| /******************************************************************** |
| * COPYRIGHT: |
| * Copyright (c) 2005-2016, International Business Machines Corporation and |
| * others. All Rights Reserved. |
| ********************************************************************/ |
| /************************************************************************ |
| * Tests for the UText and UTextIterator text abstraction classses |
| * |
| ************************************************************************/ |
| |
| #include <string.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include "unicode/utypes.h" |
| #include "unicode/utext.h" |
| #include "unicode/utf8.h" |
| #include "unicode/ustring.h" |
| #include "unicode/uchriter.h" |
| #include "cmemory.h" |
| #include "cstr.h" |
| #include "utxttest.h" |
| |
| static UBool gFailed = FALSE; |
| static int gTestNum = 0; |
| |
| // Forward decl |
| UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); |
| |
| #define TEST_ASSERT(x) \ |
| { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ |
| gFailed = TRUE;\ |
| }} |
| |
| |
| #define TEST_SUCCESS(status) \ |
| { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ |
| gTestNum, __FILE__, __LINE__, u_errorName(status)); \ |
| gFailed = TRUE;\ |
| }} |
| |
| UTextTest::UTextTest() { |
| } |
| |
| UTextTest::~UTextTest() { |
| } |
| |
| |
| void |
| UTextTest::runIndexedTest(int32_t index, UBool exec, |
| const char* &name, char* /*par*/) { |
| switch (index) { |
| case 0: name = "TextTest"; |
| if (exec) TextTest(); break; |
| case 1: name = "ErrorTest"; |
| if (exec) ErrorTest(); break; |
| case 2: name = "FreezeTest"; |
| if (exec) FreezeTest(); break; |
| case 3: name = "Ticket5560"; |
| if (exec) Ticket5560(); break; |
| case 4: name = "Ticket6847"; |
| if (exec) Ticket6847(); break; |
| case 5: name = "Ticket10562"; |
| if (exec) Ticket10562(); break; |
| case 6: name = "Ticket10983"; |
| if (exec) Ticket10983(); break; |
| case 7: name = "Ticket12130"; |
| if (exec) Ticket12130(); break; |
| default: name = ""; break; |
| } |
| } |
| |
| // |
| // Quick and dirty random number generator. |
| // (don't use library so that results are portable. |
| static uint32_t m_seed = 1; |
| static uint32_t m_rand() |
| { |
| m_seed = m_seed * 1103515245 + 12345; |
| return (uint32_t)(m_seed/65536) % 32768; |
| } |
| |
| |
| // |
| // TextTest() |
| // |
| // Top Level function for UText testing. |
| // Specifies the strings to be tested, with the acutal testing itself |
| // being carried out in another function, TestString(). |
| // |
| void UTextTest::TextTest() { |
| int32_t i, j; |
| |
| TestString("abcd\\U00010001xyz"); |
| TestString(""); |
| |
| // Supplementary chars at start or end |
| TestString("\\U00010001"); |
| TestString("abc\\U00010001"); |
| TestString("\\U00010001abc"); |
| |
| // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries |
| UnicodeString s; |
| for (i=1; i<60; i++) { |
| s.truncate(0); |
| for (j=0; j<i; j++) { |
| if (j+0x30 == 0x5c) { |
| // backslash. Needs to be escaped |
| s.append((UChar)0x5c); |
| } |
| s.append(UChar(j+0x30)); |
| } |
| TestString(s); |
| } |
| |
| // Test strings with odd-aligned supplementary chars, |
| // looking for glitches at buffer boundaries |
| for (i=1; i<60; i++) { |
| s.truncate(0); |
| s.append((UChar)0x41); |
| for (j=0; j<i; j++) { |
| s.append(UChar32(j+0x11000)); |
| } |
| TestString(s); |
| } |
| |
| // String of chars of randomly varying size in utf-8 representation. |
| // Exercise the mapping, and the varying sized buffer. |
| // |
| s.truncate(0); |
| UChar32 c1 = 0; |
| UChar32 c2 = 0x100; |
| UChar32 c3 = 0xa000; |
| UChar32 c4 = 0x11000; |
| for (i=0; i<1000; i++) { |
| int len8 = m_rand()%4 + 1; |
| switch (len8) { |
| case 1: |
| c1 = (c1+1)%0x80; |
| // don't put 0 into string (0 terminated strings for some tests) |
| // don't put '\', will cause unescape() to fail. |
| if (c1==0x5c || c1==0) { |
| c1++; |
| } |
| s.append(c1); |
| break; |
| case 2: |
| s.append(c2++); |
| break; |
| case 3: |
| s.append(c3++); |
| break; |
| case 4: |
| s.append(c4++); |
| break; |
| } |
| } |
| TestString(s); |
| } |
| |
| |
| // |
| // TestString() Run a suite of UText tests on a string. |
| // The test string is unescaped before use. |
| // |
| void UTextTest::TestString(const UnicodeString &s) { |
| int32_t i; |
| int32_t j; |
| UChar32 c; |
| int32_t cpCount = 0; |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = NULL; |
| int32_t saLen; |
| |
| UnicodeString sa = s.unescape(); |
| saLen = sa.length(); |
| |
| // |
| // Build up a mapping between code points and UTF-16 code unit indexes. |
| // |
| m *cpMap = new m[sa.length() + 1]; |
| j = 0; |
| for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { |
| c = sa.char32At(i); |
| cpMap[j].nativeIdx = i; |
| cpMap[j].cp = c; |
| j++; |
| cpCount++; |
| } |
| cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. |
| |
| |
| // UChar * test, null terminated |
| status = U_ZERO_ERROR; |
| UChar *buf = new UChar[saLen+1]; |
| sa.extract(buf, saLen+1, status); |
| TEST_SUCCESS(status); |
| ut = utext_openUChars(NULL, buf, -1, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| utext_close(ut); |
| delete [] buf; |
| |
| // UChar * test, with length |
| status = U_ZERO_ERROR; |
| buf = new UChar[saLen+1]; |
| sa.extract(buf, saLen+1, status); |
| TEST_SUCCESS(status); |
| ut = utext_openUChars(NULL, buf, saLen, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| utext_close(ut); |
| delete [] buf; |
| |
| |
| // UnicodeString test |
| status = U_ZERO_ERROR; |
| ut = utext_openUnicodeString(NULL, &sa, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| TestCMR(sa, ut, cpCount, cpMap, cpMap); |
| utext_close(ut); |
| |
| |
| // Const UnicodeString test |
| status = U_ZERO_ERROR; |
| ut = utext_openConstUnicodeString(NULL, &sa, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| utext_close(ut); |
| |
| |
