| //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These tablegen backends emit Clang attribute processing code |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/StringMatcher.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cstddef> |
| #include <cstdint> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| class FlattenedSpelling { |
| std::string V, N, NS; |
| bool K; |
| |
| public: |
| FlattenedSpelling(const std::string &Variety, const std::string &Name, |
| const std::string &Namespace, bool KnownToGCC) : |
| V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {} |
| explicit FlattenedSpelling(const Record &Spelling) : |
| V(Spelling.getValueAsString("Variety")), |
| N(Spelling.getValueAsString("Name")) { |
| |
| assert(V != "GCC" && V != "Clang" && |
| "Given a GCC spelling, which means this hasn't been flattened!"); |
| if (V == "CXX11" || V == "C2x" || V == "Pragma") |
| NS = Spelling.getValueAsString("Namespace"); |
| bool Unset; |
| K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset); |
| } |
| |
| const std::string &variety() const { return V; } |
| const std::string &name() const { return N; } |
| const std::string &nameSpace() const { return NS; } |
| bool knownToGCC() const { return K; } |
| }; |
| |
| } // end anonymous namespace |
| |
| static std::vector<FlattenedSpelling> |
| GetFlattenedSpellings(const Record &Attr) { |
| std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings"); |
| std::vector<FlattenedSpelling> Ret; |
| |
| for (const auto &Spelling : Spellings) { |
| StringRef Variety = Spelling->getValueAsString("Variety"); |
| StringRef Name = Spelling->getValueAsString("Name"); |
| if (Variety == "GCC") { |
| // Gin up two new spelling objects to add into the list. |
| Ret.emplace_back("GNU", Name, "", true); |
| Ret.emplace_back("CXX11", Name, "gnu", true); |
| } else if (Variety == "Clang") { |
| Ret.emplace_back("GNU", Name, "", false); |
| Ret.emplace_back("CXX11", Name, "clang", false); |
| if (Spelling->getValueAsBit("AllowInC")) |
| Ret.emplace_back("C2x", Name, "clang", false); |
| } else |
| Ret.push_back(FlattenedSpelling(*Spelling)); |
| } |
| |
| return Ret; |
| } |
| |
| static std::string ReadPCHRecord(StringRef type) { |
| return StringSwitch<std::string>(type) |
| .EndsWith("Decl *", "Record.GetLocalDeclAs<" |
| + std::string(type, 0, type.size()-1) + ">(Record.readInt())") |
| .Case("TypeSourceInfo *", "Record.getTypeSourceInfo()") |
| .Case("Expr *", "Record.readExpr()") |
| .Case("IdentifierInfo *", "Record.getIdentifierInfo()") |
| .Case("StringRef", "Record.readString()") |
| .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())") |
| .Default("Record.readInt()"); |
| } |
| |
| // Get a type that is suitable for storing an object of the specified type. |
| static StringRef getStorageType(StringRef type) { |
| return StringSwitch<StringRef>(type) |
| .Case("StringRef", "std::string") |
| .Default(type); |
| } |
| |
| // Assumes that the way to get the value is SA->getname() |
| static std::string WritePCHRecord(StringRef type, StringRef name) { |
| return "Record." + StringSwitch<std::string>(type) |
| .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n") |
| .Case("TypeSourceInfo *", "AddTypeSourceInfo(" + std::string(name) + ");\n") |
| .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") |
| .Case("IdentifierInfo *", "AddIdentifierRef(" + std::string(name) + ");\n") |
| .Case("StringRef", "AddString(" + std::string(name) + ");\n") |
| .Case("ParamIdx", "push_back(" + std::string(name) + ".serialize());\n") |
| .Default("push_back(" + std::string(name) + ");\n"); |
| } |
| |
| // Normalize attribute name by removing leading and trailing |
| // underscores. For example, __foo, foo__, __foo__ would |
| // become foo. |
| static StringRef NormalizeAttrName(StringRef AttrName) { |
| AttrName.consume_front("__"); |
| AttrName.consume_back("__"); |
| return AttrName; |
| } |
| |
| // Normalize the name by removing any and all leading and trailing underscores. |
| // This is different from NormalizeAttrName in that it also handles names like |
| // _pascal and __pascal. |
| static StringRef NormalizeNameForSpellingComparison(StringRef Name) { |
| return Name.trim("_"); |
| } |
| |
| // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"), |
| // removing "__" if it appears at the beginning and end of the attribute's name. |
| static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) { |
| if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { |
| AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); |
| } |
| |
| return AttrSpelling; |
| } |
| |
| typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap; |
| |
| static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, |
| ParsedAttrMap *Dupes = nullptr) { |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| std::set<std::string> Seen; |
| ParsedAttrMap R; |
| for (const auto *Attr : Attrs) { |
| if (Attr->getValueAsBit("SemaHandler")) { |
| std::string AN; |
| if (Attr->isSubClassOf("TargetSpecificAttr") && |
| !Attr->isValueUnset("ParseKind")) { |
| AN = Attr->getValueAsString("ParseKind"); |
| |
| // If this attribute has already been handled, it does not need to be |
| // handled again. |
| if (Seen.find(AN) != Seen.end()) { |
| if (Dupes) |
| Dupes->push_back(std::make_pair(AN, Attr)); |
| continue; |
| } |
| Seen.insert(AN); |
| } else |
| AN = NormalizeAttrName(Attr->getName()).str(); |
| |
| R.push_back(std::make_pair(AN, Attr)); |
| } |
| } |
| return R; |
| } |
| |
| namespace { |
| |
| class Argument { |
| std::string lowerName, upperName; |
| StringRef attrName; |
| bool isOpt; |
| bool Fake; |
| |
| public: |
| Argument(const Record &Arg, StringRef Attr) |
| : lowerName(Arg.getValueAsString("Name")), upperName(lowerName), |
| attrName(Attr), isOpt(false), Fake(false) { |
| if (!lowerName.empty()) { |
| lowerName[0] = std::tolower(lowerName[0]); |
| upperName[0] = std::toupper(upperName[0]); |
| } |
| // Work around MinGW's macro definition of 'interface' to 'struct'. We |
| // have an attribute argument called 'Interface', so only the lower case |
| // name conflicts with the macro definition. |
| if (lowerName == "interface") |
| lowerName = "interface_"; |
| } |
| virtual ~Argument() = default; |
| |
| StringRef getLowerName() const { return lowerName; } |
| StringRef getUpperName() const { return upperName; } |
| StringRef getAttrName() const { return attrName; } |
| |
| bool isOptional() const { return isOpt; } |
| void setOptional(bool set) { isOpt = set; } |
| |
| bool isFake() const { return Fake; } |
| void setFake(bool fake) { Fake = fake; } |
| |
| // These functions print the argument contents formatted in different ways. |
| virtual void writeAccessors(raw_ostream &OS) const = 0; |
| virtual void writeAccessorDefinitions(raw_ostream &OS) const {} |
| virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} |
| virtual void writeCloneArgs(raw_ostream &OS) const = 0; |
| virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; |
| virtual void writeTemplateInstantiation(raw_ostream &OS) const {} |
| virtual void writeCtorBody(raw_ostream &OS) const {} |
| virtual void writeCtorInitializers(raw_ostream &OS) const = 0; |
| virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; |
