| // Copyright 2018 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "include/v8.h" |
| |
| #include "src/api/api-inl.h" |
| #include "src/builtins/builtins.h" |
| #include "src/execution/isolate.h" |
| #include "src/heap/spaces.h" |
| #include "src/objects/code-inl.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace test_unwinder { |
| |
| static void* unlimited_stack_base = std::numeric_limits<void*>::max(); |
| |
| TEST(Unwind_BadState_Fail) { |
| UnwindState unwind_state; // Fields are intialized to nullptr. |
| RegisterState register_state; |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| unlimited_stack_base); |
| CHECK(!unwound); |
| // The register state should not change when unwinding fails. |
| CHECK_NULL(register_state.fp); |
| CHECK_NULL(register_state.sp); |
| CHECK_NULL(register_state.pc); |
| } |
| |
| TEST(Unwind_BuiltinPCInMiddle_Success) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| uintptr_t stack[3]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = reinterpret_cast<uintptr_t>(stack + 2); // saved FP (rbp). |
| stack[1] = 202; // Return address into C++ code. |
| stack[2] = 303; // The SP points here in the caller's frame. |
| |
| register_state.sp = stack; |
| register_state.fp = stack; |
| |
| // Put the current PC inside of a valid builtin. |
| Code builtin = i_isolate->builtins()->builtin(Builtins::kStringEqual); |
| const uintptr_t offset = 40; |
| CHECK_LT(offset, builtin.InstructionSize()); |
| register_state.pc = |
| reinterpret_cast<void*>(builtin.InstructionStart() + offset); |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| CHECK(unwound); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.sp); |
| CHECK_EQ(reinterpret_cast<void*>(202), register_state.pc); |
| } |
| |
| // The unwinder should be able to unwind even if we haven't properly set up the |
| // current frame, as long as there is another JS frame underneath us (i.e. as |
| // long as the PC isn't in JSEntry). This test puts the PC at the start |
| // of a JS builtin and creates a fake JSEntry frame before it on the stack. The |
| // unwinder should be able to unwind to the C++ frame before the JSEntry frame. |
| TEST(Unwind_BuiltinPCAtStart_Success) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| const size_t code_length = 40; |
| uintptr_t code[code_length] = {0}; |
| unwind_state.code_range.start = code; |
| unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t); |
| |
| uintptr_t stack[6]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = 101; |
| // Return address into JS code. It doesn't matter that this is not actually in |
| // JSEntry, because we only check that for the top frame. |
| stack[1] = reinterpret_cast<uintptr_t>(code + 10); |
| stack[2] = reinterpret_cast<uintptr_t>(stack + 5); // saved FP (rbp). |
| stack[3] = 303; // Return address into C++ code. |
| stack[4] = 404; |
| stack[5] = 505; |
| |
| register_state.sp = stack; |
| register_state.fp = stack + 2; // FP to the JSEntry frame. |
| |
| // Put the current PC at the start of a valid builtin, so that we are setting |
| // up the frame. |
| Code builtin = i_isolate->builtins()->builtin(Builtins::kStringEqual); |
| register_state.pc = reinterpret_cast<void*>(builtin.InstructionStart()); |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| |
| CHECK(unwound); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 5), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 4), register_state.sp); |
| CHECK_EQ(reinterpret_cast<void*>(303), register_state.pc); |
| } |
| |
| const char* foo_source = R"( |
| function foo(a, b) { |
| let x = a * b; |
| let y = x ^ b; |
| let z = y / a; |
| return x + y - z; |
| }; |
| %PrepareFunctionForOptimization(foo); |
| foo(1, 2); |
| foo(1, 2); |
| %OptimizeFunctionOnNextCall(foo); |
| foo(1, 2); |
| )"; |
| |
| // Check that we can unwind when the pc is within an optimized code object on |
| // the V8 heap. |
| TEST(Unwind_CodeObjectPCInMiddle_Success) { |
| FLAG_allow_natives_syntax = true; |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| HandleScope scope(i_isolate); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| uintptr_t stack[3]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = reinterpret_cast<uintptr_t>(stack + 2); // saved FP (rbp). |
| stack[1] = 202; // Return address into C++ code. |
| stack[2] = 303; // The SP points here in the caller's frame. |
| |
| register_state.sp = stack; |
| register_state.fp = stack; |
| |
| // Create an on-heap code object. Make sure we run the function so that it is |
