blob: 3d4a21e3248d7d3bfdf7bd6fcaa688e9328625a5 [file] [log] [blame]
/*
******************************************************************************
* Copyright (C) 1997-2015, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* file name: nfrs.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* Modification history
* Date Name Comments
* 10/11/2001 Doug Ported from ICU4J
*/
#include "starboard/client_porting/poem/string_poem.h"
#include "nfrs.h"
#if U_HAVE_RBNF
#include "unicode/uchar.h"
#include "nfrule.h"
#include "nfrlist.h"
#include "patternprops.h"
#ifdef RBNF_DEBUG
#include "cmemory.h"
#endif
enum {
/** -x */
NEGATIVE_RULE_INDEX = 0,
/** x.x */
IMPROPER_FRACTION_RULE_INDEX = 1,
/** 0.x */
PROPER_FRACTION_RULE_INDEX = 2,
/** x.0 */
MASTER_RULE_INDEX = 3,
/** Inf */
INFINITY_RULE_INDEX = 4,
/** NaN */
NAN_RULE_INDEX = 5,
NON_NUMERICAL_RULE_LENGTH = 6
};
U_NAMESPACE_BEGIN
#if 0
// euclid's algorithm works with doubles
// note, doubles only get us up to one quadrillion or so, which
// isn't as much range as we get with longs. We probably still
// want either 64-bit math, or BigInteger.
static int64_t
util_lcm(int64_t x, int64_t y)
{
x.abs();
y.abs();
if (x == 0 || y == 0) {
return 0;
} else {
do {
if (x < y) {
int64_t t = x; x = y; y = t;
}
x -= y * (x/y);
} while (x != 0);
return y;
}
}
#else
/**
* Calculates the least common multiple of x and y.
*/
static int64_t
util_lcm(int64_t x, int64_t y)
{
// binary gcd algorithm from Knuth, "The Art of Computer Programming,"
// vol. 2, 1st ed., pp. 298-299
int64_t x1 = x;
int64_t y1 = y;
int p2 = 0;
while ((x1 & 1) == 0 && (y1 & 1) == 0) {
++p2;
x1 >>= 1;
y1 >>= 1;
}
int64_t t;
if ((x1 & 1) == 1) {
t = -y1;
} else {
t = x1;
}
while (t != 0) {
while ((t & 1) == 0) {
t = t >> 1;
}
if (t > 0) {
x1 = t;
} else {
y1 = -t;
}
t = x1 - y1;
}
int64_t gcd = x1 << p2;
// x * y == gcd(x, y) * lcm(x, y)
return x / gcd * y;
}
#endif
static const UChar gPercent = 0x0025;
static const UChar gColon = 0x003a;
static const UChar gSemicolon = 0x003b;
static const UChar gLineFeed = 0x000a;
static const UChar gPercentPercent[] =
{
0x25, 0x25, 0
}; /* "%%" */
static const UChar gNoparse[] =
{
0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0
}; /* "@noparse" */
NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status)
: name()
, rules(0)
, owner(_owner)
, fractionRules()
, fIsFractionRuleSet(FALSE)
, fIsPublic(FALSE)
, fIsParseable(TRUE)
{
for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
nonNumericalRules[i] = NULL;
}
if (U_FAILURE(status)) {
return;
}
UnicodeString& description = descriptions[index]; // !!! make sure index is valid
if (description.length() == 0) {
// throw new IllegalArgumentException("Empty rule set description");
status = U_PARSE_ERROR;
return;
}
// if the description begins with a rule set name (the rule set
// name can be omitted in formatter descriptions that consist
// of only one rule set), copy it out into our "name" member
// and delete it from the description
if (description.charAt(0) == gPercent) {
int32_t pos = description.indexOf(gColon);
if (pos == -1) {
// throw new IllegalArgumentException("Rule set name doesn't end in colon");
status = U_PARSE_ERROR;
} else {
name.setTo(description, 0, pos);
while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) {
}
description.remove(0, pos);
}
} else {
name.setTo(UNICODE_STRING_SIMPLE("%default"));
}
if (description.length() == 0) {
// throw new IllegalArgumentException("Empty rule set description");
status = U_PARSE_ERROR;
}
fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0;
if ( name.endsWith(gNoparse,8) ) {
fIsParseable = FALSE;
name.truncate(name.length()-8); // remove the @noparse from the name
}
// all of the other members of NFRuleSet are initialized
// by parseRules()
}
void
NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status)
{
// start by creating a Vector whose elements are Strings containing
// the descriptions of the rules (one rule per element). The rules
// are separated by semicolons (there's no escape facility: ALL
// semicolons are rule delimiters)
if (U_FAILURE(status)) {
return;
}
// ensure we are starting with an empty rule list
rules.deleteAll();
// dlf - the original code kept a separate description array for no reason,
// so I got rid of it. The loop was too complex so I simplified it.