| virtual void writeCtorParameters(raw_ostream &OS) const = 0; |
| virtual void writeDeclarations(raw_ostream &OS) const = 0; |
| virtual void writePCHReadArgs(raw_ostream &OS) const = 0; |
| virtual void writePCHReadDecls(raw_ostream &OS) const = 0; |
| virtual void writePCHWrite(raw_ostream &OS) const = 0; |
| virtual std::string getIsOmitted() const { return "false"; } |
| virtual void writeValue(raw_ostream &OS) const = 0; |
| virtual void writeDump(raw_ostream &OS) const = 0; |
| virtual void writeDumpChildren(raw_ostream &OS) const {} |
| virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } |
| |
| virtual bool isEnumArg() const { return false; } |
| virtual bool isVariadicEnumArg() const { return false; } |
| virtual bool isVariadic() const { return false; } |
| |
| virtual void writeImplicitCtorArgs(raw_ostream &OS) const { |
| OS << getUpperName(); |
| } |
| }; |
| |
| class SimpleArgument : public Argument { |
| std::string type; |
| |
| public: |
| SimpleArgument(const Record &Arg, StringRef Attr, std::string T) |
| : Argument(Arg, Attr), type(std::move(T)) {} |
| |
| std::string getType() const { return type; } |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| OS << " " << type << " get" << getUpperName() << "() const {\n"; |
| OS << " return " << getLowerName() << ";\n"; |
| OS << " }"; |
| } |
| |
| void writeCloneArgs(raw_ostream &OS) const override { |
| OS << getLowerName(); |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "A->get" << getUpperName() << "()"; |
| } |
| |
| void writeCtorInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "(" << getUpperName() << ")"; |
| } |
| |
| void writeCtorDefaultInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "()"; |
| } |
| |
| void writeCtorParameters(raw_ostream &OS) const override { |
| OS << type << " " << getUpperName(); |
| } |
| |
| void writeDeclarations(raw_ostream &OS) const override { |
| OS << type << " " << getLowerName() << ";"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| std::string read = ReadPCHRecord(type); |
| OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; |
| } |
| |
| void writePCHReadArgs(raw_ostream &OS) const override { |
| OS << getLowerName(); |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " " << WritePCHRecord(type, "SA->get" + |
| std::string(getUpperName()) + "()"); |
| } |
| |
| std::string getIsOmitted() const override { |
| if (type == "IdentifierInfo *") |
| return "!get" + getUpperName().str() + "()"; |
| if (type == "ParamIdx") |
| return "!get" + getUpperName().str() + "().isValid()"; |
| return "false"; |
| } |
| |
| void writeValue(raw_ostream &OS) const override { |
| if (type == "FunctionDecl *") |
| OS << "\" << get" << getUpperName() |
| << "()->getNameInfo().getAsString() << \""; |
| else if (type == "IdentifierInfo *") |
| // Some non-optional (comma required) identifier arguments can be the |
| // empty string but are then recorded as a nullptr. |
| OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName() |
| << "()->getName() : \"\") << \""; |
| else if (type == "TypeSourceInfo *") |
| OS << "\" << get" << getUpperName() << "().getAsString() << \""; |
| else if (type == "ParamIdx") |
| OS << "\" << get" << getUpperName() << "().getSourceIndex() << \""; |
| else |
| OS << "\" << get" << getUpperName() << "() << \""; |
| } |
| |
| void writeDump(raw_ostream &OS) const override { |
| if (type == "FunctionDecl *" || type == "NamedDecl *") { |
| OS << " OS << \" \";\n"; |
| OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; |
| } else if (type == "IdentifierInfo *") { |
| // Some non-optional (comma required) identifier arguments can be the |
| // empty string but are then recorded as a nullptr. |
| OS << " if (SA->get" << getUpperName() << "())\n" |
| << " OS << \" \" << SA->get" << getUpperName() |
| << "()->getName();\n"; |
| } else if (type == "TypeSourceInfo *") { |
| OS << " OS << \" \" << SA->get" << getUpperName() |
| << "().getAsString();\n"; |
| } else if (type == "bool") { |
| OS << " if (SA->get" << getUpperName() << "()) OS << \" " |
| << getUpperName() << "\";\n"; |
| } else if (type == "int" || type == "unsigned") { |
| OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; |
| } else if (type == "ParamIdx") { |
| if (isOptional()) |
| OS << " if (SA->get" << getUpperName() << "().isValid())\n "; |
| OS << " OS << \" \" << SA->get" << getUpperName() |
| << "().getSourceIndex();\n"; |
| } else { |
| llvm_unreachable("Unknown SimpleArgument type!"); |
| } |
| } |
| }; |
| |
| class DefaultSimpleArgument : public SimpleArgument { |
| int64_t Default; |
| |
| public: |
| DefaultSimpleArgument(const Record &Arg, StringRef Attr, |
| std::string T, int64_t Default) |
| : SimpleArgument(Arg, Attr, T), Default(Default) {} |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| SimpleArgument::writeAccessors(OS); |
| |
| OS << "\n\n static const " << getType() << " Default" << getUpperName() |
| << " = "; |
| if (getType() == "bool") |
| OS << (Default != 0 ? "true" : "false"); |
| else |
| OS << Default; |
| OS << ";"; |
| } |
| }; |
| |
| class StringArgument : public Argument { |
| public: |
| StringArgument(const Record &Arg, StringRef Attr) |
| : Argument(Arg, Attr) |
| {} |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; |
| OS << " return llvm::StringRef(" << getLowerName() << ", " |
| << getLowerName() << "Length);\n"; |
| OS << " }\n"; |
| OS << " unsigned get" << getUpperName() << "Length() const {\n"; |
| OS << " return " << getLowerName() << "Length;\n"; |
| OS << " }\n"; |
| OS << " void set" << getUpperName() |
| << "(ASTContext &C, llvm::StringRef S) {\n"; |
| OS << " " << getLowerName() << "Length = S.size();\n"; |
| OS << " this->" << getLowerName() << " = new (C, 1) char [" |
| << getLowerName() << "Length];\n"; |
| OS << " if (!S.empty())\n"; |
| OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " |
| << getLowerName() << "Length);\n"; |
| OS << " }"; |
| } |
| |
| void writeCloneArgs(raw_ostream &OS) const override { |
| OS << "get" << getUpperName() << "()"; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "A->get" << getUpperName() << "()"; |
| } |
| |
| void writeCtorBody(raw_ostream &OS) const override { |
| OS << " if (!" << getUpperName() << ".empty())\n"; |
| OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() |
| << ".data(), " << getLowerName() << "Length);\n"; |
| } |
| |
| void writeCtorInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "Length(" << getUpperName() << ".size())," |
| << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() |
| << "Length])"; |
| } |
| |
| void writeCtorDefaultInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; |
| } |
| |
| void writeCtorParameters(raw_ostream &OS) const override { |
| OS << "llvm::StringRef " << getUpperName(); |
| } |
| |
| void writeDeclarations(raw_ostream &OS) const override { |
| OS << "unsigned " << getLowerName() << "Length;\n"; |
| OS << "char *" << getLowerName() << ";"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| OS << " std::string " << getLowerName() |
| << "= Record.readString();\n"; |
| } |
| |
| void writePCHReadArgs(raw_ostream &OS) const override { |