| // compiled and not just marked for lazy compilation. |
| CompileRun(foo_source); |
| v8::Local<v8::Function> local_foo = v8::Local<v8::Function>::Cast( |
| env.local()->Global()->Get(env.local(), v8_str("foo")).ToLocalChecked()); |
| Handle<JSFunction> foo = |
| Handle<JSFunction>::cast(v8::Utils::OpenHandle(*local_foo)); |
| |
| // Put the current PC inside of the created code object. |
| AbstractCode abstract_code = foo->abstract_code(); |
| // We don't produce optimized code when run with --no-opt. |
| if (!abstract_code.IsCode() && FLAG_opt == false) return; |
| CHECK(abstract_code.IsCode()); |
| |
| Code code = abstract_code.GetCode(); |
| // We don't want the offset too early or it could be the `push rbp` |
| // instruction (which is not at the start of generated code, because the lazy |
| // deopt check happens before frame setup). |
| const uintptr_t offset = code.InstructionSize() - 20; |
| CHECK_LT(offset, code.InstructionSize()); |
| Address pc = code.InstructionStart() + offset; |
| register_state.pc = reinterpret_cast<void*>(pc); |
| |
| // Check that the created code is within the code range that we get from the |
| // API. |
| Address start = reinterpret_cast<Address>(unwind_state.code_range.start); |
| CHECK(pc >= start && pc < start + unwind_state.code_range.length_in_bytes); |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| CHECK(unwound); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.sp); |
| CHECK_EQ(reinterpret_cast<void*>(202), register_state.pc); |
| } |
| |
| // If the PC is within JSEntry but we haven't set up the frame yet, then we |
| // cannot unwind. |
| TEST(Unwind_JSEntryBeforeFrame_Fail) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| const size_t code_length = 40; |
| uintptr_t code[code_length] = {0}; |
| unwind_state.code_range.start = code; |
| unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t); |
| |
| // Pretend that it takes 5 instructions to set up the frame in JSEntry. |
| unwind_state.js_entry_stub.code.start = code + 10; |
| unwind_state.js_entry_stub.code.length_in_bytes = 10 * sizeof(uintptr_t); |
| |
| uintptr_t stack[10]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = 101; |
| stack[1] = 111; |
| stack[2] = 121; |
| stack[3] = 131; |
| stack[4] = 141; |
| stack[5] = 151; |
| stack[6] = 100; // Return address into C++ code. |
| stack[7] = 303; // The SP points here in the caller's frame. |
| stack[8] = 404; |
| stack[9] = 505; |
| |
| register_state.sp = stack + 5; |
| register_state.fp = stack + 9; |
| |
| // Put the current PC inside of JSEntry, before the frame is set up. |
| register_state.pc = code + 12; |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| CHECK(!unwound); |
| // The register state should not change when unwinding fails. |
| CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 5), register_state.sp); |
| CHECK_EQ(code + 12, register_state.pc); |
| |
| // Change the PC to a few instructions later, after the frame is set up. |
| register_state.pc = code + 16; |
| unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| // TODO(petermarshall): More precisely check position within JSEntry rather |
| // than just assuming the frame is unreadable. |
| CHECK(!unwound); |
| // The register state should not change when unwinding fails. |
| CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 5), register_state.sp); |
| CHECK_EQ(code + 16, register_state.pc); |
| } |
| |
| TEST(Unwind_OneJSFrame_Success) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| // Use a fake code range so that we can initialize it to 0s. |
| const size_t code_length = 40; |
| uintptr_t code[code_length] = {0}; |
| unwind_state.code_range.start = code; |
| unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t); |
| |
| // Our fake stack has two frames - one C++ frame and one JS frame (on top). |
| // The stack grows from high addresses to low addresses. |
| uintptr_t stack[10]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = 101; |
| stack[1] = 111; |
| stack[2] = 121; |
| stack[3] = 131; |
| stack[4] = 141; |
| stack[5] = reinterpret_cast<uintptr_t>(stack + 9); // saved FP (rbp). |
| stack[6] = 100; // Return address into C++ code. |
| stack[7] = 303; // The SP points here in the caller's frame. |
| stack[8] = 404; |
| stack[9] = 505; |
| |
| register_state.sp = stack; |
| register_state.fp = stack + 5; |
| |
| // Put the current PC inside of the code range so it looks valid. |
| register_state.pc = code + 30; |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| |