| // Replaceable test. (UnicodeString inherits Replaceable) |
| status = U_ZERO_ERROR; |
| ut = utext_openReplaceable(NULL, &sa, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| TestCMR(sa, ut, cpCount, cpMap, cpMap); |
| utext_close(ut); |
| |
| // Character Iterator Tests |
| status = U_ZERO_ERROR; |
| const UChar *cbuf = sa.getBuffer(); |
| CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); |
| TEST_SUCCESS(status); |
| ut = utext_openCharacterIterator(NULL, ci, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| utext_close(ut); |
| delete ci; |
| |
| |
| // Fragmented UnicodeString (Chunk size of one) |
| // |
| status = U_ZERO_ERROR; |
| ut = openFragmentedUnicodeString(NULL, &sa, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, cpMap); |
| utext_close(ut); |
| |
| // |
| // UTF-8 test |
| // |
| |
| // Convert the test string from UnicodeString to (char *) in utf-8 format |
| int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); |
| char *u8String = new char[u8Len + 1]; |
| sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); |
| |
| // Build up the map of code point indices in the utf-8 string |
| m * u8Map = new m[sa.length() + 1]; |
| i = 0; // native utf-8 index |
| for (j=0; j<cpCount ; j++) { // code point number |
| u8Map[j].nativeIdx = i; |
| U8_NEXT(u8String, i, u8Len, c) |
| u8Map[j].cp = c; |
| } |
| u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. |
| |
| // Do the test itself |
| status = U_ZERO_ERROR; |
| ut = utext_openUTF8(NULL, u8String, -1, &status); |
| TEST_SUCCESS(status); |
| TestAccess(sa, ut, cpCount, u8Map); |
| utext_close(ut); |
| |
| |
| |
| delete []cpMap; |
| delete []u8Map; |
| delete []u8String; |
| } |
| |
| // TestCMR test Copy, Move and Replace operations. |
| // us UnicodeString containing the test text. |
| // ut UText containing the same test text. |
| // cpCount number of code points in the test text. |
| // nativeMap Mapping from code points to native indexes for the UText. |
| // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. |
| // |
| // This function runs a whole series of opertions on each incoming UText. |
| // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. |
| // |
| void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { |
| TEST_ASSERT(utext_isWritable(ut) == TRUE); |
| |
| int srcLengthType; // Loop variables for selecting the postion and length |
| int srcPosType; // of the block to operate on within the source text. |
| int destPosType; |
| |
| int srcIndex = 0; // Code Point indexes of the block to operate on for |
| int srcLength = 0; // a specific test. |
| |
| int destIndex = 0; // Code point index of the destination for a copy/move test. |
| |
| int32_t nativeStart = 0; // Native unit indexes for a test. |
| int32_t nativeLimit = 0; |
| int32_t nativeDest = 0; |
| |
| int32_t u16Start = 0; // UTF-16 indexes for a test. |
| int32_t u16Limit = 0; // used when performing the same operation in a Unicode String |
| int32_t u16Dest = 0; |
| |
| // Iterate over a whole series of source index, length and a target indexes. |
| // This is done with code point indexes; these will be later translated to native |
| // indexes using the cpMap. |
| for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { |
| switch (srcLengthType) { |
| case 1: srcLength = 1; break; |
| case 2: srcLength = 5; break; |
| case 3: srcLength = cpCount / 3; |
| } |
| for (srcPosType=1; srcPosType<=5; srcPosType++) { |
| switch (srcPosType) { |
| case 1: srcIndex = 0; break; |
| case 2: srcIndex = 1; break; |
| case 3: srcIndex = cpCount - srcLength; break; |
| case 4: srcIndex = cpCount - srcLength - 1; break; |
| case 5: srcIndex = cpCount / 2; break; |
| } |
| if (srcIndex < 0 || srcIndex + srcLength > cpCount) { |
| // filter out bogus test cases - |
| // those with a source range that falls of an edge of the string. |
| continue; |
| } |
| |
| // |
| // Copy and move tests. |
| // iterate over a variety of destination positions. |
| // |
| for (destPosType=1; destPosType<=4; destPosType++) { |
| switch (destPosType) { |
| case 1: destIndex = 0; break; |
| case 2: destIndex = 1; break; |
| case 3: destIndex = srcIndex - 1; break; |
| case 4: destIndex = srcIndex + srcLength + 1; break; |
| case 5: destIndex = cpCount-1; break; |
| case 6: destIndex = cpCount; break; |
| } |
| if (destIndex<0 || destIndex>cpCount) { |
| // filter out bogus test cases. |
| continue; |
| } |
| |
| nativeStart = nativeMap[srcIndex].nativeIdx; |
| nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; |
| nativeDest = nativeMap[destIndex].nativeIdx; |
| |
| u16Start = u16Map[srcIndex].nativeIdx; |
| u16Limit = u16Map[srcIndex+srcLength].nativeIdx; |
| u16Dest = u16Map[destIndex].nativeIdx; |
| |
| gFailed = FALSE; |
| TestCopyMove(us, ut, FALSE, |
| nativeStart, nativeLimit, nativeDest, |
| u16Start, u16Limit, u16Dest); |
| |
| TestCopyMove(us, ut, TRUE, |
| nativeStart, nativeLimit, nativeDest, |
| u16Start, u16Limit, u16Dest); |
| |
| if (gFailed) { |
| return; |
| } |
| } |
| |
| // |
| // Replace tests. |
| // |
| UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); |
| for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { |
| UnicodeString repStr(fullRepString, 0, replStrLen); |
| TestReplace(us, ut, |
| nativeStart, nativeLimit, |
| u16Start, u16Limit, |
| repStr); |
| if (gFailed) { |
| return; |
| } |
| } |
| |
| } |
| } |
| |
| } |
| |
| // |
| // TestCopyMove run a single test case for utext_copy. |
| // Test cases are created in TestCMR and dispatched here for execution. |
| // |
| void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, |
| int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, |
| int32_t u16Start, int32_t u16Limit, int32_t u16Dest) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UText *targetUT = NULL; |
| gTestNum++; |
| gFailed = FALSE; |
| |
| // |
| // clone the UText. The test will be run in the cloned copy |