| OS << getLowerName(); |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " Record.AddString(SA->get" << getUpperName() << "());\n"; |
| } |
| |
| void writeValue(raw_ostream &OS) const override { |
| OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; |
| } |
| |
| void writeDump(raw_ostream &OS) const override { |
| OS << " OS << \" \\\"\" << SA->get" << getUpperName() |
| << "() << \"\\\"\";\n"; |
| } |
| }; |
| |
| class AlignedArgument : public Argument { |
| public: |
| AlignedArgument(const Record &Arg, StringRef Attr) |
| : Argument(Arg, Attr) |
| {} |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| OS << " bool is" << getUpperName() << "Dependent() const;\n"; |
| |
| OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; |
| |
| OS << " bool is" << getUpperName() << "Expr() const {\n"; |
| OS << " return is" << getLowerName() << "Expr;\n"; |
| OS << " }\n"; |
| |
| OS << " Expr *get" << getUpperName() << "Expr() const {\n"; |
| OS << " assert(is" << getLowerName() << "Expr);\n"; |
| OS << " return " << getLowerName() << "Expr;\n"; |
| OS << " }\n"; |
| |
| OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; |
| OS << " assert(!is" << getLowerName() << "Expr);\n"; |
| OS << " return " << getLowerName() << "Type;\n"; |
| OS << " }"; |
| } |
| |
| void writeAccessorDefinitions(raw_ostream &OS) const override { |
| OS << "bool " << getAttrName() << "Attr::is" << getUpperName() |
| << "Dependent() const {\n"; |
| OS << " if (is" << getLowerName() << "Expr)\n"; |
| OS << " return " << getLowerName() << "Expr && (" << getLowerName() |
| << "Expr->isValueDependent() || " << getLowerName() |
| << "Expr->isTypeDependent());\n"; |
| OS << " else\n"; |
| OS << " return " << getLowerName() |
| << "Type->getType()->isDependentType();\n"; |
| OS << "}\n"; |
| |
| // FIXME: Do not do the calculation here |
| // FIXME: Handle types correctly |
| // A null pointer means maximum alignment |
| OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName() |
| << "(ASTContext &Ctx) const {\n"; |
| OS << " assert(!is" << getUpperName() << "Dependent());\n"; |
| OS << " if (is" << getLowerName() << "Expr)\n"; |
| OS << " return " << getLowerName() << "Expr ? " << getLowerName() |
| << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()" |
| << " * Ctx.getCharWidth() : " |
| << "Ctx.getTargetDefaultAlignForAttributeAligned();\n"; |
| OS << " else\n"; |
| OS << " return 0; // FIXME\n"; |
| OS << "}\n"; |
| } |
| |
| void writeASTVisitorTraversal(raw_ostream &OS) const override { |
| StringRef Name = getUpperName(); |
| OS << " if (A->is" << Name << "Expr()) {\n" |
| << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n" |
| << " return false;\n" |
| << " } else if (auto *TSI = A->get" << Name << "Type()) {\n" |
| << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n" |
| << " return false;\n" |
| << " }\n"; |
| } |
| |
| void writeCloneArgs(raw_ostream &OS) const override { |
| OS << "is" << getLowerName() << "Expr, is" << getLowerName() |
| << "Expr ? static_cast<void*>(" << getLowerName() |
| << "Expr) : " << getLowerName() |
| << "Type"; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| // FIXME: move the definition in Sema::InstantiateAttrs to here. |
| // In the meantime, aligned attributes are cloned. |
| } |
| |
| void writeCtorBody(raw_ostream &OS) const override { |
| OS << " if (is" << getLowerName() << "Expr)\n"; |
| OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>(" |
| << getUpperName() << ");\n"; |
| OS << " else\n"; |
| OS << " " << getLowerName() |
| << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName() |
| << ");\n"; |
| } |
| |
| void writeCtorInitializers(raw_ostream &OS) const override { |
| OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; |
| } |
| |
| void writeCtorDefaultInitializers(raw_ostream &OS) const override { |
| OS << "is" << getLowerName() << "Expr(false)"; |
| } |
| |
| void writeCtorParameters(raw_ostream &OS) const override { |
| OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); |
| } |
| |
| void writeImplicitCtorArgs(raw_ostream &OS) const override { |
| OS << "Is" << getUpperName() << "Expr, " << getUpperName(); |
| } |
| |
| void writeDeclarations(raw_ostream &OS) const override { |
| OS << "bool is" << getLowerName() << "Expr;\n"; |
| OS << "union {\n"; |
| OS << "Expr *" << getLowerName() << "Expr;\n"; |
| OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; |
| OS << "};"; |
| } |
| |
| void writePCHReadArgs(raw_ostream &OS) const override { |
| OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n"; |
| OS << " void *" << getLowerName() << "Ptr;\n"; |
| OS << " if (is" << getLowerName() << "Expr)\n"; |
| OS << " " << getLowerName() << "Ptr = Record.readExpr();\n"; |
| OS << " else\n"; |
| OS << " " << getLowerName() |
| << "Ptr = Record.getTypeSourceInfo();\n"; |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; |
| OS << " if (SA->is" << getUpperName() << "Expr())\n"; |
| OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n"; |
| OS << " else\n"; |
| OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName() |
| << "Type());\n"; |
| } |
| |
| std::string getIsOmitted() const override { |
| return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str() |
| + "Expr"; |
| } |
| |
| void writeValue(raw_ostream &OS) const override { |
| OS << "\";\n"; |
| OS << " " << getLowerName() |
| << "Expr->printPretty(OS, nullptr, Policy);\n"; |
| OS << " OS << \""; |
| } |
| |
| void writeDump(raw_ostream &OS) const override {} |
| |
| void writeDumpChildren(raw_ostream &OS) const override { |
| OS << " if (SA->is" << getUpperName() << "Expr())\n"; |
| OS << " dumpStmt(SA->get" << getUpperName() << "Expr());\n"; |
| OS << " else\n"; |
| OS << " dumpType(SA->get" << getUpperName() |
| << "Type()->getType());\n"; |
| } |
| |
| void writeHasChildren(raw_ostream &OS) const override { |
| OS << "SA->is" << getUpperName() << "Expr()"; |
| } |
| }; |
| |
| class VariadicArgument : public Argument { |
| std::string Type, ArgName, ArgSizeName, RangeName; |
| |
| protected: |
| // Assumed to receive a parameter: raw_ostream OS. |
| virtual void writeValueImpl(raw_ostream &OS) const { |
| OS << " OS << Val;\n"; |
| } |
| // Assumed to receive a parameter: raw_ostream OS. |
| virtual void writeDumpImpl(raw_ostream &OS) const { |
| OS << " OS << \" \" << Val;\n"; |
| } |
| |
| public: |
| VariadicArgument(const Record &Arg, StringRef Attr, std::string T) |
| : Argument(Arg, Attr), Type(std::move(T)), |
| ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), |
| RangeName(getLowerName()) {} |
| |
| const std::string &getType() const { return Type; } |
| const std::string &getArgName() const { return ArgName; } |
| const std::string &getArgSizeName() const { return ArgSizeName; } |
| bool isVariadic() const override { return true; } |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| std::string IteratorType = getLowerName().str() + "_iterator"; |
| std::string BeginFn = getLowerName().str() + "_begin()"; |
| std::string EndFn = getLowerName().str() + "_end()"; |
| |
| OS << " typedef " << Type << "* " << IteratorType << ";\n"; |
| OS << " " << IteratorType << " " << BeginFn << " const {" |
| << " return " << ArgName << "; }\n"; |
| OS << " " << IteratorType << " " << EndFn << " const {" |