UnicodeString currentDescription;
int32_t oldP = 0;
while (oldP < description.length()) {
int32_t p = description.indexOf(gSemicolon, oldP);
if (p == -1) {
p = description.length();
}
currentDescription.setTo(description, oldP, p - oldP);
NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status);
oldP = p + 1;
}
// for rules that didn't specify a base value, their base values
// were initialized to 0. Make another pass through the list and
// set all those rules' base values. We also remove any special
// rules from the list and put them into their own member variables
int64_t defaultBaseValue = 0;
// (this isn't a for loop because we might be deleting items from
// the vector-- we want to make sure we only increment i when
// we _didn't_ delete aything from the vector)
int32_t rulesSize = rules.size();
for (int32_t i = 0; i < rulesSize; i++) {
NFRule* rule = rules[i];
int64_t baseValue = rule->getBaseValue();
if (baseValue == 0) {
// if the rule's base value is 0, fill in a default
// base value (this will be 1 plus the preceding
// rule's base value for regular rule sets, and the
// same as the preceding rule's base value in fraction
// rule sets)
rule->setBaseValue(defaultBaseValue, status);
}
else {
// if it's a regular rule that already knows its base value,
// check to make sure the rules are in order, and update
// the default base value for the next rule
if (baseValue < defaultBaseValue) {
// throw new IllegalArgumentException("Rules are not in order");
status = U_PARSE_ERROR;
return;
}
defaultBaseValue = baseValue;
}
if (!fIsFractionRuleSet) {
++defaultBaseValue;
}
}
}
/**
* Set one of the non-numerical rules.
* @param rule The rule to set.
*/
void NFRuleSet::setNonNumericalRule(NFRule *rule) {
int64_t baseValue = rule->getBaseValue();
if (baseValue == NFRule::kNegativeNumberRule) {
delete nonNumericalRules[NEGATIVE_RULE_INDEX];
nonNumericalRules[NEGATIVE_RULE_INDEX] = rule;
}
else if (baseValue == NFRule::kImproperFractionRule) {
setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, TRUE);
}
else if (baseValue == NFRule::kProperFractionRule) {
setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, TRUE);
}
else if (baseValue == NFRule::kMasterRule) {
setBestFractionRule(MASTER_RULE_INDEX, rule, TRUE);
}
else if (baseValue == NFRule::kInfinityRule) {
delete nonNumericalRules[INFINITY_RULE_INDEX];
nonNumericalRules[INFINITY_RULE_INDEX] = rule;
}
else if (baseValue == NFRule::kNaNRule) {
delete nonNumericalRules[NAN_RULE_INDEX];
nonNumericalRules[NAN_RULE_INDEX] = rule;
}
}
/**
* Determine the best fraction rule to use. Rules matching the decimal point from
* DecimalFormatSymbols become the main set of rules to use.
* @param originalIndex The index into nonNumericalRules
* @param newRule The new rule to consider
* @param rememberRule Should the new rule be added to fractionRules.