| // so that we don't alter the original. |
| // |
| targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); |
| TEST_SUCCESS(status); |
| UnicodeString targetUS(us); // And copy the reference string. |
| |
| // do the test operation first in the reference |
| targetUS.copy(u16Start, u16Limit, u16Dest); |
| if (move) { |
| // delete out the source range. |
| if (u16Limit < u16Dest) { |
| targetUS.removeBetween(u16Start, u16Limit); |
| } else { |
| int32_t amtCopied = u16Limit - u16Start; |
| targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); |
| } |
| } |
| |
| // Do the same operation in the UText under test |
| utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); |
| if (nativeDest > nativeStart && nativeDest < nativeLimit) { |
| TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); |
| } else { |
| TEST_SUCCESS(status); |
| |
| // Compare the results of the two parallel tests |
| int32_t usi = 0; // UnicodeString postion, utf-16 index. |
| int64_t uti = 0; // UText position, native index. |
| int32_t cpi; // char32 position (code point index) |
| UChar32 usc; // code point from Unicode String |
| UChar32 utc; // code point from UText |
| utext_setNativeIndex(targetUT, 0); |
| for (cpi=0; ; cpi++) { |
| usc = targetUS.char32At(usi); |
| utc = utext_next32(targetUT); |
| if (utc < 0) { |
| break; |
| } |
| TEST_ASSERT(uti == usi); |
| TEST_ASSERT(utc == usc); |
| usi = targetUS.moveIndex32(usi, 1); |
| uti = utext_getNativeIndex(targetUT); |
| if (gFailed) { |
| goto cleanupAndReturn; |
| } |
| } |
| int64_t expectedNativeLength = utext_nativeLength(ut); |
| if (move == FALSE) { |
| expectedNativeLength += nativeLimit - nativeStart; |
| } |
| uti = utext_getNativeIndex(targetUT); |
| TEST_ASSERT(uti == expectedNativeLength); |
| } |
| |
| cleanupAndReturn: |
| utext_close(targetUT); |
| } |
| |
| |
| // |
| // TestReplace Test a single Replace operation. |
| // |
| void UTextTest::TestReplace( |
| const UnicodeString &us, // reference UnicodeString in which to do the replace |
| UText *ut, // UnicodeText object under test. |
| int32_t nativeStart, // Range to be replaced, in UText native units. |
| int32_t nativeLimit, |
| int32_t u16Start, // Range to be replaced, in UTF-16 units |
| int32_t u16Limit, // for use in the reference UnicodeString. |
| const UnicodeString &repStr) // The replacement string |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UText *targetUT = NULL; |
| gTestNum++; |
| gFailed = FALSE; |
| |
| // |
| // clone the target UText. The test will be run in the cloned copy |
| // so that we don't alter the original. |
| // |
| targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); |
| TEST_SUCCESS(status); |
| UnicodeString targetUS(us); // And copy the reference string. |
| |
| // |
| // Do the replace operation in the Unicode String, to |
| // produce a reference result. |
| // |
| targetUS.replace(u16Start, u16Limit-u16Start, repStr); |
| |
| // |
| // Do the replace on the UText under test |
| // |
| const UChar *rs = repStr.getBuffer(); |
| int32_t rsLen = repStr.length(); |
| int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); |
| int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); |
| TEST_ASSERT(actualDelta == expectedDelta); |
| |
| // |
| // Compare the results |
| // |
| int32_t usi = 0; // UnicodeString postion, utf-16 index. |
| int64_t uti = 0; // UText position, native index. |
| int32_t cpi; // char32 position (code point index) |
| UChar32 usc; // code point from Unicode String |
| UChar32 utc; // code point from UText |
| int64_t expectedNativeLength = 0; |
| utext_setNativeIndex(targetUT, 0); |
| for (cpi=0; ; cpi++) { |
| usc = targetUS.char32At(usi); |
| utc = utext_next32(targetUT); |
| if (utc < 0) { |
| break; |
| } |
| TEST_ASSERT(uti == usi); |
| TEST_ASSERT(utc == usc); |
| usi = targetUS.moveIndex32(usi, 1); |
| uti = utext_getNativeIndex(targetUT); |
| if (gFailed) { |
| goto cleanupAndReturn; |
| } |
| } |
| expectedNativeLength = utext_nativeLength(ut) + expectedDelta; |
| uti = utext_getNativeIndex(targetUT); |
| TEST_ASSERT(uti == expectedNativeLength); |
| |
| cleanupAndReturn: |
| utext_close(targetUT); |
| } |
| |
| // |
| // TestAccess Test the read only access functions on a UText, including cloning. |
| // The text is accessed in a variety of ways, and compared with |
| // the reference UnicodeString. |
| // |
| void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { |
| // Run the standard tests on the caller-supplied UText. |
| TestAccessNoClone(us, ut, cpCount, cpMap); |
| |
| // Re-run tests on a shallow clone. |
| utext_setNativeIndex(ut, 0); |
| UErrorCode status = U_ZERO_ERROR; |
| UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); |
| TEST_SUCCESS(status); |
| TestAccessNoClone(us, shallowClone, cpCount, cpMap); |
| |
| // |
| // Rerun again on a deep clone. |
| // Note that text providers are not required to provide deep cloning, |
| // so unsupported errors are ignored. |
| // |
| status = U_ZERO_ERROR; |
| utext_setNativeIndex(shallowClone, 0); |
| UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); |
| utext_close(shallowClone); |
| if (status != U_UNSUPPORTED_ERROR) { |
| TEST_SUCCESS(status); |
| TestAccessNoClone(us, deepClone, cpCount, cpMap); |
| } |
| utext_close(deepClone); |
| } |
| |
| |
| // |
| // TestAccessNoClone() Test the read only access functions on a UText. |
| // The text is accessed in a variety of ways, and compared with |
| // the reference UnicodeString. |
| // |
| void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { |
| UErrorCode status = U_ZERO_ERROR; |
| gTestNum++; |
| |
| // |
| // Check the length from the UText |
| // |
| int64_t expectedLen = cpMap[cpCount].nativeIdx; |
| int64_t utlen = utext_nativeLength(ut); |
| TEST_ASSERT(expectedLen == utlen); |
| |
| // |
| // Iterate forwards, verify that we get the correct code points |
| // at the correct native offsets. |
| // |
| int i = 0; |
