| // Copyright 2016 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <limits> |
| |
| #include "src/base/ieee754.h" |
| #include "src/base/macros.h" |
| #include "src/base/overflowing-math.h" |
| #include "testing/gmock-support.h" |
| #include "testing/gtest-support.h" |
| |
| using testing::BitEq; |
| using testing::IsNaN; |
| |
| namespace v8 { |
| namespace base { |
| namespace ieee754 { |
| |
| namespace { |
| |
| double const kE = 2.718281828459045; |
| double const kPI = 3.141592653589793; |
| double const kTwo120 = 1.329227995784916e+36; |
| double const kInfinity = std::numeric_limits<double>::infinity(); |
| double const kQNaN = std::numeric_limits<double>::quiet_NaN(); |
| double const kSNaN = std::numeric_limits<double>::signaling_NaN(); |
| |
| } // namespace |
| |
| TEST(Ieee754, Acos) { |
| EXPECT_THAT(acos(kInfinity), IsNaN()); |
| EXPECT_THAT(acos(-kInfinity), IsNaN()); |
| EXPECT_THAT(acos(kQNaN), IsNaN()); |
| EXPECT_THAT(acos(kSNaN), IsNaN()); |
| |
| EXPECT_EQ(0.0, acos(1.0)); |
| } |
| |
| TEST(Ieee754, Acosh) { |
| // Tests for acosh for exceptional values |
| EXPECT_EQ(kInfinity, acosh(kInfinity)); |
| EXPECT_THAT(acosh(-kInfinity), IsNaN()); |
| EXPECT_THAT(acosh(kQNaN), IsNaN()); |
| EXPECT_THAT(acosh(kSNaN), IsNaN()); |
| EXPECT_THAT(acosh(0.9), IsNaN()); |
| |
| // Test basic acosh functionality |
| EXPECT_EQ(0.0, acosh(1.0)); |
| // acosh(1.5) = log((sqrt(5)+3)/2), case 1 < x < 2 |
| EXPECT_EQ(0.9624236501192069e0, acosh(1.5)); |
| // acosh(4) = log(sqrt(15)+4), case 2 < x < 2^28 |
| EXPECT_EQ(2.0634370688955608e0, acosh(4.0)); |
| // acosh(2^50), case 2^28 < x |
| EXPECT_EQ(35.35050620855721e0, acosh(1125899906842624.0)); |
| // acosh(most-positive-float), no overflow |
| EXPECT_EQ(710.4758600739439e0, acosh(1.7976931348623157e308)); |
| } |
| |
| TEST(Ieee754, Asin) { |
| EXPECT_THAT(asin(kInfinity), IsNaN()); |
| EXPECT_THAT(asin(-kInfinity), IsNaN()); |
| EXPECT_THAT(asin(kQNaN), IsNaN()); |
| EXPECT_THAT(asin(kSNaN), IsNaN()); |
| |
| EXPECT_THAT(asin(0.0), BitEq(0.0)); |
| EXPECT_THAT(asin(-0.0), BitEq(-0.0)); |
| } |
| |
| TEST(Ieee754, Asinh) { |
| // Tests for asinh for exceptional values |
| EXPECT_EQ(kInfinity, asinh(kInfinity)); |
| EXPECT_EQ(-kInfinity, asinh(-kInfinity)); |
| EXPECT_THAT(asin(kQNaN), IsNaN()); |
| EXPECT_THAT(asin(kSNaN), IsNaN()); |
| |
| // Test basic asinh functionality |
| EXPECT_THAT(asinh(0.0), BitEq(0.0)); |
| EXPECT_THAT(asinh(-0.0), BitEq(-0.0)); |
| // asinh(2^-29) = 2^-29, case |x| < 2^-28, where acosh(x) = x |
| EXPECT_EQ(1.862645149230957e-9, asinh(1.862645149230957e-9)); |