*/
void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) {
if (rememberRule) {
fractionRules.add(newRule);
}
NFRule *bestResult = nonNumericalRules[originalIndex];
if (bestResult == NULL) {
nonNumericalRules[originalIndex] = newRule;
}
else {
// We have more than one. Which one is better?
const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols();
if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0)
== newRule->getDecimalPoint())
{
nonNumericalRules[originalIndex] = newRule;
}
// else leave it alone
}
}
NFRuleSet::~NFRuleSet()
{
for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
if (i != IMPROPER_FRACTION_RULE_INDEX
&& i != PROPER_FRACTION_RULE_INDEX
&& i != MASTER_RULE_INDEX)
{
delete nonNumericalRules[i];
}
// else it will be deleted via NFRuleList fractionRules
}
}
static UBool
util_equalRules(const NFRule* rule1, const NFRule* rule2)
{
if (rule1) {
if (rule2) {
return *rule1 == *rule2;
}
} else if (!rule2) {
return TRUE;
}
return FALSE;
}
UBool
NFRuleSet::operator==(const NFRuleSet& rhs) const
{
if (rules.size() == rhs.rules.size() &&
fIsFractionRuleSet == rhs.fIsFractionRuleSet &&
name == rhs.name) {
// ...then compare the non-numerical rule lists...
for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) {
return FALSE;
}
}
// ...then compare the rule lists...
for (uint32_t i = 0; i < rules.size(); ++i) {
if (*rules[i] != *rhs.rules[i]) {
return FALSE;
}
}
return TRUE;
}
return FALSE;
}
void
NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) {
for (uint32_t i = 0; i < rules.size(); ++i) {
rules[i]->setDecimalFormatSymbols(newSymbols, status);
}
// Switch the fraction rules to mirror the DecimalFormatSymbols.
for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= MASTER_RULE_INDEX; nonNumericalIdx++) {
if (nonNumericalRules[nonNumericalIdx]) {
for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
NFRule *fractionRule = fractionRules[fIdx];
if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) {
setBestFractionRule(nonNumericalIdx, fractionRule, FALSE);
}
}
}
}
for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) {
NFRule *rule = nonNumericalRules[nnrIdx];
if (rule) {
rule->setDecimalFormatSymbols(newSymbols, status);
}
}
}
#define RECURSION_LIMIT 64
void
NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
{
if (recursionCount >= RECURSION_LIMIT) {
// stop recursion
status = U_INVALID_STATE_ERROR;
return;
}
const NFRule *rule = findNormalRule(number);
if (rule) { // else error, but can't report it
rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
}
}
void
NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
{
if (recursionCount >= RECURSION_LIMIT) {
// stop recursion
status = U_INVALID_STATE_ERROR;
return;
}
const NFRule *rule = findDoubleRule(number);
if (rule) { // else error, but can't report it
rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
}
}
const NFRule*
NFRuleSet::findDoubleRule(double number) const
{
// if this is a fraction rule set, use findFractionRuleSetRule()
if (isFractionRuleSet()) {
return findFractionRuleSetRule(number);
}
if (uprv_isNaN(number)) {
const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX];
if (!rule) {
rule = owner->getDefaultNaNRule();
}
return rule;
}
// if the number is negative, return the negative number rule
// (if there isn't a negative-number rule, we pretend it's a
// positive number)
if (number < 0) {
if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
return nonNumericalRules[NEGATIVE_RULE_INDEX];
} else {
number = -number;
}
}
if (uprv_isInfinite(number)) {
const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX];
if (!rule) {
rule = owner->getDefaultInfinityRule();
}
return rule;
}
// if the number isn't an integer, we use one of the fraction rules...
if (number != uprv_floor(number)) {
// if the number is between 0 and 1, return the proper
// fraction rule
if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) {
return nonNumericalRules[PROPER_FRACTION_RULE_INDEX];
}
// otherwise, return the improper fraction rule
else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) {
return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX];
}
}
// if there's a master rule, use it to format the number
if (nonNumericalRules[MASTER_RULE_INDEX]) {
return nonNumericalRules[MASTER_RULE_INDEX];
}
// and if we haven't yet returned a rule, use findNormalRule()
// to find the applicable rule
int64_t r = util64_fromDouble(number + 0.5);
return findNormalRule(r);
}
const NFRule *
NFRuleSet::findNormalRule(int64_t number) const
{
// if this is a fraction rule set, use findFractionRuleSetRule()
// to find the rule (we should only go into this clause if the
// value is 0)
if (fIsFractionRuleSet) {
return findFractionRuleSetRule((double)number);
}
// if the number is negative, return the negative-number rule
// (if there isn't one, pretend the number is positive)
if (number < 0) {
if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
return nonNumericalRules[NEGATIVE_RULE_INDEX];
} else {
number = -number;
}
}
// we have to repeat the preceding two checks, even though we
// do them in findRule(), because the version of format() that
// takes a long bypasses findRule() and goes straight to this
// function. This function does skip the fraction rules since
// we know the value is an integer (it also skips the master
// rule, since it's considered a fraction rule. Skipping the
// master rule in this function is also how we avoid infinite
// recursion)
// {dlf} unfortunately this fails if there are no rules except
// special rules. If there are no rules, use the master rule.