| int64_t index; |
| int64_t expectedIndex = 0; |
| int64_t foundIndex = 0; |
| UChar32 expectedC; |
| UChar32 foundC; |
| int64_t len; |
| |
| for (i=0; i<cpCount; i++) { |
| expectedIndex = cpMap[i].nativeIdx; |
| foundIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(expectedIndex == foundIndex); |
| expectedC = cpMap[i].cp; |
| foundC = utext_next32(ut); |
| TEST_ASSERT(expectedC == foundC); |
| foundIndex = utext_getPreviousNativeIndex(ut); |
| TEST_ASSERT(expectedIndex == foundIndex); |
| if (gFailed) { |
| return; |
| } |
| } |
| foundC = utext_next32(ut); |
| TEST_ASSERT(foundC == U_SENTINEL); |
| |
| // Repeat above, using macros |
| utext_setNativeIndex(ut, 0); |
| for (i=0; i<cpCount; i++) { |
| expectedIndex = cpMap[i].nativeIdx; |
| foundIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(expectedIndex == foundIndex); |
| expectedC = cpMap[i].cp; |
| foundC = UTEXT_NEXT32(ut); |
| TEST_ASSERT(expectedC == foundC); |
| if (gFailed) { |
| return; |
| } |
| } |
| foundC = UTEXT_NEXT32(ut); |
| TEST_ASSERT(foundC == U_SENTINEL); |
| |
| // |
| // Forward iteration (above) should have left index at the |
| // end of the input, which should == length(). |
| // |
| len = utext_nativeLength(ut); |
| foundIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(len == foundIndex); |
| |
| // |
| // Iterate backwards over entire test string |
| // |
| len = utext_getNativeIndex(ut); |
| utext_setNativeIndex(ut, len); |
| for (i=cpCount-1; i>=0; i--) { |
| expectedC = cpMap[i].cp; |
| expectedIndex = cpMap[i].nativeIdx; |
| int64_t prevIndex = utext_getPreviousNativeIndex(ut); |
| foundC = utext_previous32(ut); |
| foundIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(expectedIndex == foundIndex); |
| TEST_ASSERT(expectedC == foundC); |
| TEST_ASSERT(prevIndex == foundIndex); |
| if (gFailed) { |
| return; |
| } |
| } |
| |
| // |
| // Backwards iteration, above, should have left our iterator |
| // position at zero, and continued backwards iterationshould fail. |
| // |
| foundIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(foundIndex == 0); |
| foundIndex = utext_getPreviousNativeIndex(ut); |
| TEST_ASSERT(foundIndex == 0); |
| |
| |
| foundC = utext_previous32(ut); |
| TEST_ASSERT(foundC == U_SENTINEL); |
| foundIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(foundIndex == 0); |
| foundIndex = utext_getPreviousNativeIndex(ut); |
| TEST_ASSERT(foundIndex == 0); |
| |
| |
| // And again, with the macros |
| utext_setNativeIndex(ut, len); |
| for (i=cpCount-1; i>=0; i--) { |
| expectedC = cpMap[i].cp; |
| expectedIndex = cpMap[i].nativeIdx; |
| foundC = UTEXT_PREVIOUS32(ut); |
| foundIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(expectedIndex == foundIndex); |
| TEST_ASSERT(expectedC == foundC); |
| if (gFailed) { |
| return; |
| } |
| } |
| |
| // |
| // Backwards iteration, above, should have left our iterator |
| // position at zero, and continued backwards iterationshould fail. |
| // |
| foundIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(foundIndex == 0); |
| |
| foundC = UTEXT_PREVIOUS32(ut); |
| TEST_ASSERT(foundC == U_SENTINEL); |
| foundIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(foundIndex == 0); |
| if (gFailed) { |
| return; |
| } |
| |
| // |
| // next32From(), prevous32From(), Iterate in a somewhat random order. |
| // |
| int cpIndex = 0; |
| for (i=0; i<cpCount; i++) { |
| cpIndex = (cpIndex + 9973) % cpCount; |
| index = cpMap[cpIndex].nativeIdx; |
| expectedC = cpMap[cpIndex].cp; |
| foundC = utext_next32From(ut, index); |
| TEST_ASSERT(expectedC == foundC); |
| if (gFailed) { |
| return; |
| } |
| } |
| |
| cpIndex = 0; |
| for (i=0; i<cpCount; i++) { |
| cpIndex = (cpIndex + 9973) % cpCount; |
| index = cpMap[cpIndex+1].nativeIdx; |
| expectedC = cpMap[cpIndex].cp; |
| foundC = utext_previous32From(ut, index); |
| TEST_ASSERT(expectedC == foundC); |
| if (gFailed) { |
| return; |
| } |
| } |
| |
| |
| // |
| // moveIndex(int32_t delta); |
| // |
| |
| // Walk through frontwards, incrementing by one |
| utext_setNativeIndex(ut, 0); |
| for (i=1; i<=cpCount; i++) { |
| utext_moveIndex32(ut, 1); |
| index = utext_getNativeIndex(ut); |
| expectedIndex = cpMap[i].nativeIdx; |
| TEST_ASSERT(expectedIndex == index); |
| index = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(expectedIndex == index); |
| } |
| |
| // Walk through frontwards, incrementing by two |
| utext_setNativeIndex(ut, 0); |
| for (i=2; i<cpCount; i+=2) { |
| utext_moveIndex32(ut, 2); |
| index = utext_getNativeIndex(ut); |
| expectedIndex = cpMap[i].nativeIdx; |
| TEST_ASSERT(expectedIndex == index); |
| index = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(expectedIndex == index); |
| } |
| |
| // walk through the string backwards, decrementing by one. |
| i = cpMap[cpCount].nativeIdx; |
| utext_setNativeIndex(ut, i); |
| for (i=cpCount; i>=0; i--) { |
| expectedIndex = cpMap[i].nativeIdx; |
| index = utext_getNativeIndex(ut); |
| TEST_ASSERT(expectedIndex == index); |
| index = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(expectedIndex == index); |
| utext_moveIndex32(ut, -1); |
| } |
| |
| |
| // walk through backwards, decrementing by three |
| i = cpMap[cpCount].nativeIdx; |
| utext_setNativeIndex(ut, i); |
| for (i=cpCount; i>=0; i-=3) { |
| expectedIndex = cpMap[i].nativeIdx; |
| index = utext_getNativeIndex(ut); |
| TEST_ASSERT(expectedIndex == index); |
| index = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(expectedIndex == index); |
| utext_moveIndex32(ut, -3); |
| } |
| |
| |
| // |
| // Extract |
| // |
| int bufSize = us.length() + 10; |
| UChar *buf = new UChar[bufSize]; |
| status = U_ZERO_ERROR; |
| expectedLen = us.length(); |
| len = utext_extract(ut, 0, utlen, buf, bufSize, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(len == expectedLen); |
| int compareResult = us.compare(buf, -1); |
| TEST_ASSERT(compareResult == 0); |
| |
| status = U_ZERO_ERROR; |