| << " return " << ArgName << " + " << ArgSizeName << "; }\n"; |
| OS << " unsigned " << getLowerName() << "_size() const {" |
| << " return " << ArgSizeName << "; }\n"; |
| OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName |
| << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn |
| << "); }\n"; |
| } |
| |
| void writeCloneArgs(raw_ostream &OS) const override { |
| OS << ArgName << ", " << ArgSizeName; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| // This isn't elegant, but we have to go through public methods... |
| OS << "A->" << getLowerName() << "_begin(), " |
| << "A->" << getLowerName() << "_size()"; |
| } |
| |
| void writeASTVisitorTraversal(raw_ostream &OS) const override { |
| // FIXME: Traverse the elements. |
| } |
| |
| void writeCtorBody(raw_ostream &OS) const override { |
| OS << " std::copy(" << getUpperName() << ", " << getUpperName() |
| << " + " << ArgSizeName << ", " << ArgName << ");\n"; |
| } |
| |
| void writeCtorInitializers(raw_ostream &OS) const override { |
| OS << ArgSizeName << "(" << getUpperName() << "Size), " |
| << ArgName << "(new (Ctx, 16) " << getType() << "[" |
| << ArgSizeName << "])"; |
| } |
| |
| void writeCtorDefaultInitializers(raw_ostream &OS) const override { |
| OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; |
| } |
| |
| void writeCtorParameters(raw_ostream &OS) const override { |
| OS << getType() << " *" << getUpperName() << ", unsigned " |
| << getUpperName() << "Size"; |
| } |
| |
| void writeImplicitCtorArgs(raw_ostream &OS) const override { |
| OS << getUpperName() << ", " << getUpperName() << "Size"; |
| } |
| |
| void writeDeclarations(raw_ostream &OS) const override { |
| OS << " unsigned " << ArgSizeName << ";\n"; |
| OS << " " << getType() << " *" << ArgName << ";"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; |
| OS << " SmallVector<" << getType() << ", 4> " |
| << getLowerName() << ";\n"; |
| OS << " " << getLowerName() << ".reserve(" << getLowerName() |
| << "Size);\n"; |
| |
| // If we can't store the values in the current type (if it's something |
| // like StringRef), store them in a different type and convert the |
| // container afterwards. |
| std::string StorageType = getStorageType(getType()); |
| std::string StorageName = getLowerName(); |
| if (StorageType != getType()) { |
| StorageName += "Storage"; |
| OS << " SmallVector<" << StorageType << ", 4> " |
| << StorageName << ";\n"; |
| OS << " " << StorageName << ".reserve(" << getLowerName() |
| << "Size);\n"; |
| } |
| |
| OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; |
| std::string read = ReadPCHRecord(Type); |
| OS << " " << StorageName << ".push_back(" << read << ");\n"; |
| |
| if (StorageType != getType()) { |
| OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; |
| OS << " " << getLowerName() << ".push_back(" |
| << StorageName << "[i]);\n"; |
| } |
| } |
| |
| void writePCHReadArgs(raw_ostream &OS) const override { |
| OS << getLowerName() << ".data(), " << getLowerName() << "Size"; |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; |
| OS << " for (auto &Val : SA->" << RangeName << "())\n"; |
| OS << " " << WritePCHRecord(Type, "Val"); |
| } |
| |
| void writeValue(raw_ostream &OS) const override { |
| OS << "\";\n"; |
| OS << " bool isFirst = true;\n" |
| << " for (const auto &Val : " << RangeName << "()) {\n" |
| << " if (isFirst) isFirst = false;\n" |
| << " else OS << \", \";\n"; |
| writeValueImpl(OS); |
| OS << " }\n"; |
| OS << " OS << \""; |
| } |
| |
| void writeDump(raw_ostream &OS) const override { |
| OS << " for (const auto &Val : SA->" << RangeName << "())\n"; |
| writeDumpImpl(OS); |
| } |
| }; |
| |
| class VariadicParamIdxArgument : public VariadicArgument { |
| public: |
| VariadicParamIdxArgument(const Record &Arg, StringRef Attr) |
| : VariadicArgument(Arg, Attr, "ParamIdx") {} |
| |
| public: |
| void writeValueImpl(raw_ostream &OS) const override { |
| OS << " OS << Val.getSourceIndex();\n"; |
| } |
| |
| void writeDumpImpl(raw_ostream &OS) const override { |
| OS << " OS << \" \" << Val.getSourceIndex();\n"; |
| } |
| }; |
| |
| // Unique the enums, but maintain the original declaration ordering. |
| std::vector<StringRef> |
| uniqueEnumsInOrder(const std::vector<StringRef> &enums) { |
| std::vector<StringRef> uniques; |
| SmallDenseSet<StringRef, 8> unique_set; |
| for (const auto &i : enums) { |
| if (unique_set.insert(i).second) |
| uniques.push_back(i); |
| } |
| return uniques; |
| } |
| |
| class EnumArgument : public Argument { |
| std::string type; |
| std::vector<StringRef> values, enums, uniques; |
| |
| public: |
| EnumArgument(const Record &Arg, StringRef Attr) |
| : Argument(Arg, Attr), type(Arg.getValueAsString("Type")), |
| values(Arg.getValueAsListOfStrings("Values")), |
| enums(Arg.getValueAsListOfStrings("Enums")), |
| uniques(uniqueEnumsInOrder(enums)) |
| { |
| // FIXME: Emit a proper error |
| assert(!uniques.empty()); |
| } |
| |
| bool isEnumArg() const override { return true; } |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| OS << " " << type << " get" << getUpperName() << "() const {\n"; |
| OS << " return " << getLowerName() << ";\n"; |
| OS << " }"; |
| } |
| |
| void writeCloneArgs(raw_ostream &OS) const override { |
| OS << getLowerName(); |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "A->get" << getUpperName() << "()"; |
| } |
| void writeCtorInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "(" << getUpperName() << ")"; |
| } |
| void writeCtorDefaultInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "(" << type << "(0))"; |
| } |
| void writeCtorParameters(raw_ostream &OS) const override { |
| OS << type << " " << getUpperName(); |
| } |
| void writeDeclarations(raw_ostream &OS) const override { |
| auto i = uniques.cbegin(), e = uniques.cend(); |
| // The last one needs to not have a comma. |
| --e; |
| |
| OS << "public:\n"; |
| OS << " enum " << type << " {\n"; |
| for (; i != e; ++i) |
| OS << " " << *i << ",\n"; |
| OS << " " << *e << "\n"; |
| OS << " };\n"; |
| OS << "private:\n"; |
| OS << " " << type << " " << getLowerName() << ";"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() |
| << "(static_cast<" << getAttrName() << "Attr::" << type |
| << ">(Record.readInt()));\n"; |
| } |
| |
| void writePCHReadArgs(raw_ostream &OS) const override { |
| OS << getLowerName(); |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; |
| } |
| |
| void writeValue(raw_ostream &OS) const override { |
| // FIXME: this isn't 100% correct -- some enum arguments require printing |
| // as a string literal, while others require printing as an identifier. |
| // Tablegen currently does not distinguish between the two forms. |
| OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" |
| << getUpperName() << "()) << \"\\\""; |
| } |
| |
| void writeDump(raw_ostream &OS) const override { |
| OS << " switch(SA->get" << getUpperName() << "()) {\n"; |
| for (const auto &I : uniques) { |
| OS << " case " << getAttrName() << "Attr::" << I << ":\n"; |
| OS << " OS << \" " << I << "\";\n"; |
| OS << " break;\n"; |
| } |
| OS << " }\n"; |
| } |
| |
| void writeConversion(raw_ostream &OS) const { |
| OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; |
| OS << type << " &Out) {\n"; |
| OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; |
| OS << type << ">>(Val)\n"; |
| for (size_t I = 0; I < enums.size(); ++I) { |
| OS << " .Case(\"" << values[I] << "\", "; |
| OS << getAttrName() << "Attr::" << enums[I] << ")\n"; |
| } |
| OS << " .Default(Optional<" << type << ">());\n"; |
| OS << " if (R) {\n"; |
| OS << " Out = *R;\n return true;\n }\n"; |
| OS << " return false;\n"; |
| OS << " }\n\n"; |
| |
| // Mapping from enumeration values back to enumeration strings isn't |
| // trivial because some enumeration values have multiple named |
| // enumerators, such as type_visibility(internal) and |
| // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. |
| OS << " static const char *Convert" << type << "ToStr(" |
| << type << " Val) {\n" |
| << " switch(Val) {\n"; |
| SmallDenseSet<StringRef, 8> Uniques; |
| for (size_t I = 0; I < enums.size(); ++I) { |
| if (Uniques.insert(enums[I]).second) |
| OS << " case " << getAttrName() << "Attr::" << enums[I] |
| << ": return \"" << values[I] << "\";\n"; |
| } |
| OS << " }\n" |
| << " llvm_unreachable(\"No enumerator with that value\");\n" |
| << " }\n"; |
| } |
| }; |
| |
| class VariadicEnumArgument: public VariadicArgument { |
| std::string type, QualifiedTypeName; |
| std::vector<StringRef> values, enums, uniques; |
| |
| protected: |
| void writeValueImpl(raw_ostream &OS) const override { |
| // FIXME: this isn't 100% correct -- some enum arguments require printing |
| // as a string literal, while others require printing as an identifier. |
| // Tablegen currently does not distinguish between the two forms. |
| OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type |
| << "ToStr(Val)" << "<< \"\\\"\";\n"; |
| } |
| |
| public: |
| VariadicEnumArgument(const Record &Arg, StringRef Attr) |
| : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")), |
| type(Arg.getValueAsString("Type")), |
| values(Arg.getValueAsListOfStrings("Values")), |
| enums(Arg.getValueAsListOfStrings("Enums")), |
| uniques(uniqueEnumsInOrder(enums)) |
| { |
| QualifiedTypeName = getAttrName().str() + "Attr::" + type; |
| |
| // FIXME: Emit a proper error |
| assert(!uniques.empty()); |
| } |
| |
| bool isVariadicEnumArg() const override { return true; } |
| |
| void writeDeclarations(raw_ostream &OS) const override { |
| auto i = uniques.cbegin(), e = uniques.cend(); |
| // The last one needs to not have a comma. |
| --e; |
| |
| OS << "public:\n"; |
| OS << " enum " << type << " {\n"; |
| for (; i != e; ++i) |
| OS << " " << *i << ",\n"; |
| OS << " " << *e << "\n"; |
| OS << " };\n"; |
| OS << "private:\n"; |
| |
| VariadicArgument::writeDeclarations(OS); |
| } |
| |
| void writeDump(raw_ostream &OS) const override { |
| OS << " for (" << getAttrName() << "Attr::" << getLowerName() |
| << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" |
| << getLowerName() << "_end(); I != E; ++I) {\n"; |
| OS << " switch(*I) {\n"; |
| for (const auto &UI : uniques) { |
| OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; |
| OS << " OS << \" " << UI << "\";\n"; |
| OS << " break;\n"; |
| } |
| OS << " }\n"; |
| OS << " }\n"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; |
| OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() |
| << ";\n"; |
| OS << " " << getLowerName() << ".reserve(" << getLowerName() |
| << "Size);\n"; |
| OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; |
| OS << " " << getLowerName() << ".push_back(" << "static_cast<" |
| << QualifiedTypeName << ">(Record.readInt()));\n"; |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; |
| OS << " for (" << getAttrName() << "Attr::" << getLowerName() |
| << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" |
| << getLowerName() << "_end(); i != e; ++i)\n"; |
| OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); |
| } |
| |
| void writeConversion(raw_ostream &OS) const { |
| OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; |
| OS << type << " &Out) {\n"; |
| OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; |
| OS << type << ">>(Val)\n"; |
| for (size_t I = 0; I < enums.size(); ++I) { |
| OS << " .Case(\"" << values[I] << "\", "; |
| OS << getAttrName() << "Attr::" << enums[I] << ")\n"; |
| } |
| OS << " .Default(Optional<" << type << ">());\n"; |
| OS << " if (R) {\n"; |
| OS << " Out = *R;\n return true;\n }\n"; |
| OS << " return false;\n"; |
| OS << " }\n\n"; |
| |
| OS << " static const char *Convert" << type << "ToStr(" |
| << type << " Val) {\n" |
| << " switch(Val) {\n"; |
| SmallDenseSet<StringRef, 8> Uniques; |
| for (size_t I = 0; I < enums.size(); ++I) { |
| if (Uniques.insert(enums[I]).second) |
| OS << " case " << getAttrName() << "Attr::" << enums[I] |
| << ": return \"" << values[I] << "\";\n"; |
| } |
| OS << " }\n" |
| << " llvm_unreachable(\"No enumerator with that value\");\n" |
| << " }\n"; |
| } |
| }; |
| |
| class VersionArgument : public Argument { |
| public: |
| VersionArgument(const Record &Arg, StringRef Attr) |
| : Argument(Arg, Attr) |
| {} |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| OS << " VersionTuple get" << getUpperName() << "() const {\n"; |
| OS << " return " << getLowerName() << ";\n"; |
| OS << " }\n"; |
| OS << " void set" << getUpperName() |
| << "(ASTContext &C, VersionTuple V) {\n"; |
| OS << " " << getLowerName() << " = V;\n"; |
| OS << " }"; |
| } |
| |
| void writeCloneArgs(raw_ostream &OS) const override { |
| OS << "get" << getUpperName() << "()"; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "A->get" << getUpperName() << "()"; |
| } |
| |
| void writeCtorInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "(" << getUpperName() << ")"; |
| } |
| |
| void writeCtorDefaultInitializers(raw_ostream &OS) const override { |
| OS << getLowerName() << "()"; |
| } |
| |
| void writeCtorParameters(raw_ostream &OS) const override { |
| OS << "VersionTuple " << getUpperName(); |
| } |
| |
| void writeDeclarations(raw_ostream &OS) const override { |
| OS << "VersionTuple " << getLowerName() << ";\n"; |
| } |
| |
| void writePCHReadDecls(raw_ostream &OS) const override { |
| OS << " VersionTuple " << getLowerName() |
| << "= Record.readVersionTuple();\n"; |
| } |
| |
| void writePCHReadArgs(raw_ostream &OS) const override { |
| OS << getLowerName(); |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n"; |
| } |
| |
| void writeValue(raw_ostream &OS) const override { |
| OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; |
| } |
| |
| void writeDump(raw_ostream &OS) const override { |
| OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; |
| } |
| }; |
| |
| class ExprArgument : public SimpleArgument { |
| public: |
| ExprArgument(const Record &Arg, StringRef Attr) |
| : SimpleArgument(Arg, Attr, "Expr *") |
| {} |
| |
| void writeASTVisitorTraversal(raw_ostream &OS) const override { |
| OS << " if (!" |
| << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; |
| OS << " return false;\n"; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "tempInst" << getUpperName(); |
| } |
| |
| void writeTemplateInstantiation(raw_ostream &OS) const override { |
| OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; |
| OS << " {\n"; |
| OS << " EnterExpressionEvaluationContext " |
| << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; |