| CHECK(unwound); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 7), register_state.sp); |
| CHECK_EQ(reinterpret_cast<void*>(100), register_state.pc); |
| } |
| |
| // Creates a fake stack with two JS frames on top of a C++ frame and checks that |
| // the unwinder correctly unwinds past the JS frames and returns the C++ frame's |
| // details. |
| TEST(Unwind_TwoJSFrames_Success) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| // Use a fake code range so that we can initialize it to 0s. |
| const size_t code_length = 40; |
| uintptr_t code[code_length] = {0}; |
| unwind_state.code_range.start = code; |
| unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t); |
| |
| // Our fake stack has three frames - one C++ frame and two JS frames (on top). |
| // The stack grows from high addresses to low addresses. |
| uintptr_t stack[10]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = 101; |
| stack[1] = 111; |
| stack[2] = reinterpret_cast<uintptr_t>(stack + 5); // saved FP (rbp). |
| // The fake return address is in the JS code range. |
| stack[3] = reinterpret_cast<uintptr_t>(code + 10); |
| stack[4] = 141; |
| stack[5] = reinterpret_cast<uintptr_t>(stack + 9); // saved FP (rbp). |
| stack[6] = 100; // Return address into C++ code. |
| stack[7] = 303; // The SP points here in the caller's frame. |
| stack[8] = 404; |
| stack[9] = 505; |
| |
| register_state.sp = stack; |
| register_state.fp = stack + 2; |
| |
| // Put the current PC inside of the code range so it looks valid. |
| register_state.pc = code + 30; |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| |
| CHECK(unwound); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp); |
| CHECK_EQ(reinterpret_cast<void*>(stack + 7), register_state.sp); |
| CHECK_EQ(reinterpret_cast<void*>(100), register_state.pc); |
| } |
| |
| // If the PC is in JSEntry then the frame might not be set up correctly, meaning |
| // we can't unwind the stack properly. |
| TEST(Unwind_JSEntry_Fail) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| Code js_entry = i_isolate->heap()->builtin(Builtins::kJSEntry); |
| byte* start = reinterpret_cast<byte*>(js_entry.InstructionStart()); |
| register_state.pc = start + 10; |
| |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| unlimited_stack_base); |
| CHECK(!unwound); |
| // The register state should not change when unwinding fails. |
| CHECK_NULL(register_state.fp); |
| CHECK_NULL(register_state.sp); |
| CHECK_EQ(start + 10, register_state.pc); |
| } |
| |
| TEST(Unwind_StackBounds_Basic) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| const size_t code_length = 10; |
| uintptr_t code[code_length] = {0}; |
| unwind_state.code_range.start = code; |
| unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t); |
| |
| uintptr_t stack[3]; |
| stack[0] = reinterpret_cast<uintptr_t>(stack + 2); // saved FP (rbp). |
| stack[1] = 202; // Return address into C++ code. |
| stack[2] = 303; // The SP points here in the caller's frame. |
| |
| register_state.sp = stack; |
| register_state.fp = stack; |
| register_state.pc = code; |
| |
| void* wrong_stack_base = reinterpret_cast<void*>( |
| reinterpret_cast<uintptr_t>(stack) - sizeof(uintptr_t)); |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| wrong_stack_base); |
| CHECK(!unwound); |
| |
| // Correct the stack base and unwinding should succeed. |
| void* correct_stack_base = stack + arraysize(stack); |
| unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| correct_stack_base); |
| CHECK(unwound); |
| } |
| |
| TEST(Unwind_StackBounds_WithUnwinding) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| RegisterState register_state; |
| |
| // Use a fake code range so that we can initialize it to 0s. |
| const size_t code_length = 40; |
| uintptr_t code[code_length] = {0}; |
| unwind_state.code_range.start = code; |
| unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t); |
| |
| // Our fake stack has two frames - one C++ frame and one JS frame (on top). |
| // The stack grows from high addresses to low addresses. |
| uintptr_t stack[11]; |
| void* stack_base = stack + arraysize(stack); |
| stack[0] = 101; |
| stack[1] = 111; |
| stack[2] = 121; |
| stack[3] = 131; |
| stack[4] = 141; |
| stack[5] = reinterpret_cast<uintptr_t>(stack + 9); // saved FP (rbp). |
| stack[6] = reinterpret_cast<uintptr_t>(code + 20); // JS code. |
| stack[7] = 303; // The SP points here in the caller's frame. |
| stack[8] = 404; |