| len = utext_extract(ut, 0, utlen, NULL, 0, &status); |
| if (utlen == 0) { |
| TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); |
| } else { |
| TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); |
| } |
| TEST_ASSERT(len == expectedLen); |
| |
| status = U_ZERO_ERROR; |
| u_memset(buf, 0x5555, bufSize); |
| len = utext_extract(ut, 0, utlen, buf, 1, &status); |
| if (us.length() == 0) { |
| TEST_SUCCESS(status); |
| TEST_ASSERT(buf[0] == 0); |
| } else { |
| // Buf len == 1, extracting a single 16 bit value. |
| // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, |
| // or whether the lead surrogate of the pair is extracted. |
| // It's a buffer overflow error in either case. |
| TEST_ASSERT(buf[0] == us.charAt(0) || |
| (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); |
| TEST_ASSERT(buf[1] == 0x5555); |
| if (us.length() == 1) { |
| TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); |
| } else { |
| TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); |
| } |
| } |
| |
| delete []buf; |
| } |
| |
| // |
| // ErrorTest() Check various error and edge cases. |
| // |
| void UTextTest::ErrorTest() |
| { |
| // Close of an unitialized UText. Shouldn't blow up. |
| { |
| UText ut; |
| memset(&ut, 0, sizeof(UText)); |
| utext_close(&ut); |
| utext_close(NULL); |
| } |
| |
| // Double-close of a UText. Shouldn't blow up. UText should still be usable. |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UText ut = UTEXT_INITIALIZER; |
| UnicodeString s("Hello, World"); |
| UText *ut2 = utext_openUnicodeString(&ut, &s, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(ut2 == &ut); |
| |
| UText *ut3 = utext_close(&ut); |
| TEST_ASSERT(ut3 == &ut); |
| |
| UText *ut4 = utext_close(&ut); |
| TEST_ASSERT(ut4 == &ut); |
| |
| utext_openUnicodeString(&ut, &s, &status); |
| TEST_SUCCESS(status); |
| utext_close(&ut); |
| } |
| |
| // Re-use of a UText, chaining through each of the types of UText |
| // (If it doesn't blow up, and doesn't leak, it's probably working fine) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UText ut = UTEXT_INITIALIZER; |
| UText *utp; |
| UnicodeString s1("Hello, World"); |
| UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; |
| const char *s3 = "\x66\x67\x68"; |
| |
| utp = utext_openUnicodeString(&ut, &s1, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(utp == &ut); |
| |
| utp = utext_openConstUnicodeString(&ut, &s1, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(utp == &ut); |
| |
| utp = utext_openUTF8(&ut, s3, -1, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(utp == &ut); |
| |
| utp = utext_openUChars(&ut, s2, -1, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(utp == &ut); |
| |
| utp = utext_close(&ut); |
| TEST_ASSERT(utp == &ut); |
| |
| utp = utext_openUnicodeString(&ut, &s1, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(utp == &ut); |
| } |
| |
| // Invalid parameters on open |
| // |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UText ut = UTEXT_INITIALIZER; |
| |
| utext_openUChars(&ut, NULL, 5, &status); |
| TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); |
| |
| status = U_ZERO_ERROR; |
| utext_openUChars(&ut, NULL, -1, &status); |
| TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); |
| |
| status = U_ZERO_ERROR; |
| utext_openUTF8(&ut, NULL, 4, &status); |
| TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); |
| |
| status = U_ZERO_ERROR; |
| utext_openUTF8(&ut, NULL, -1, &status); |
| TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); |
| } |
| |
| // |
| // UTF-8 with malformed sequences. |
| // These should come through as the Unicode replacement char, \ufffd |
| // |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = NULL; |
| const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; |
| UChar32 c; |
| |
| ut = utext_openUTF8(NULL, badUTF8, -1, &status); |
| TEST_SUCCESS(status); |
| c = utext_char32At(ut, 1); |
| TEST_ASSERT(c == 0xfffd); |
| c = utext_char32At(ut, 3); |
| TEST_ASSERT(c == 0xfffd); |
| c = utext_char32At(ut, 5); |
| TEST_ASSERT(c == 0xfffd); |
| c = utext_char32At(ut, 6); |
| TEST_ASSERT(c == 0x43); |
| |
| UChar buf[10]; |
| int n = utext_extract(ut, 0, 9, buf, 10, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(n==5); |
| TEST_ASSERT(buf[1] == 0xfffd); |
| TEST_ASSERT(buf[3] == 0xfffd); |
| TEST_ASSERT(buf[2] == 0x42); |
| utext_close(ut); |
| } |
| |
| |
| // |
| // isLengthExpensive - does it make the exptected transitions after |
| // getting the length of a nul terminated string? |
| // |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| UnicodeString sa("Hello, this is a string"); |
| UBool isExpensive; |
| |
| UChar sb[100]; |
| memset(sb, 0x20, sizeof(sb)); |
| sb[99] = 0; |
| |
| UText *uta = utext_openUnicodeString(NULL, &sa, &status); |
| TEST_SUCCESS(status); |
| isExpensive = utext_isLengthExpensive(uta); |
| TEST_ASSERT(isExpensive == FALSE); |
| utext_close(uta); |
| |
| UText *utb = utext_openUChars(NULL, sb, -1, &status); |
| TEST_SUCCESS(status); |
| isExpensive = utext_isLengthExpensive(utb); |
| TEST_ASSERT(isExpensive == TRUE); |
| int64_t len = utext_nativeLength(utb); |
| TEST_ASSERT(len == 99); |
| isExpensive = utext_isLengthExpensive(utb); |
| TEST_ASSERT(isExpensive == FALSE); |
| utext_close(utb); |
| } |
| |
| // |
| // Index to positions not on code point boundaries. |
| // |
| { |
| const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; |
| int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; |
| int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; |
| int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; |
| UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; |
| UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; |
| |
| // extractLen is the size, in UChars, of what will be extracted between index and index+1. |
| // is zero when both index positions lie within the same code point. |