| OS << " ExprResult " << "Result = S.SubstExpr(" |
| << "A->get" << getUpperName() << "(), TemplateArgs);\n"; |
| OS << " tempInst" << getUpperName() << " = " |
| << "Result.getAs<Expr>();\n"; |
| OS << " }\n"; |
| } |
| |
| void writeDump(raw_ostream &OS) const override {} |
| |
| void writeDumpChildren(raw_ostream &OS) const override { |
| OS << " dumpStmt(SA->get" << getUpperName() << "());\n"; |
| } |
| |
| void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } |
| }; |
| |
| class VariadicExprArgument : public VariadicArgument { |
| public: |
| VariadicExprArgument(const Record &Arg, StringRef Attr) |
| : VariadicArgument(Arg, Attr, "Expr *") |
| {} |
| |
| void writeASTVisitorTraversal(raw_ostream &OS) const override { |
| OS << " {\n"; |
| OS << " " << getType() << " *I = A->" << getLowerName() |
| << "_begin();\n"; |
| OS << " " << getType() << " *E = A->" << getLowerName() |
| << "_end();\n"; |
| OS << " for (; I != E; ++I) {\n"; |
| OS << " if (!getDerived().TraverseStmt(*I))\n"; |
| OS << " return false;\n"; |
| OS << " }\n"; |
| OS << " }\n"; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "tempInst" << getUpperName() << ", " |
| << "A->" << getLowerName() << "_size()"; |
| } |
| |
| void writeTemplateInstantiation(raw_ostream &OS) const override { |
| OS << " auto *tempInst" << getUpperName() |
| << " = new (C, 16) " << getType() |
| << "[A->" << getLowerName() << "_size()];\n"; |
| OS << " {\n"; |
| OS << " EnterExpressionEvaluationContext " |
| << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; |
| OS << " " << getType() << " *TI = tempInst" << getUpperName() |
| << ";\n"; |
| OS << " " << getType() << " *I = A->" << getLowerName() |
| << "_begin();\n"; |
| OS << " " << getType() << " *E = A->" << getLowerName() |
| << "_end();\n"; |
| OS << " for (; I != E; ++I, ++TI) {\n"; |
| OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; |
| OS << " *TI = Result.getAs<Expr>();\n"; |
| OS << " }\n"; |
| OS << " }\n"; |
| } |
| |
| void writeDump(raw_ostream &OS) const override {} |
| |
| void writeDumpChildren(raw_ostream &OS) const override { |
| OS << " for (" << getAttrName() << "Attr::" << getLowerName() |
| << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" |
| << getLowerName() << "_end(); I != E; ++I)\n"; |
| OS << " dumpStmt(*I);\n"; |
| } |
| |
| void writeHasChildren(raw_ostream &OS) const override { |
| OS << "SA->" << getLowerName() << "_begin() != " |
| << "SA->" << getLowerName() << "_end()"; |
| } |
| }; |
| |
| class VariadicIdentifierArgument : public VariadicArgument { |
| public: |
| VariadicIdentifierArgument(const Record &Arg, StringRef Attr) |
| : VariadicArgument(Arg, Attr, "IdentifierInfo *") |
| {} |
| }; |
| |
| class VariadicStringArgument : public VariadicArgument { |
| public: |
| VariadicStringArgument(const Record &Arg, StringRef Attr) |
| : VariadicArgument(Arg, Attr, "StringRef") |
| {} |
| |
| void writeCtorBody(raw_ostream &OS) const override { |
| OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n" |
| " ++I) {\n" |
| " StringRef Ref = " << getUpperName() << "[I];\n" |
| " if (!Ref.empty()) {\n" |
| " char *Mem = new (Ctx, 1) char[Ref.size()];\n" |
| " std::memcpy(Mem, Ref.data(), Ref.size());\n" |
| " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n" |
| " }\n" |
| " }\n"; |
| } |
| |
| void writeValueImpl(raw_ostream &OS) const override { |
| OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; |
| } |
| }; |
| |
| class TypeArgument : public SimpleArgument { |
| public: |
| TypeArgument(const Record &Arg, StringRef Attr) |
| : SimpleArgument(Arg, Attr, "TypeSourceInfo *") |
| {} |
| |
| void writeAccessors(raw_ostream &OS) const override { |
| OS << " QualType get" << getUpperName() << "() const {\n"; |
| OS << " return " << getLowerName() << "->getType();\n"; |
| OS << " }"; |
| OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; |
| OS << " return " << getLowerName() << ";\n"; |
| OS << " }"; |
| } |
| |
| void writeASTVisitorTraversal(raw_ostream &OS) const override { |
| OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n"; |
| OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"; |
| OS << " return false;\n"; |
| } |
| |
| void writeTemplateInstantiationArgs(raw_ostream &OS) const override { |
| OS << "A->get" << getUpperName() << "Loc()"; |
| } |
| |
| void writePCHWrite(raw_ostream &OS) const override { |
| OS << " " << WritePCHRecord( |
| getType(), "SA->get" + std::string(getUpperName()) + "Loc()"); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static std::unique_ptr<Argument> |
| createArgument(const Record &Arg, StringRef Attr, |
| const Record *Search = nullptr) { |
| if (!Search) |
| Search = &Arg; |
| |
| std::unique_ptr<Argument> Ptr; |
| llvm::StringRef ArgName = Search->getName(); |
| |
| if (ArgName == "AlignedArgument") |
| Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr); |
| else if (ArgName == "EnumArgument") |
| Ptr = llvm::make_unique<EnumArgument>(Arg, Attr); |
| else if (ArgName == "ExprArgument") |
| Ptr = llvm::make_unique<ExprArgument>(Arg, Attr); |
| else if (ArgName == "FunctionArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *"); |
| else if (ArgName == "NamedArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "NamedDecl *"); |
| else if (ArgName == "IdentifierArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *"); |
| else if (ArgName == "DefaultBoolArgument") |
| Ptr = llvm::make_unique<DefaultSimpleArgument>( |
| Arg, Attr, "bool", Arg.getValueAsBit("Default")); |
| else if (ArgName == "BoolArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool"); |
| else if (ArgName == "DefaultIntArgument") |
| Ptr = llvm::make_unique<DefaultSimpleArgument>( |
| Arg, Attr, "int", Arg.getValueAsInt("Default")); |
| else if (ArgName == "IntArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int"); |
| else if (ArgName == "StringArgument") |
| Ptr = llvm::make_unique<StringArgument>(Arg, Attr); |
| else if (ArgName == "TypeArgument") |
| Ptr = llvm::make_unique<TypeArgument>(Arg, Attr); |
| else if (ArgName == "UnsignedArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned"); |
| else if (ArgName == "VariadicUnsignedArgument") |
| Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned"); |
| else if (ArgName == "VariadicStringArgument") |
| Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr); |
| else if (ArgName == "VariadicEnumArgument") |
| Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr); |
| else if (ArgName == "VariadicExprArgument") |
| Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr); |
| else if (ArgName == "VariadicParamIdxArgument") |
| Ptr = llvm::make_unique<VariadicParamIdxArgument>(Arg, Attr); |
| else if (ArgName == "ParamIdxArgument") |
| Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx"); |
| else if (ArgName == "VariadicIdentifierArgument") |
| Ptr = llvm::make_unique<VariadicIdentifierArgument>(Arg, Attr); |
| else if (ArgName == "VersionArgument") |
| Ptr = llvm::make_unique<VersionArgument>(Arg, Attr); |
| |
| if (!Ptr) { |
| // Search in reverse order so that the most-derived type is handled first. |
| ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses(); |
| for (const auto &Base : llvm::reverse(Bases)) { |