| // asinh(-2^-29) = -2^-29, case |x| < 2^-28, where acosh(x) = x |
| EXPECT_EQ(-1.862645149230957e-9, asinh(-1.862645149230957e-9)); |
| // asinh(2^-28), case 2 > |x| >= 2^-28 |
| EXPECT_EQ(3.725290298461914e-9, asinh(3.725290298461914e-9)); |
| // asinh(-2^-28), case 2 > |x| >= 2^-28 |
| EXPECT_EQ(-3.725290298461914e-9, asinh(-3.725290298461914e-9)); |
| // asinh(1), case 2 > |x| > 2^-28 |
| EXPECT_EQ(0.881373587019543e0, asinh(1.0)); |
| // asinh(-1), case 2 > |x| > 2^-28 |
| EXPECT_EQ(-0.881373587019543e0, asinh(-1.0)); |
| // asinh(5), case 2^28 > |x| > 2 |
| EXPECT_EQ(2.3124383412727525e0, asinh(5.0)); |
| // asinh(-5), case 2^28 > |x| > 2 |
| EXPECT_EQ(-2.3124383412727525e0, asinh(-5.0)); |
| // asinh(2^28), case 2^28 > |x| |
| EXPECT_EQ(20.101268236238415e0, asinh(268435456.0)); |
| // asinh(-2^28), case 2^28 > |x| |
| EXPECT_EQ(-20.101268236238415e0, asinh(-268435456.0)); |
| // asinh(<most-positive-float>), no overflow |
| EXPECT_EQ(710.4758600739439e0, asinh(1.7976931348623157e308)); |
| // asinh(-<most-positive-float>), no overflow |
| EXPECT_EQ(-710.4758600739439e0, asinh(-1.7976931348623157e308)); |
| } |
| |
| TEST(Ieee754, Atan) { |
| EXPECT_THAT(atan(kQNaN), IsNaN()); |
| EXPECT_THAT(atan(kSNaN), IsNaN()); |
| EXPECT_THAT(atan(-0.0), BitEq(-0.0)); |
| EXPECT_THAT(atan(0.0), BitEq(0.0)); |
| EXPECT_DOUBLE_EQ(1.5707963267948966, atan(kInfinity)); |
| EXPECT_DOUBLE_EQ(-1.5707963267948966, atan(-kInfinity)); |
| } |
| |
| TEST(Ieee754, Atan2) { |
| EXPECT_THAT(atan2(kQNaN, kQNaN), IsNaN()); |
| EXPECT_THAT(atan2(kQNaN, kSNaN), IsNaN()); |
| EXPECT_THAT(atan2(kSNaN, kQNaN), IsNaN()); |
| EXPECT_THAT(atan2(kSNaN, kSNaN), IsNaN()); |
| EXPECT_DOUBLE_EQ(0.7853981633974483, atan2(kInfinity, kInfinity)); |
| EXPECT_DOUBLE_EQ(2.356194490192345, atan2(kInfinity, -kInfinity)); |
| EXPECT_DOUBLE_EQ(-0.7853981633974483, atan2(-kInfinity, kInfinity)); |
| EXPECT_DOUBLE_EQ(-2.356194490192345, atan2(-kInfinity, -kInfinity)); |
| } |
| |
| TEST(Ieee754, Atanh) { |
| EXPECT_THAT(atanh(kQNaN), IsNaN()); |
| EXPECT_THAT(atanh(kSNaN), IsNaN()); |
| EXPECT_THAT(atanh(kInfinity), IsNaN()); |
| EXPECT_EQ(kInfinity, atanh(1)); |
| EXPECT_EQ(-kInfinity, atanh(-1)); |
| EXPECT_DOUBLE_EQ(0.54930614433405478, atanh(0.5)); |
| } |
| |
| TEST(Ieee754, Cos) { |
| // Test values mentioned in the EcmaScript spec. |
| EXPECT_THAT(cos(kQNaN), IsNaN()); |
| EXPECT_THAT(cos(kSNaN), IsNaN()); |
| EXPECT_THAT(cos(kInfinity), IsNaN()); |
| EXPECT_THAT(cos(-kInfinity), IsNaN()); |
| |
| // Tests for cos for |x| < pi/4 |
| EXPECT_EQ(1.0, 1 / cos(-0.0)); |
| EXPECT_EQ(1.0, 1 / cos(0.0)); |