| int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; |
| |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = utext_openUTF8(NULL, u8str, -1, &status); |
| TEST_SUCCESS(status); |
| |
| // Check setIndex |
| int32_t i; |
| int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); |
| for (i=0; i<startMapLimit; i++) { |
| utext_setNativeIndex(ut, i); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| cpIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| } |
| |
| // Check char32At |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_char32At(ut, i); |
| TEST_ASSERT(c32 == c32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| } |
| |
| // Check utext_next32From |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_next32From(ut, i); |
| TEST_ASSERT(c32 == c32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == nextMap[i]); |
| } |
| |
| // check utext_previous32From |
| for (i=0; i<startMapLimit; i++) { |
| gTestNum++; |
| UChar32 c32 = utext_previous32From(ut, i); |
| TEST_ASSERT(c32 == pr32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == prevMap[i]); |
| } |
| |
| // check Extract |
| // Extract from i to i+1, which may be zero or one code points, |
| // depending on whether the indices straddle a cp boundary. |
| for (i=0; i<startMapLimit; i++) { |
| UChar buf[3]; |
| status = U_ZERO_ERROR; |
| int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(extractedLen == exLen[i]); |
| if (extractedLen > 0) { |
| UChar32 c32; |
| /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
| U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); |
| TEST_ASSERT(c32 == c32Map[i]); |
| } |
| } |
| |
| utext_close(ut); |
| } |
| |
| |
| { // Similar test, with utf16 instead of utf8 |
| // TODO: merge the common parts of these tests. |
| |
| UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); |
| int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; |
| int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; |
| int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; |
| UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; |
| UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; |
| int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; |
| |
| u16str = u16str.unescape(); |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = utext_openUnicodeString(NULL, &u16str, &status); |
| TEST_SUCCESS(status); |
| |
| int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); |
| int i; |
| for (i=0; i<startMapLimit; i++) { |
| utext_setNativeIndex(ut, i); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| } |
| |
| // Check char32At |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_char32At(ut, i); |
| TEST_ASSERT(c32 == c32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| } |
| |
| // Check utext_next32From |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_next32From(ut, i); |
| TEST_ASSERT(c32 == c32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == nextMap[i]); |
| } |
| |
| // check utext_previous32From |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_previous32From(ut, i); |
| TEST_ASSERT(c32 == pr32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == prevMap[i]); |
| } |
| |
| // check Extract |
| // Extract from i to i+1, which may be zero or one code points, |
| // depending on whether the indices straddle a cp boundary. |
| for (i=0; i<startMapLimit; i++) { |
| UChar buf[3]; |
| status = U_ZERO_ERROR; |
| int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(extractedLen == exLen[i]); |
| if (extractedLen > 0) { |
| UChar32 c32; |
| /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
| U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); |
| TEST_ASSERT(c32 == c32Map[i]); |
| } |
| } |
| |
| utext_close(ut); |
| } |
| |
| { // Similar test, with UText over Replaceable |
| // TODO: merge the common parts of these tests. |
| |
| UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); |
| int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; |
| int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; |
| int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; |
| UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; |
| UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; |
| int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; |
| |
| u16str = u16str.unescape(); |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = utext_openReplaceable(NULL, &u16str, &status); |
| TEST_SUCCESS(status); |
| |
| int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); |
| int i; |
| for (i=0; i<startMapLimit; i++) { |
| utext_setNativeIndex(ut, i); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| } |
| |
| // Check char32At |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_char32At(ut, i); |
| TEST_ASSERT(c32 == c32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == startMap[i]); |
| } |
| |
| // Check utext_next32From |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_next32From(ut, i); |
| TEST_ASSERT(c32 == c32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == nextMap[i]); |
| } |
| |
| // check utext_previous32From |
| for (i=0; i<startMapLimit; i++) { |
| UChar32 c32 = utext_previous32From(ut, i); |
| TEST_ASSERT(c32 == pr32Map[i]); |
| int64_t cpIndex = utext_getNativeIndex(ut); |
| TEST_ASSERT(cpIndex == prevMap[i]); |
| } |
| |
| // check Extract |
| // Extract from i to i+1, which may be zero or one code points, |
| // depending on whether the indices straddle a cp boundary. |
| for (i=0; i<startMapLimit; i++) { |
| UChar buf[3]; |
| status = U_ZERO_ERROR; |
| int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); |
| TEST_SUCCESS(status); |
| TEST_ASSERT(extractedLen == exLen[i]); |
| if (extractedLen > 0) { |
| UChar32 c32; |
| /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
| U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); |
| TEST_ASSERT(c32 == c32Map[i]); |
| } |
| } |
| |
| utext_close(ut); |
| } |