| if ((Ptr = createArgument(Arg, Attr, Base.first))) |
| break; |
| } |
| } |
| |
| if (Ptr && Arg.getValueAsBit("Optional")) |
| Ptr->setOptional(true); |
| |
| if (Ptr && Arg.getValueAsBit("Fake")) |
| Ptr->setFake(true); |
| |
| return Ptr; |
| } |
| |
| static void writeAvailabilityValue(raw_ostream &OS) { |
| OS << "\" << getPlatform()->getName();\n" |
| << " if (getStrict()) OS << \", strict\";\n" |
| << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" |
| << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" |
| << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" |
| << " if (getUnavailable()) OS << \", unavailable\";\n" |
| << " OS << \""; |
| } |
| |
| static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) { |
| OS << "\\\"\" << getMessage() << \"\\\"\";\n"; |
| // Only GNU deprecated has an optional fixit argument at the second position. |
| if (Variety == "GNU") |
| OS << " if (!getReplacement().empty()) OS << \", \\\"\"" |
| " << getReplacement() << \"\\\"\";\n"; |
| OS << " OS << \""; |
| } |
| |
| static void writeGetSpellingFunction(Record &R, raw_ostream &OS) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); |
| |
| OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; |
| if (Spellings.empty()) { |
| OS << " return \"(No spelling)\";\n}\n\n"; |
| return; |
| } |
| |
| OS << " switch (SpellingListIndex) {\n" |
| " default:\n" |
| " llvm_unreachable(\"Unknown attribute spelling!\");\n" |
| " return \"(No spelling)\";\n"; |
| |
| for (unsigned I = 0; I < Spellings.size(); ++I) |
| OS << " case " << I << ":\n" |
| " return \"" << Spellings[I].name() << "\";\n"; |
| // End of the switch statement. |
| OS << " }\n"; |
| // End of the getSpelling function. |
| OS << "}\n\n"; |
| } |
| |
| static void |
| writePrettyPrintFunction(Record &R, |
| const std::vector<std::unique_ptr<Argument>> &Args, |
| raw_ostream &OS) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); |
| |
| OS << "void " << R.getName() << "Attr::printPretty(" |
| << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; |
| |
| if (Spellings.empty()) { |
| OS << "}\n\n"; |
| return; |
| } |
| |
| OS << |
| " switch (SpellingListIndex) {\n" |
| " default:\n" |
| " llvm_unreachable(\"Unknown attribute spelling!\");\n" |
| " break;\n"; |
| |
| for (unsigned I = 0; I < Spellings.size(); ++ I) { |
| llvm::SmallString<16> Prefix; |
| llvm::SmallString<8> Suffix; |
| // The actual spelling of the name and namespace (if applicable) |
| // of an attribute without considering prefix and suffix. |
| llvm::SmallString<64> Spelling; |
| std::string Name = Spellings[I].name(); |
| std::string Variety = Spellings[I].variety(); |
| |
| if (Variety == "GNU") { |
| Prefix = " __attribute__(("; |
| Suffix = "))"; |
| } else if (Variety == "CXX11" || Variety == "C2x") { |
| Prefix = " [["; |
| Suffix = "]]"; |
| std::string Namespace = Spellings[I].nameSpace(); |
| if (!Namespace.empty()) { |
| Spelling += Namespace; |
| Spelling += "::"; |
| } |
| } else if (Variety == "Declspec") { |
| Prefix = " __declspec("; |
| Suffix = ")"; |
| } else if (Variety == "Microsoft") { |
| Prefix = "["; |
| Suffix = "]"; |
| } else if (Variety == "Keyword") { |
| Prefix = " "; |
| Suffix = ""; |
| } else if (Variety == "Pragma") { |
| Prefix = "#pragma "; |
| Suffix = "\n"; |
| std::string Namespace = Spellings[I].nameSpace(); |
| if (!Namespace.empty()) { |
| Spelling += Namespace; |
| Spelling += " "; |
| } |
| } else { |
| llvm_unreachable("Unknown attribute syntax variety!"); |
| } |
| |
| Spelling += Name; |
| |
| OS << |
| " case " << I << " : {\n" |
| " OS << \"" << Prefix << Spelling; |
| |
| if (Variety == "Pragma") { |
| OS << "\";\n"; |
| OS << " printPrettyPragma(OS, Policy);\n"; |
| OS << " OS << \"\\n\";"; |
| OS << " break;\n"; |
| OS << " }\n"; |
| continue; |
| } |
| |
| if (Spelling == "availability") { |
| OS << "("; |
| writeAvailabilityValue(OS); |
| OS << ")"; |
| } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") { |
| OS << "("; |
| writeDeprecatedAttrValue(OS, Variety); |
| OS << ")"; |
| } else { |
| // To avoid printing parentheses around an empty argument list or |
| // printing spurious commas at the end of an argument list, we need to |
| // determine where the last provided non-fake argument is. |
| unsigned NonFakeArgs = 0; |
| unsigned TrailingOptArgs = 0; |
| bool FoundNonOptArg = false; |
| for (const auto &arg : llvm::reverse(Args)) { |
| if (arg->isFake()) |
| continue; |
| ++NonFakeArgs; |
| if (FoundNonOptArg) |
| continue; |
| // FIXME: arg->getIsOmitted() == "false" means we haven't implemented |
| // any way to detect whether the argument was omitted. |
| if (!arg->isOptional() || arg->getIsOmitted() == "false") { |
| FoundNonOptArg = true; |
| continue; |
| } |
| if (!TrailingOptArgs++) |
| OS << "\";\n" |
| << " unsigned TrailingOmittedArgs = 0;\n"; |
| OS << " if (" << arg->getIsOmitted() << ")\n" |
| << " ++TrailingOmittedArgs;\n"; |
| } |
| if (TrailingOptArgs) |
| OS << " OS << \""; |
| if (TrailingOptArgs < NonFakeArgs) |
| OS << "("; |
| else if (TrailingOptArgs) |
| OS << "\";\n" |
| << " if (TrailingOmittedArgs < " << NonFakeArgs << ")\n" |
| << " OS << \"(\";\n" |
| << " OS << \""; |
| unsigned ArgIndex = 0; |
| for (const auto &arg : Args) { |
| if (arg->isFake()) |
| continue; |
| if (ArgIndex) { |
| if (ArgIndex >= NonFakeArgs - TrailingOptArgs) |
| OS << "\";\n" |
| << " if (" << ArgIndex << " < " << NonFakeArgs |
| << " - TrailingOmittedArgs)\n" |
| << " OS << \", \";\n" |
| << " OS << \""; |
| else |
| OS << ", "; |
| } |
| std::string IsOmitted = arg->getIsOmitted(); |
| if (arg->isOptional() && IsOmitted != "false") |
| OS << "\";\n" |
| << " if (!(" << IsOmitted << ")) {\n" |
| << " OS << \""; |
| arg->writeValue(OS); |
| if (arg->isOptional() && IsOmitted != "false") |
| OS << "\";\n" |
| << " }\n" |
| << " OS << \""; |
| ++ArgIndex; |
| } |
| if (TrailingOptArgs < NonFakeArgs) |
| OS << ")"; |
| else if (TrailingOptArgs) |
| OS << "\";\n" |
| << " if (TrailingOmittedArgs < " << NonFakeArgs << ")\n" |
| << " OS << \")\";\n" |
| << " OS << \""; |
| } |
| |
| OS << Suffix + "\";\n"; |
| |
| OS << |
| " break;\n" |
| " }\n"; |
| } |
| |
| // End of the switch statement. |
| OS << "}\n"; |
| // End of the print function. |
| OS << "}\n\n"; |
| } |
| |
| /// Return the index of a spelling in a spelling list. |
| static unsigned |
| getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList, |
| const FlattenedSpelling &Spelling) { |
| assert(!SpellingList.empty() && "Spelling list is empty!"); |
| |
| for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { |
| const FlattenedSpelling &S = SpellingList[Index]; |
| if (S.variety() != Spelling.variety()) |
| continue; |
| if (S.nameSpace() != Spelling.nameSpace()) |
| continue; |
| if (S.name() != Spelling.name()) |
| continue; |
| |
| return Index; |
| } |
| |
| llvm_unreachable("Unknown spelling!"); |
| } |
| |
| static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { |
| std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors"); |
| if (Accessors.empty()) |
| return; |
| |
| const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R); |
| assert(!SpellingList.empty() && |
| "Attribute with empty spelling list can't have accessors!"); |