// binary-search the rule list for the applicable rule
// (a rule is used for all values from its base value to
// the next rule's base value)
int32_t hi = rules.size();
if (hi > 0) {
int32_t lo = 0;
while (lo < hi) {
int32_t mid = (lo + hi) / 2;
if (rules[mid]->getBaseValue() == number) {
return rules[mid];
}
else if (rules[mid]->getBaseValue() > number) {
hi = mid;
}
else {
lo = mid + 1;
}
}
if (hi == 0) { // bad rule set, minimum base > 0
return NULL; // want to throw exception here
}
NFRule *result = rules[hi - 1];
// use shouldRollBack() to see whether we need to invoke the
// rollback rule (see shouldRollBack()'s documentation for
// an explanation of the rollback rule). If we do, roll back
// one rule and return that one instead of the one we'd normally
// return
if (result->shouldRollBack((double)number)) {
if (hi == 1) { // bad rule set, no prior rule to rollback to from this base
return NULL;
}
result = rules[hi - 2];
}
return result;
}
// else use the master rule
return nonNumericalRules[MASTER_RULE_INDEX];
}
/**
* If this rule is a fraction rule set, this function is used by
* findRule() to select the most appropriate rule for formatting
* the number. Basically, the base value of each rule in the rule
* set is treated as the denominator of a fraction. Whichever
* denominator can produce the fraction closest in value to the
* number passed in is the result. If there's a tie, the earlier
* one in the list wins. (If there are two rules in a row with the
* same base value, the first one is used when the numerator of the
* fraction would be 1, and the second rule is used the rest of the
* time.
* @param number The number being formatted (which will always be
* a number between 0 and 1)
* @return The rule to use to format this number
*/
const NFRule*
NFRuleSet::findFractionRuleSetRule(double number) const
{
// the obvious way to do this (multiply the value being formatted
// by each rule's base value until you get an integral result)
// doesn't work because of rounding error. This method is more
// accurate
// find the least common multiple of the rules' base values
// and multiply this by the number being formatted. This is
// all the precision we need, and we can do all of the rest
// of the math using integer arithmetic
int64_t leastCommonMultiple = rules[0]->getBaseValue();
int64_t numerator;
{
for (uint32_t i = 1; i < rules.size(); ++i) {
leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue());
}
numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5);
}
// for each rule, do the following...
int64_t tempDifference;
int64_t difference = util64_fromDouble(uprv_maxMantissa());
int32_t winner = 0;
for (uint32_t i = 0; i < rules.size(); ++i) {
// "numerator" is the numerator of the fraction if the
// denominator is the LCD. The numerator if the rule's
// base value is the denominator is "numerator" times the
// base value divided bythe LCD. Here we check to see if
// that's an integer, and if not, how close it is to being
// an integer.
tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple;
// normalize the result of the above calculation: we want
// the numerator's distance from the CLOSEST multiple
// of the LCD
if (leastCommonMultiple - tempDifference < tempDifference) {
tempDifference = leastCommonMultiple - tempDifference;
}
// if this is as close as we've come, keep track of how close
// that is, and the line number of the rule that did it. If
// we've scored a direct hit, we don't have to look at any more
// rules
if (tempDifference < difference) {
difference = tempDifference;
winner = i;
if (difference == 0) {
break;
}
}
}
// if we have two successive rules that both have the winning base
// value, then the first one (the one we found above) is used if
// the numerator of the fraction is 1 and the second one is used if
// the numerator of the fraction is anything else (this lets us
// do things like "one third"/"two thirds" without haveing to define
// a whole bunch of extra rule sets)
if ((unsigned)(winner + 1) < rules.size() &&
rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) {
double n = ((double)rules[winner]->getBaseValue()) * number;
if (n < 0.5 || n >= 2) {
++winner;
}
}
// finally, return the winning rule
return rules[winner];
}
/**
* Parses a string. Matches the string to be parsed against each
* of its rules (with a base value less than upperBound) and returns
* the value produced by the rule that matched the most charcters
* in the source string.
* @param text The string to parse
* @param parsePosition The initial position is ignored and assumed
* to be 0. On exit, this object has been updated to point to the
* first character position this rule set didn't consume.
* @param upperBound Limits the rules that can be allowed to match.
* Only rules whose base values are strictly less than upperBound
* are considered.
* @return The numerical result of parsing this string. This will
* be the matching rule's base value, composed appropriately with
* the results of matching any of its substitutions. The object
* will be an instance of Long if it's an integral value; otherwise,
* it will be an instance of Double. This function always returns
* a valid object: If nothing matched the input string at all,
* this function returns new Long(0), and the parse position is
* left unchanged.
*/
#ifdef RBNF_DEBUG
#include <stdio.h>
static void dumpUS(FILE* f, const UnicodeString& us) {
int len = us.length();
char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
if (buf != NULL) {
us.extract(0, len, buf);
buf[len] = 0;
fprintf(f, "%s", buf);
uprv_free(buf); //delete[] buf;
}
}
#endif
UBool
NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result) const
{
// try matching each rule in the rule set against the text being
// parsed. Whichever one matches the most characters is the one
// that determines the value we return.
result.setLong(0);
// dump out if there's no text to parse
if (text.length() == 0) {
return 0;
}
ParsePosition highWaterMark;
ParsePosition workingPos = pos;
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfrs> %x '", this);
dumpUS(stderr, name);
fprintf(stderr, "' text '");
dumpUS(stderr, text);
fprintf(stderr, "'\n");
fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0);
#endif
// Try each of the negative rules, fraction rules, infinity rules and NaN rules
for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
if (nonNumericalRules[i]) {
Formattable tempResult;
UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, tempResult);
if (success && (workingPos.getIndex() > highWaterMark.getIndex())) {
result = tempResult;
highWaterMark = workingPos;
}
workingPos = pos;
}
}
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfrs> continue other with text '");
dumpUS(stderr, text);
fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex());
#endif
// finally, go through the regular rules one at a time. We start
// at the end of the list because we want to try matching the most
// sigificant rule first (this helps ensure that we parse
// "five thousand three hundred six" as
// "(five thousand) (three hundred) (six)" rather than
// "((five thousand three) hundred) (six)"). Skip rules whose
// base values are higher than the upper bound (again, this helps
// limit ambiguity by making sure the rules that match a rule's
// are less significant than the rule containing the substitutions)/
{
int64_t ub = util64_fromDouble(upperBound);
#ifdef RBNF_DEBUG
{
char ubstr[64];
util64_toa(ub, ubstr, 64);
char ubstrhex[64];
util64_toa(ub, ubstrhex, 64, 16);
fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex);
}
#endif
for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) {
if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) {
continue;
}
Formattable tempResult;
UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult);
if (success && workingPos.getIndex() > highWaterMark.getIndex()) {
result = tempResult;
highWaterMark = workingPos;
}
workingPos = pos;
}
}
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfrs> exit\n");
#endif
// finally, update the parse postion we were passed to point to the
// first character we didn't use, and return the result that
// corresponds to that string of characters
pos = highWaterMark;
return 1;
}
void
NFRuleSet::appendRules(UnicodeString& result) const
{
uint32_t i;
// the rule set name goes first...
result.append(name);
result.append(gColon);
result.append(gLineFeed);
// followed by the regular rules...