| // cos(x) = 1 for |x| < 2^-27 |
| EXPECT_EQ(1, cos(2.3283064365386963e-10)); |
| EXPECT_EQ(1, cos(-2.3283064365386963e-10)); |
| // Test KERNELCOS for |x| < 0.3. |
| // cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2) |
| EXPECT_EQ(0.9876883405951378, cos(0.15707963267948966)); |
| // Test KERNELCOS for x ~= 0.78125 |
| EXPECT_EQ(0.7100335477927638, cos(0.7812504768371582)); |
| EXPECT_EQ(0.7100338835660797, cos(0.78125)); |
| // Test KERNELCOS for |x| > 0.3. |
| // cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4) |
| EXPECT_EQ(0.9238795325112867, cos(0.39269908169872414)); |
| // Test KERNELTAN for |x| < 0.67434. |
| EXPECT_EQ(0.9238795325112867, cos(-0.39269908169872414)); |
| |
| // Tests for cos. |
| EXPECT_EQ(1, cos(3.725290298461914e-9)); |
| // Cover different code paths in KERNELCOS. |
| EXPECT_EQ(0.9689124217106447, cos(0.25)); |
| EXPECT_EQ(0.8775825618903728, cos(0.5)); |
| EXPECT_EQ(0.7073882691671998, cos(0.785)); |
| // Test that cos(Math.PI/2) != 0 since Math.PI is not exact. |
| EXPECT_EQ(6.123233995736766e-17, cos(1.5707963267948966)); |
| // Test cos for various phases. |
| EXPECT_EQ(0.7071067811865474, cos(7.0 / 4 * kPI)); |
| EXPECT_EQ(0.7071067811865477, cos(9.0 / 4 * kPI)); |
| EXPECT_EQ(-0.7071067811865467, cos(11.0 / 4 * kPI)); |
| EXPECT_EQ(-0.7071067811865471, cos(13.0 / 4 * kPI)); |
| EXPECT_EQ(0.9367521275331447, cos(1000000.0)); |
| EXPECT_EQ(-3.435757038074824e-12, cos(1048575.0 / 2 * kPI)); |
| |
| // Test Hayne-Panek reduction. |
| EXPECT_EQ(-0.9258790228548379e0, cos(kTwo120)); |
| EXPECT_EQ(-0.9258790228548379e0, cos(-kTwo120)); |
| } |
| |
| TEST(Ieee754, Cosh) { |
| // Test values mentioned in the EcmaScript spec. |
| EXPECT_THAT(cosh(kQNaN), IsNaN()); |
| EXPECT_THAT(cosh(kSNaN), IsNaN()); |
| EXPECT_THAT(cosh(kInfinity), kInfinity); |
| EXPECT_THAT(cosh(-kInfinity), kInfinity); |
| EXPECT_EQ(1, cosh(0.0)); |
| EXPECT_EQ(1, cosh(-0.0)); |
| } |
| |
| TEST(Ieee754, Exp) { |
| EXPECT_THAT(exp(kQNaN), IsNaN()); |
| EXPECT_THAT(exp(kSNaN), IsNaN()); |
| EXPECT_EQ(0.0, exp(-kInfinity)); |
| EXPECT_EQ(0.0, exp(-1000)); |
| EXPECT_EQ(0.0, exp(-745.1332191019412)); |
| EXPECT_EQ(2.2250738585072626e-308, exp(-708.39641853226408)); |
| EXPECT_EQ(3.307553003638408e-308, exp(-708.0)); |
| EXPECT_EQ(4.9406564584124654e-324, exp(-7.45133219101941108420e+02)); |
| EXPECT_EQ(0.36787944117144233, exp(-1.0)); |
| EXPECT_EQ(1.0, exp(-0.0)); |
| EXPECT_EQ(1.0, exp(0.0)); |
| EXPECT_EQ(1.0, exp(2.2250738585072014e-308)); |
| |
| // Test that exp(x) is monotonic near 1. |
| EXPECT_GE(exp(1.0), exp(0.9999999999999999)); |
