blob: a0ce25b48faaa5ba7eb2efe01511278dca5e757e [file] [log] [blame]
//===--- FileDistance.cpp - File contents container -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The FileDistance structure allows calculating the minimum distance to paths
// in a single tree.
// We simply walk up the path's ancestors until we find a node whose cost is
// known, and add the cost of walking back down. Initialization ensures this
// gives the correct path to the roots.
// We cache the results, so that the runtime is O(|A|), where A is the set of
// all distinct ancestors of visited paths.
//
// Example after initialization with /=2, /bar=0, DownCost = 1:
// / = 2
// /bar = 0
//
// After querying /foo/bar and /bar/foo:
// / = 2
// /bar = 0
// /bar/foo = 1
// /foo = 3
// /foo/bar = 4
//
// URIDistance creates FileDistance lazily for each URI scheme encountered. In
// practice this is a small constant factor.
//
//===-------------------------------------------------------------------------//
#include "FileDistance.h"
#include "Logger.h"
#include "llvm/ADT/STLExtras.h"
#include <queue>
namespace clang {
namespace clangd {
using namespace llvm;
// Convert a path into the canonical form.
// Canonical form is either "/", or "/segment" * N:
// C:\foo\bar --> /c:/foo/bar
// /foo/ --> /foo
// a/b/c --> /a/b/c
static SmallString<128> canonicalize(StringRef Path) {
SmallString<128> Result = Path.rtrim('/');
native(Result, sys::path::Style::posix);
if (Result.empty() || Result.front() != '/')
Result.insert(Result.begin(), '/');
return Result;
}
constexpr const unsigned FileDistance::kUnreachable;
FileDistance::FileDistance(StringMap<SourceParams> Sources,
const FileDistanceOptions &Opts)
: Opts(Opts) {
llvm::DenseMap<hash_code, SmallVector<hash_code, 4>> DownEdges;
// Compute the best distance following only up edges.
// Keep track of down edges, in case we can use them to improve on this.
for (const auto &S : Sources) {
auto Canonical = canonicalize(S.getKey());
dlog("Source {0} = {1}, MaxUp = {2}", Canonical, S.second.Cost,
S.second.MaxUpTraversals);
// Walk up to ancestors of this source, assigning cost.
StringRef Rest = Canonical;
llvm::hash_code Hash = hash_value(Rest);
for (unsigned I = 0; !Rest.empty(); ++I) {
Rest = parent_path(Rest, sys::path::Style::posix);
auto NextHash = hash_value(Rest);
auto &Down = DownEdges[NextHash];
if (std::find(Down.begin(), Down.end(), Hash) == Down.end())
DownEdges[NextHash].push_back(Hash);
// We can't just break after MaxUpTraversals, must still set DownEdges.
if (I > S.getValue().MaxUpTraversals) {
if (Cache.find(Hash) != Cache.end())
break;
} else {
unsigned Cost = S.getValue().Cost + I * Opts.UpCost;
auto R = Cache.try_emplace(Hash, Cost);
if (!R.second) {
if (Cost < R.first->second) {
R.first->second = Cost;
} else {
// If we're not the best way to get to this path, stop assigning.
break;
}
}
}
Hash = NextHash;
}
}
// Now propagate scores parent -> child if that's an improvement.
// BFS ensures we propagate down chains (must visit parents before children).
std::queue<hash_code> Next;
for (auto Child : DownEdges.lookup(hash_value(llvm::StringRef(""))))
Next.push(Child);
while (!Next.empty()) {
auto ParentCost = Cache.lookup(Next.front());
for (auto Child : DownEdges.lookup(Next.front())) {
auto &ChildCost =
Cache.try_emplace(Child, kUnreachable).first->getSecond();
if (ParentCost + Opts.DownCost < ChildCost)
ChildCost = ParentCost + Opts.DownCost;
Next.push(Child);
}
Next.pop();
}
}
unsigned FileDistance::distance(StringRef Path) {
auto Canonical = canonicalize(Path);
unsigned Cost = kUnreachable;
SmallVector<hash_code, 16> Ancestors;
// Walk up ancestors until we find a path we know the distance for.
for (StringRef Rest = Canonical; !Rest.empty();
Rest = parent_path(Rest, sys::path::Style::posix)) {
auto Hash = hash_value(Rest);
auto It = Cache.find(Hash);
if (It != Cache.end()) {
Cost = It->second;
break;
}
Ancestors.push_back(Hash);
}
// Now we know the costs for (known node, queried node].
// Fill these in, walking down the directory tree.
for (hash_code Hash : reverse(Ancestors)) {
if (Cost != kUnreachable)
Cost += Opts.DownCost;
Cache.try_emplace(Hash, Cost);
}
dlog("distance({0} = {1})", Path, Cost);
return Cost;
}
unsigned URIDistance::distance(llvm::StringRef URI) {
auto R = Cache.try_emplace(llvm::hash_value(URI), FileDistance::kUnreachable);
if (!R.second)
return R.first->getSecond();
if (auto U = clangd::URI::parse(URI)) {
dlog("distance({0} = {1})", URI, U->body());
R.first->second = forScheme(U->scheme()).distance(U->body());
} else {
log("URIDistance::distance() of unparseable {0}: {1}", URI, U.takeError());
}
return R.first->second;
}
FileDistance &URIDistance::forScheme(llvm::StringRef Scheme) {
auto &Delegate = ByScheme[Scheme];
if (!Delegate) {
llvm::StringMap<SourceParams> SchemeSources;
for (const auto &Source : Sources) {
if (auto U = clangd::URI::create(Source.getKey(), Scheme))
SchemeSources.try_emplace(U->body(), Source.getValue());
else
consumeError(U.takeError());
}
dlog("FileDistance for scheme {0}: {1}/{2} sources", Scheme,
SchemeSources.size(), Sources.size());
Delegate.reset(new FileDistance(std::move(SchemeSources), Opts));
}
return *Delegate;
}
} // namespace clangd
} // namespace clang