for (i = 0; i < rules.size(); i++) {
rules[i]->_appendRuleText(result);
result.append(gLineFeed);
}
// followed by the special rules (if they exist)
for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
NFRule *rule = nonNumericalRules[i];
if (nonNumericalRules[i]) {
if (rule->getBaseValue() == NFRule::kImproperFractionRule
|| rule->getBaseValue() == NFRule::kProperFractionRule
|| rule->getBaseValue() == NFRule::kMasterRule)
{
for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
NFRule *fractionRule = fractionRules[fIdx];
if (fractionRule->getBaseValue() == rule->getBaseValue()) {
fractionRule->_appendRuleText(result);
result.append(gLineFeed);
}
}
}
else {
rule->_appendRuleText(result);
result.append(gLineFeed);
}
}
}
}
// utility functions
int64_t util64_fromDouble(double d) {
int64_t result = 0;
if (!uprv_isNaN(d)) {
double mant = uprv_maxMantissa();
if (d < -mant) {
d = -mant;
} else if (d > mant) {
d = mant;
}
UBool neg = d < 0;
if (neg) {
d = -d;
}
result = (int64_t)uprv_floor(d);
if (neg) {
result = -result;
}
}
return result;
}
int64_t util64_pow(int32_t r, uint32_t e) {
if (r == 0) {
return 0;
} else if (e == 0) {
return 1;
} else {
int64_t n = r;
while (--e > 0) {
n *= r;
}
return n;
}
}
static const uint8_t asciiDigits[] = {
0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u,
0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u,
0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu,
0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u,
0x77u, 0x78u, 0x79u, 0x7au,
};
static const UChar kUMinus = (UChar)0x002d;
#ifdef RBNF_DEBUG
static const char kMinus = '-';
static const uint8_t digitInfo[] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u,
0x88u, 0x89u, 0, 0, 0, 0, 0, 0,
0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
};
int64_t util64_atoi(const char* str, uint32_t radix)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t lradix = radix;
int neg = 0;
if (*str == kMinus) {
++str;
neg = 1;
}
int64_t result = 0;
uint8_t b;
while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) {
result *= lradix;
result += (int32_t)b;
}
if (neg) {
result = -result;
}
return result;
}
int64_t util64_utoi(const UChar* str, uint32_t radix)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t lradix = radix;
int neg = 0;
if (*str == kUMinus) {
++str;
neg = 1;
}
int64_t result = 0;
UChar c;
uint8_t b;
while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) {
result *= lradix;
result += (int32_t)b;
}
if (neg) {
result = -result;
}
return result;
}
uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t base = radix;
char* p = buf;
if (len && (w < 0) && (radix == 10) && !raw) {
w = -w;
*p++ = kMinus;
--len;
} else if (len && (w == 0)) {
*p++ = (char)raw ? 0 : asciiDigits[0];
--len;
}
while (len && w != 0) {
int64_t n = w / base;
int64_t m = n * base;
int32_t d = (int32_t)(w-m);
*p++ = raw ? (char)d : asciiDigits[d];
w = n;
--len;
}
if (len) {
*p = 0; // null terminate if room for caller convenience
}
len = p - buf;
if (*buf == kMinus) {
++buf;
}
while (--p > buf) {
char c = *p;
*p = *buf;
*buf = c;
++buf;
}
return len;
}
#endif
uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t base = radix;
UChar* p = buf;
if (len && (w < 0) && (radix == 10) && !raw) {
w = -w;
*p++ = kUMinus;
--len;
} else if (len && (w == 0)) {
*p++ = (UChar)raw ? 0 : asciiDigits[0];
--len;
}
while (len && (w != 0)) {
int64_t n = w / base;
int64_t m = n * base;
int32_t d = (int32_t)(w-m);
*p++ = (UChar)(raw ? d : asciiDigits[d]);
w = n;
--len;
}
if (len) {
*p = 0; // null terminate if room for caller convenience
}
len = (uint32_t)(p - buf);
if (*buf == kUMinus) {
++buf;
}
while (--p > buf) {
UChar c = *p;
*p = *buf;
*buf = c;
++buf;
}
return len;
}
U_NAMESPACE_END
/* U_HAVE_RBNF */
#endif