| } |
| |
| |
| void UTextTest::FreezeTest() { |
| // Check isWritable() and freeze() behavior. |
| // |
| |
| UnicodeString ustr("Hello, World."); |
| const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; |
| const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = NULL; |
| UText *ut2 = NULL; |
| |
| ut = utext_openUTF8(ut, u8str, -1, &status); |
| TEST_SUCCESS(status); |
| UBool writable = utext_isWritable(ut); |
| TEST_ASSERT(writable == FALSE); |
| utext_copy(ut, 1, 2, 0, TRUE, &status); |
| TEST_ASSERT(status == U_NO_WRITE_PERMISSION); |
| |
| status = U_ZERO_ERROR; |
| ut = utext_openUChars(ut, u16str, -1, &status); |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut); |
| TEST_ASSERT(writable == FALSE); |
| utext_copy(ut, 1, 2, 0, TRUE, &status); |
| TEST_ASSERT(status == U_NO_WRITE_PERMISSION); |
| |
| status = U_ZERO_ERROR; |
| ut = utext_openUnicodeString(ut, &ustr, &status); |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut); |
| TEST_ASSERT(writable == TRUE); |
| utext_freeze(ut); |
| writable = utext_isWritable(ut); |
| TEST_ASSERT(writable == FALSE); |
| utext_copy(ut, 1, 2, 0, TRUE, &status); |
| TEST_ASSERT(status == U_NO_WRITE_PERMISSION); |
| |
| status = U_ZERO_ERROR; |
| ut = utext_openUnicodeString(ut, &ustr, &status); |
| TEST_SUCCESS(status); |
| ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut2); |
| TEST_ASSERT(writable == TRUE); |
| ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut2); |
| TEST_ASSERT(writable == FALSE); |
| utext_copy(ut2, 1, 2, 0, TRUE, &status); |
| TEST_ASSERT(status == U_NO_WRITE_PERMISSION); |
| |
| status = U_ZERO_ERROR; |
| ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut); |
| TEST_ASSERT(writable == FALSE); |
| utext_copy(ut, 1, 2, 0, TRUE, &status); |
| TEST_ASSERT(status == U_NO_WRITE_PERMISSION); |
| |
| // Deep Clone of a frozen UText should re-enable writing in the copy. |
| status = U_ZERO_ERROR; |
| ut = utext_openUnicodeString(ut, &ustr, &status); |
| TEST_SUCCESS(status); |
| utext_freeze(ut); |
| ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut2); |
| TEST_ASSERT(writable == TRUE); |
| |
| |
| // Deep clone of a frozen UText, where the base type is intrinsically non-writable, |
| // should NOT enable writing in the copy. |
| status = U_ZERO_ERROR; |
| ut = utext_openUChars(ut, u16str, -1, &status); |
| TEST_SUCCESS(status); |
| utext_freeze(ut); |
| ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone |
| TEST_SUCCESS(status); |
| writable = utext_isWritable(ut2); |
| TEST_ASSERT(writable == FALSE); |
| |
| // cleanup |
| utext_close(ut); |
| utext_close(ut2); |
| } |
| |
| |
| // |
| // Fragmented UText |
| // A UText type that works with a chunk size of 1. |
| // Intended to test for edge cases. |
| // Input comes from a UnicodeString. |
| // |
| // ut.b the character. Put into both halves. |
| // |
| |
| U_CDECL_BEGIN |
| static UBool U_CALLCONV |
| fragTextAccess(UText *ut, int64_t index, UBool forward) { |
| const UnicodeString *us = (const UnicodeString *)ut->context; |
| UChar c; |
| int32_t length = us->length(); |
| if (forward && index>=0 && index<length) { |
| c = us->charAt((int32_t)index); |
| ut->b = c | c<<16; |
| ut->chunkOffset = 0; |
| ut->chunkLength = 1; |
| ut->chunkNativeStart = index; |
| ut->chunkNativeLimit = index+1; |
| return true; |
| } |
| if (!forward && index>0 && index <=length) { |
| c = us->charAt((int32_t)index-1); |
| ut->b = c | c<<16; |
| ut->chunkOffset = 1; |
| ut->chunkLength = 1; |
| ut->chunkNativeStart = index-1; |
| ut->chunkNativeLimit = index; |
| return true; |
| } |
| ut->b = 0; |
| ut->chunkOffset = 0; |
| ut->chunkLength = 0; |
| if (index <= 0) { |
| ut->chunkNativeStart = 0; |
| ut->chunkNativeLimit = 0; |
| } else { |
| ut->chunkNativeStart = length; |
| ut->chunkNativeLimit = length; |
| } |
| return false; |
| } |
| |
| // Function table to be used with this fragmented text provider. |
| // Initialized in the open function. |
| static UTextFuncs fragmentFuncs; |
| |
| // Clone function for fragmented text provider. |
| // Didn't really want to provide this, but it's easier to provide it than to keep it |
| // out of the tests. |
| // |
| UText * |
| cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| if (deep) { |
| *status = U_UNSUPPORTED_ERROR; |
| return NULL; |
| } |
| dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); |
| utext_setNativeIndex(dest, utext_getNativeIndex(src)); |
| return dest; |
| } |
| |
| U_CDECL_END |
| |
| // Open function for the fragmented text provider. |
| UText * |
| openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
| ut = utext_openUnicodeString(ut, s, status); |
| if (U_FAILURE(*status)) { |
| return ut; |
| } |
| |
| // Copy of the function table from the stock UnicodeString UText, |
| // and replace the entry for the access function. |
| memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); |
| fragmentFuncs.access = fragTextAccess; |
| fragmentFuncs.clone = cloneFragmentedUnicodeString; |
| ut->pFuncs = &fragmentFuncs; |
| |
| ut->chunkContents = (UChar *)&ut->b; |
| ut->pFuncs->access(ut, 0, TRUE); |
| return ut; |
| } |
| |
| // Regression test for Ticket 5560 |
| // Clone fails to update chunkContentPointer in the cloned copy. |
| // This is only an issue for UText types that work in a local buffer, |
| // (UTF-8 wrapper, for example) |
| // |
| // The test: |
| // 1. Create an inital UText |
| // 2. Deep clone it. Contents should match original. |
| // 3. Reset original to something different. |
| // 4. Check that clone contents did not change. |
| // |
| void UTextTest::Ticket5560() { |
| /* The following two strings are in UTF-8 even on EBCDIC platforms. */ |
| static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ |
| static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ |
| UErrorCode status = U_ZERO_ERROR; |
| |
| UText ut1 = UTEXT_INITIALIZER; |
| UText ut2 = UTEXT_INITIALIZER; |
| |