| stack[9] = reinterpret_cast<uintptr_t>(stack) + |
| (12 * sizeof(uintptr_t)); // saved FP (OOB). |
| stack[10] = reinterpret_cast<uintptr_t>(code + 20); // JS code. |
| |
| register_state.sp = stack; |
| register_state.fp = stack + 5; |
| |
| // Put the current PC inside of the code range so it looks valid. |
| register_state.pc = code + 30; |
| |
| // Unwind will fail because stack[9] FP points outside of the stack. |
| bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| CHECK(!unwound); |
| |
| // Change the return address so that it is not in range. We will not range |
| // check the stack[9] FP value because we have finished unwinding and the |
| // contents of rbp does not necessarily have to be the FP in this case. |
| stack[10] = 202; |
| unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, ®ister_state, |
| stack_base); |
| CHECK(unwound); |
| } |
| |
| TEST(PCIsInV8_BadState_Fail) { |
| UnwindState unwind_state; |
| void* pc = nullptr; |
| |
| CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| } |
| |
| TEST(PCIsInV8_ValidStateNullPC_Fail) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| void* pc = nullptr; |
| |
| CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| } |
| |
| void TestRangeBoundaries(const UnwindState& unwind_state, byte* range_start, |
| size_t range_length) { |
| void* pc = range_start - 1; |
| CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = range_start; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = range_start + 1; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = range_start + range_length - 1; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = range_start + range_length; |
| CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = range_start + range_length + 1; |
| CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| } |
| |
| TEST(PCIsInV8_InCodeOrEmbeddedRange) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| |
| byte* code_range_start = const_cast<byte*>( |
| reinterpret_cast<const byte*>(unwind_state.code_range.start)); |
| size_t code_range_length = unwind_state.code_range.length_in_bytes; |
| TestRangeBoundaries(unwind_state, code_range_start, code_range_length); |
| |
| byte* embedded_range_start = const_cast<byte*>( |
| reinterpret_cast<const byte*>(unwind_state.embedded_code_range.start)); |
| size_t embedded_range_length = |
| unwind_state.embedded_code_range.length_in_bytes; |
| TestRangeBoundaries(unwind_state, embedded_range_start, |
| embedded_range_length); |
| } |
| |
| // PCIsInV8 doesn't check if the PC is in JSEntry directly. It's assumed that |
| // the CodeRange or EmbeddedCodeRange contain JSEntry. |
| TEST(PCIsInV8_InJSEntryRange) { |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| |
| Code js_entry = i_isolate->heap()->builtin(Builtins::kJSEntry); |
| byte* start = reinterpret_cast<byte*>(js_entry.InstructionStart()); |
| size_t length = js_entry.InstructionSize(); |
| |
| void* pc = start; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = start + 1; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| pc = start + length - 1; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| } |
| |
| // Large code objects can be allocated in large object space. Check that this is |
| // inside the CodeRange. |
| TEST(PCIsInV8_LargeCodeObject) { |
| FLAG_allow_natives_syntax = true; |
| LocalContext env; |
| v8::Isolate* isolate = env->GetIsolate(); |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| HandleScope scope(i_isolate); |
| |
| UnwindState unwind_state = isolate->GetUnwindState(); |
| |
| // Create a big function that ends up in CODE_LO_SPACE. |
| const int instruction_size = Page::kPageSize + 1; |
| STATIC_ASSERT(instruction_size > kMaxRegularHeapObjectSize); |
| std::unique_ptr<byte[]> instructions(new byte[instruction_size]); |
| |
| CodeDesc desc; |
| desc.buffer = instructions.get(); |
| desc.buffer_size = instruction_size; |
| desc.instr_size = instruction_size; |
| desc.reloc_size = 0; |
| desc.constant_pool_size = 0; |
| desc.unwinding_info = nullptr; |
| desc.unwinding_info_size = 0; |
| desc.origin = nullptr; |
| Handle<Code> foo_code = |
| Factory::CodeBuilder(i_isolate, desc, Code::WASM_FUNCTION).Build(); |
| |
| CHECK(i_isolate->heap()->InSpace(*foo_code, CODE_LO_SPACE)); |
| byte* start = reinterpret_cast<byte*>(foo_code->InstructionStart()); |
| |
| void* pc = start; |
| CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc)); |
| } |
| |
| } // namespace test_unwinder |
| } // namespace internal |
| } // namespace v8 |