| EXPECT_LE(exp(1.0), exp(1.0000000000000002)); |
| |
| // Test that we produce the correctly rounded result for 1. |
| EXPECT_EQ(kE, exp(1.0)); |
| |
| EXPECT_EQ(7.38905609893065e0, exp(2.0)); |
| EXPECT_EQ(1.7976931348622732e308, exp(7.09782712893383973096e+02)); |
| EXPECT_EQ(2.6881171418161356e+43, exp(100.0)); |
| EXPECT_EQ(8.218407461554972e+307, exp(709.0)); |
| EXPECT_EQ(1.7968190737295725e308, exp(709.7822265625e0)); |
| EXPECT_EQ(kInfinity, exp(709.7827128933841e0)); |
| EXPECT_EQ(kInfinity, exp(710.0)); |
| EXPECT_EQ(kInfinity, exp(1000.0)); |
| EXPECT_EQ(kInfinity, exp(kInfinity)); |
| } |
| |
| TEST(Ieee754, Expm1) { |
| EXPECT_THAT(expm1(kQNaN), IsNaN()); |
| EXPECT_THAT(expm1(kSNaN), IsNaN()); |
| EXPECT_EQ(-1.0, expm1(-kInfinity)); |
| EXPECT_EQ(kInfinity, expm1(kInfinity)); |
| EXPECT_EQ(0.0, expm1(-0.0)); |
| EXPECT_EQ(0.0, expm1(0.0)); |
| EXPECT_EQ(1.718281828459045, expm1(1.0)); |
| EXPECT_EQ(2.6881171418161356e+43, expm1(100.0)); |
| EXPECT_EQ(8.218407461554972e+307, expm1(709.0)); |
| EXPECT_EQ(kInfinity, expm1(710.0)); |
| } |
| |
| TEST(Ieee754, Log) { |
| EXPECT_THAT(log(kQNaN), IsNaN()); |
| EXPECT_THAT(log(kSNaN), IsNaN()); |
| EXPECT_THAT(log(-kInfinity), IsNaN()); |
| EXPECT_THAT(log(-1.0), IsNaN()); |
| EXPECT_EQ(-kInfinity, log(-0.0)); |
| EXPECT_EQ(-kInfinity, log(0.0)); |
| EXPECT_EQ(0.0, log(1.0)); |
| EXPECT_EQ(kInfinity, log(kInfinity)); |
| |
| // Test that log(E) produces the correctly rounded result. |
| EXPECT_EQ(1.0, log(kE)); |
| } |
| |
| TEST(Ieee754, Log1p) { |
| EXPECT_THAT(log1p(kQNaN), IsNaN()); |
| EXPECT_THAT(log1p(kSNaN), IsNaN()); |
| EXPECT_THAT(log1p(-kInfinity), IsNaN()); |
| EXPECT_EQ(-kInfinity, log1p(-1.0)); |
| EXPECT_EQ(0.0, log1p(0.0)); |
| EXPECT_EQ(-0.0, log1p(-0.0)); |
| EXPECT_EQ(kInfinity, log1p(kInfinity)); |
| EXPECT_EQ(6.9756137364252422e-03, log1p(0.007)); |
| EXPECT_EQ(709.782712893384, log1p(1.7976931348623157e308)); |
| EXPECT_EQ(2.7755575615628914e-17, log1p(2.7755575615628914e-17)); |
| EXPECT_EQ(9.313225741817976e-10, log1p(9.313225746154785e-10)); |
| EXPECT_EQ(-0.2876820724517809, log1p(-0.25)); |
| EXPECT_EQ(0.22314355131420976, log1p(0.25)); |
| EXPECT_EQ(2.3978952727983707, log1p(10)); |
| EXPECT_EQ(36.841361487904734, log1p(10e15)); |
| EXPECT_EQ(37.08337388996168, log1p(12738099905822720)); |
| EXPECT_EQ(37.08336444902049, log1p(12737979646738432)); |
| EXPECT_EQ(1.3862943611198906, log1p(3)); |
| EXPECT_EQ(1.3862945995384413, log1p(3 + 9.5367431640625e-7)); |
| EXPECT_EQ(0.5596157879354227, log1p(0.75)); |
| EXPECT_EQ(0.8109302162163288, log1p(1.25)); |
| } |