| utext_openUTF8(&ut1, s1, -1, &status); |
| UChar c = utext_next32(&ut1); |
| TEST_ASSERT(c == 0x41); // c == 'A' |
| |
| utext_clone(&ut2, &ut1, TRUE, FALSE, &status); |
| TEST_SUCCESS(status); |
| c = utext_next32(&ut2); |
| TEST_ASSERT(c == 0x42); // c == 'B' |
| c = utext_next32(&ut1); |
| TEST_ASSERT(c == 0x42); // c == 'B' |
| |
| utext_openUTF8(&ut1, s2, -1, &status); |
| c = utext_next32(&ut1); |
| TEST_ASSERT(c == 0x31); // c == '1' |
| c = utext_next32(&ut2); |
| TEST_ASSERT(c == 0x43); // c == 'C' |
| |
| utext_close(&ut1); |
| utext_close(&ut2); |
| } |
| |
| |
| // Test for Ticket 6847 |
| // |
| void UTextTest::Ticket6847() { |
| const int STRLEN = 90; |
| UChar s[STRLEN+1]; |
| u_memset(s, 0x41, STRLEN); |
| s[STRLEN] = 0; |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UText *ut = utext_openUChars(NULL, s, -1, &status); |
| |
| utext_setNativeIndex(ut, 0); |
| int32_t count = 0; |
| UChar32 c = 0; |
| int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(nativeIndex == 0); |
| while ((c = utext_next32(ut)) != U_SENTINEL) { |
| TEST_ASSERT(c == 0x41); |
| TEST_ASSERT(count < STRLEN); |
| if (count >= STRLEN) { |
| break; |
| } |
| count++; |
| nativeIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(nativeIndex == count); |
| } |
| TEST_ASSERT(count == STRLEN); |
| nativeIndex = UTEXT_GETNATIVEINDEX(ut); |
| TEST_ASSERT(nativeIndex == STRLEN); |
| utext_close(ut); |
| } |
| |
| |
| void UTextTest::Ticket10562() { |
| // Note: failures show as a heap error when the test is run under valgrind. |
| UErrorCode status = U_ZERO_ERROR; |
| |
| const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; |
| UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); |
| TEST_SUCCESS(status); |
| UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); |
| TEST_SUCCESS(status); |
| UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); |
| TEST_SUCCESS(status); |
| utext_close(shallowClone); |
| utext_close(deepClone); |
| utext_close(utf8Text); |
| |
| status = U_ZERO_ERROR; |
| UnicodeString usString("Hello, World."); |
| UText *usText = utext_openUnicodeString(NULL, &usString, &status); |
| TEST_SUCCESS(status); |
| UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); |
| TEST_SUCCESS(status); |
| UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); |
| TEST_SUCCESS(status); |
| utext_close(usShallowClone); |
| utext_close(usDeepClone); |
| utext_close(usText); |
| } |
| |
| |
| void UTextTest::Ticket10983() { |
| // Note: failure shows as a seg fault when the defect is present. |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UnicodeString s("Hello, World"); |
| UText *ut = utext_openConstUnicodeString(NULL, &s, &status); |
| TEST_SUCCESS(status); |
| |
| status = U_INVALID_STATE_ERROR; |
| UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status); |
| TEST_ASSERT(cloned == NULL); |
| TEST_ASSERT(status == U_INVALID_STATE_ERROR); |
| |
| utext_close(ut); |
| } |
| |
| // Ticket 12130 - extract on a UText wrapping a null terminated UChar * string |
| // leaves the iteration position set incorrectly when the |
| // actual string length is not yet known. |
| // |
| // The test text needs to be long enough that UText defers getting the length. |
| |
| void UTextTest::Ticket12130() { |
| UErrorCode status = U_ZERO_ERROR; |
| |
| const char *text8 = |
| "Fundamentally, computers just deal with numbers. They store letters and other characters " |
| "by assigning a number for each one. Before Unicode was invented, there were hundreds " |
| "of different encoding systems for assigning these numbers. No single encoding could " |
| "contain enough characters: for example, the European Union alone requires several " |
| "different encodings to cover all its languages. Even for a single language like " |
| "English no single encoding was adequate for all the letters, punctuation, and technical " |
| "symbols in common use."; |
| |
| UnicodeString str(text8); |
| const UChar *ustr = str.getTerminatedBuffer(); |
| UText ut = UTEXT_INITIALIZER; |
| utext_openUChars(&ut, ustr, -1, &status); |
| UChar extractBuffer[50]; |
| |
| for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { |
| int32_t endIdx = startIdx + 20; |
| |
| u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); |
| utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); |
| if (U_FAILURE(status)) { |
| errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); |
| return; |
| } |
| int64_t ni = utext_getNativeIndex(&ut); |
| int64_t expectedni = startIdx + 20; |
| if (expectedni > str.length()) { |
| expectedni = str.length(); |
| } |
| if (expectedni != ni) { |
| errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); |
| } |
| if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { |
| errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", |
| __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); |
| } |
| } |
| utext_close(&ut); |
| |
| // Similar utext extract, this time with the string length provided to the UText in advance, |
| // and a buffer of larger than required capacity. |
| |
| utext_openUChars(&ut, ustr, str.length(), &status); |
| for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { |
| int32_t endIdx = startIdx + 20; |
| u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); |
| utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); |
| if (U_FAILURE(status)) { |
| errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); |
| return; |
| } |
| int64_t ni = utext_getNativeIndex(&ut); |
| int64_t expectedni = startIdx + 20; |
| if (expectedni > str.length()) { |
| expectedni = str.length(); |
| } |
| if (expectedni != ni) { |
| errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); |
| } |
| if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { |
| errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", |
| __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); |
| } |
| } |
| utext_close(&ut); |
| } |