, status); |
| msg.append(", but got "); |
| decFmt.format(parsedNumber, msg, status); |
| errln(msg); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void |
| IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); |
| if (U_FAILURE(status)) { |
| errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); |
| } else { |
| for (int i = 0; testData[i][0]; ++i) { |
| const char* spelledNumber = testData[i][0]; // spelled-out number |
| const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale |
| |
| UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); |
| Formattable actualNumber; |
| formatter->parse(spelledNumberString, actualNumber, status); |
| if (U_FAILURE(status)) { |
| UnicodeString msg = "FAIL: formatter could not parse "; |
| msg.append(spelledNumberString); |
| errln(msg); |
| break; |
| } else { |
| // I changed the logic of this test somewhat from Java-- instead of comparing the |
| // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, |
| // so change it back. |
| |
| UnicodeString asciiUSNumberString = asciiUSNumber; |
| Formattable expectedNumber; |
| decFmt->parse(asciiUSNumberString, expectedNumber, status); |
| if (U_FAILURE(status)) { |
| UnicodeString msg = "FAIL: decFmt could not parse "; |
| msg.append(asciiUSNumberString); |
| errln(msg); |
| break; |
| } else { |
| UnicodeString actualNumberString; |
| UnicodeString expectedNumberString; |
| decFmt->format(actualNumber, actualNumberString, status); |
| decFmt->format(expectedNumber, expectedNumberString, status); |
| if (actualNumberString != expectedNumberString) { |
| UnicodeString msg = "FAIL: parsing"; |
| msg.append(asciiUSNumberString); |
| msg.append("\n"); |
| msg.append(" lenient parse failed for "); |
| msg.append(spelledNumberString); |
| msg.append(", expected "); |
| msg.append(expectedNumberString); |
| msg.append(", but got "); |
| msg.append(actualNumberString); |
| errln(msg); |
| break; |
| } |
| } |
| } |
| } |
| delete decFmt; |
| } |
| } |
| |
| /* U_HAVE_RBNF */ |
| #else |
| |
| void |
| IntlTestRBNF::TestRBNFDisabled() { |
| errln("*** RBNF currently disabled on this platform ***\n"); |
| } |
| |
| /* U_HAVE_RBNF */ |
| #endif |
| |
| #endif /* #if !UCONFIG_NO_FORMATTING */ |