| |
| TEST(Ieee754, Log2) { |
| EXPECT_THAT(log2(kQNaN), IsNaN()); |
| EXPECT_THAT(log2(kSNaN), IsNaN()); |
| EXPECT_THAT(log2(-kInfinity), IsNaN()); |
| EXPECT_THAT(log2(-1.0), IsNaN()); |
| EXPECT_EQ(-kInfinity, log2(0.0)); |
| EXPECT_EQ(-kInfinity, log2(-0.0)); |
| EXPECT_EQ(kInfinity, log2(kInfinity)); |
| } |
| |
| TEST(Ieee754, Log10) { |
| EXPECT_THAT(log10(kQNaN), IsNaN()); |
| EXPECT_THAT(log10(kSNaN), IsNaN()); |
| EXPECT_THAT(log10(-kInfinity), IsNaN()); |
| EXPECT_THAT(log10(-1.0), IsNaN()); |
| EXPECT_EQ(-kInfinity, log10(0.0)); |
| EXPECT_EQ(-kInfinity, log10(-0.0)); |
| EXPECT_EQ(kInfinity, log10(kInfinity)); |
| EXPECT_EQ(3.0, log10(1000.0)); |
| EXPECT_EQ(14.0, log10(100000000000000)); // log10(10 ^ 14) |
| EXPECT_EQ(3.7389561269540406, log10(5482.2158)); |
| EXPECT_EQ(14.661551142893833, log10(458723662312872.125782332587)); |
| EXPECT_EQ(-0.9083828622192334, log10(0.12348583358871)); |
| EXPECT_EQ(5.0, log10(100000.0)); |
| } |
| |
| TEST(Ieee754, Cbrt) { |
| EXPECT_THAT(cbrt(kQNaN), IsNaN()); |
| EXPECT_THAT(cbrt(kSNaN), IsNaN()); |
| EXPECT_EQ(kInfinity, cbrt(kInfinity)); |
| EXPECT_EQ(-kInfinity, cbrt(-kInfinity)); |
| EXPECT_EQ(1.4422495703074083, cbrt(3)); |
| EXPECT_EQ(100, cbrt(100 * 100 * 100)); |
| EXPECT_EQ(46.415888336127786, cbrt(100000)); |
| } |
| |
| TEST(Ieee754, Sin) { |
| // Test values mentioned in the EcmaScript spec. |
| EXPECT_THAT(sin(kQNaN), IsNaN()); |
| EXPECT_THAT(sin(kSNaN), IsNaN()); |
| EXPECT_THAT(sin(kInfinity), IsNaN()); |
| EXPECT_THAT(sin(-kInfinity), IsNaN()); |
| |
| // Tests for sin for |x| < pi/4 |
| EXPECT_EQ(-kInfinity, Divide(1.0, sin(-0.0))); |
| EXPECT_EQ(kInfinity, Divide(1.0, sin(0.0))); |
| // sin(x) = x for x < 2^-27 |
| EXPECT_EQ(2.3283064365386963e-10, sin(2.3283064365386963e-10)); |
| EXPECT_EQ(-2.3283064365386963e-10, sin(-2.3283064365386963e-10)); |
| // sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4) |
| EXPECT_EQ(0.3826834323650898, sin(0.39269908169872414)); |
| EXPECT_EQ(-0.3826834323650898, sin(-0.39269908169872414)); |
| |
| // Tests for sin. |
| EXPECT_EQ(0.479425538604203, sin(0.5)); |
| EXPECT_EQ(-0.479425538604203, sin(-0.5)); |
| EXPECT_EQ(1, sin(kPI / 2.0)); |
| EXPECT_EQ(-1, sin(-kPI / 2.0)); |
| // Test that sin(Math.PI) != 0 since Math.PI is not exact. |
| EXPECT_EQ(1.2246467991473532e-16, sin(kPI)); |
| EXPECT_EQ(-7.047032979958965e-14, sin(2200.0 * kPI)); |
| // Test sin for various phases. |
| EXPECT_EQ(-0.7071067811865477, sin(7.0 / 4.0 * kPI)); |
| EXPECT_EQ(0.7071067811865474, sin(9.0 / 4.0 * kPI)); |
| EXPECT_EQ(0.7071067811865483, sin(11.0 / 4.0 * kPI)); |
| EXPECT_EQ(-0.7071067811865479, sin(13.0 / 4.0 * kPI)); |
| EXPECT_EQ(-3.2103381051568376e-11, sin(1048576.0 / 4 * kPI)); |
| |
| // Test Hayne-Panek reduction. |
| EXPECT_EQ(0.377820109360752e0, sin(kTwo120)); |
| EXPECT_EQ(-0.377820109360752e0, sin(-kTwo120)); |
| } |
| |
| TEST(Ieee754, Sinh) { |
| // Test values mentioned in the EcmaScript spec. |
| EXPECT_THAT(sinh(kQNaN), IsNaN()); |
| EXPECT_THAT(sinh(kSNaN), IsNaN()); |
| EXPECT_THAT(sinh(kInfinity), kInfinity); |
| EXPECT_THAT(sinh(-kInfinity), -kInfinity); |
| EXPECT_EQ(0.0, sinh(0.0)); |
| EXPECT_EQ(-0.0, sinh(-0.0)); |
| } |
| |
| TEST(Ieee754, Tan) { |
| // Test values mentioned in the EcmaScript spec. |
| EXPECT_THAT(tan(kQNaN), IsNaN()); |
| EXPECT_THAT(tan(kSNaN), IsNaN()); |
| EXPECT_THAT(tan(kInfinity), IsNaN()); |
| EXPECT_THAT(tan(-kInfinity), IsNaN()); |
| |
| // Tests for tan for |x| < pi/4 |
| EXPECT_EQ(kInfinity, Divide(1.0, tan(0.0))); |
| EXPECT_EQ(-kInfinity, Divide(1.0, tan(-0.0))); |
| // tan(x) = x for |x| < 2^-28 |
| EXPECT_EQ(2.3283064365386963e-10, tan(2.3283064365386963e-10)); |
| EXPECT_EQ(-2.3283064365386963e-10, tan(-2.3283064365386963e-10)); |
| // Test KERNELTAN for |x| > 0.67434. |
| EXPECT_EQ(0.8211418015898941, tan(11.0 / 16.0)); |
| EXPECT_EQ(-0.8211418015898941, tan(-11.0 / 16.0)); |
| EXPECT_EQ(0.41421356237309503, tan(0.39269908169872414)); |
| // crbug/427468 |
| EXPECT_EQ(0.7993357819992383, tan(0.6743358)); |
| |
| // Tests for tan. |
| EXPECT_EQ(3.725290298461914e-9, tan(3.725290298461914e-9)); |
| // Test that tan(PI/2) != Infinity since PI is not exact. |
| EXPECT_EQ(1.633123935319537e16, tan(kPI / 2)); |
| // Cover different code paths in KERNELTAN (tangent and cotangent) |
| EXPECT_EQ(0.5463024898437905, tan(0.5)); |
| EXPECT_EQ(2.0000000000000027, tan(1.107148717794091)); |
| EXPECT_EQ(-1.0000000000000004, tan(7.0 / 4.0 * kPI)); |
| EXPECT_EQ(0.9999999999999994, tan(9.0 / 4.0 * kPI)); |
| EXPECT_EQ(-6.420676210313675e-11, tan(1048576.0 / 2.0 * kPI)); |
| EXPECT_EQ(2.910566692924059e11, tan(1048575.0 / 2.0 * kPI)); |
| |
| // Test Hayne-Panek reduction. |
| EXPECT_EQ(-0.40806638884180424e0, tan(kTwo120)); |
| EXPECT_EQ(0.40806638884180424e0, tan(-kTwo120)); |
| } |
| |
| TEST(Ieee754, Tanh) { |
| // Test values mentioned in the EcmaScript spec. |
| EXPECT_THAT(tanh(kQNaN), IsNaN()); |
| EXPECT_THAT(tanh(kSNaN), IsNaN()); |
| EXPECT_THAT(tanh(kInfinity), 1); |
| EXPECT_THAT(tanh(-kInfinity), -1); |
| EXPECT_EQ(0.0, tanh(0.0)); |
| EXPECT_EQ(-0.0, tanh(-0.0)); |
| } |
| |
| } // namespace ieee754 |
| } // namespace base |
| } // namespace v8 |