| for (const auto *Accessor : Accessors) { |
| const StringRef Name = Accessor->getValueAsString("Name"); |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor); |
| |
| OS << " bool " << Name << "() const { return SpellingListIndex == "; |
| for (unsigned Index = 0; Index < Spellings.size(); ++Index) { |
| OS << getSpellingListIndex(SpellingList, Spellings[Index]); |
| if (Index != Spellings.size() - 1) |
| OS << " ||\n SpellingListIndex == "; |
| else |
| OS << "; }\n"; |
| } |
| } |
| } |
| |
| static bool |
| SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) { |
| assert(!Spellings.empty() && "An empty list of spellings was provided"); |
| std::string FirstName = NormalizeNameForSpellingComparison( |
| Spellings.front().name()); |
| for (const auto &Spelling : |
| llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { |
| std::string Name = NormalizeNameForSpellingComparison(Spelling.name()); |
| if (Name != FirstName) |
| return false; |
| } |
| return true; |
| } |
| |
| typedef std::map<unsigned, std::string> SemanticSpellingMap; |
| static std::string |
| CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings, |
| SemanticSpellingMap &Map) { |
| // The enumerants are automatically generated based on the variety, |
| // namespace (if present) and name for each attribute spelling. However, |
| // care is taken to avoid trampling on the reserved namespace due to |
| // underscores. |
| std::string Ret(" enum Spelling {\n"); |
| std::set<std::string> Uniques; |
| unsigned Idx = 0; |
| for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { |
| const FlattenedSpelling &S = *I; |
| const std::string &Variety = S.variety(); |
| const std::string &Spelling = S.name(); |
| const std::string &Namespace = S.nameSpace(); |
| std::string EnumName; |
| |
| EnumName += (Variety + "_"); |
| if (!Namespace.empty()) |
| EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + |
| "_"); |
| EnumName += NormalizeNameForSpellingComparison(Spelling); |
| |
| // Even if the name is not unique, this spelling index corresponds to a |
| // particular enumerant name that we've calculated. |
| Map[Idx] = EnumName; |
| |
| // Since we have been stripping underscores to avoid trampling on the |
| // reserved namespace, we may have inadvertently created duplicate |
| // enumerant names. These duplicates are not considered part of the |
| // semantic spelling, and can be elided. |
| if (Uniques.find(EnumName) != Uniques.end()) |
| continue; |
| |
| Uniques.insert(EnumName); |
| if (I != Spellings.begin()) |
| Ret += ",\n"; |
| // Duplicate spellings are not considered part of the semantic spelling |
| // enumeration, but the spelling index and semantic spelling values are |
| // meant to be equivalent, so we must specify a concrete value for each |
| // enumerator. |
| Ret += " " + EnumName + " = " + llvm::utostr(Idx); |
| } |
| Ret += "\n };\n\n"; |
| return Ret; |
| } |
| |
| void WriteSemanticSpellingSwitch(const std::string &VarName, |
| const SemanticSpellingMap &Map, |
| raw_ostream &OS) { |
| OS << " switch (" << VarName << ") {\n default: " |
| << "llvm_unreachable(\"Unknown spelling list index\");\n"; |
| for (const auto &I : Map) |
| OS << " case " << I.first << ": return " << I.second << ";\n"; |
| OS << " }\n"; |
| } |
| |
| // Emits the LateParsed property for attributes. |
| static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { |
| OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| for (const auto *Attr : Attrs) { |
| bool LateParsed = Attr->getValueAsBit("LateParsed"); |
| |
| if (LateParsed) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); |
| |
| // FIXME: Handle non-GNU attributes |
| for (const auto &I : Spellings) { |
| if (I.variety() != "GNU") |
| continue; |
| OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; |
| } |
| } |
| } |
| OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; |
| } |
| |
| static bool hasGNUorCXX11Spelling(const Record &Attribute) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); |
| for (const auto &I : Spellings) { |
| if (I.variety() == "GNU" || I.variety() == "CXX11") |
| return true; |
| } |
| return false; |
| } |
| |
| namespace { |
| |
| struct AttributeSubjectMatchRule { |
| const Record *MetaSubject; |
| const Record *Constraint; |
| |
| AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint) |
| : MetaSubject(MetaSubject), Constraint(Constraint) { |
| assert(MetaSubject && "Missing subject"); |
| } |
| |
| bool isSubRule() const { return Constraint != nullptr; } |
| |
| std::vector<Record *> getSubjects() const { |
| return (Constraint ? Constraint : MetaSubject) |
| ->getValueAsListOfDefs("Subjects"); |
| } |
| |
| std::vector<Record *> getLangOpts() const { |
| if (Constraint) { |
| // Lookup the options in the sub-rule first, in case the sub-rule |
| // overrides the rules options. |
| std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts"); |
| if (!Opts.empty()) |
| return Opts; |
| } |
| return MetaSubject->getValueAsListOfDefs("LangOpts"); |
| } |
| |
| // Abstract rules are used only for sub-rules |
| bool isAbstractRule() const { return getSubjects().empty(); } |
| |
| StringRef getName() const { |
| return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name"); |
| } |
| |
| bool isNegatedSubRule() const { |
| assert(isSubRule() && "Not a sub-rule"); |
| return Constraint->getValueAsBit("Negated"); |
| } |
| |
| std::string getSpelling() const { |
| std::string Result = MetaSubject->getValueAsString("Name"); |
| if (isSubRule()) { |
| Result += '('; |
| if (isNegatedSubRule()) |
| Result += "unless("; |
| Result += getName(); |
| if (isNegatedSubRule()) |
| Result += ')'; |
| Result += ')'; |
| } |
| return Result; |
| } |
| |
| std::string getEnumValueName() const { |
| SmallString<128> Result; |
| Result += "SubjectMatchRule_"; |
| Result += MetaSubject->getValueAsString("Name"); |
| if (isSubRule()) { |
| Result += "_"; |
| if (isNegatedSubRule()) |
| Result += "not_"; |
| Result += Constraint->getValueAsString("Name"); |
| } |
| if (isAbstractRule()) |
| Result += "_abstract"; |
| return Result.str(); |
| } |
| |
| std::string getEnumValue() const { return "attr::" + getEnumValueName(); } |
| |
| static const char *EnumName; |
| }; |
| |
| const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule"; |
| |
| struct PragmaClangAttributeSupport { |
| std::vector<AttributeSubjectMatchRule> Rules; |
| |
| class RuleOrAggregateRuleSet { |
| std::vector<AttributeSubjectMatchRule> Rules; |
| bool IsRule; |
| RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules, |
| bool IsRule) |
| : Rules(Rules), IsRule(IsRule) {} |
| |
| public: |
| bool isRule() const { return IsRule; } |
| |
| const AttributeSubjectMatchRule &getRule() const { |
| assert(IsRule && "not a rule!"); |
| return Rules[0]; |
| } |
| |
| ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const { |
| return Rules; |
| } |
| |
| static RuleOrAggregateRuleSet |
| getRule(const AttributeSubjectMatchRule &Rule) { |
| return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true); |
| } |
| static RuleOrAggregateRuleSet |
| getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) { |
| return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false); |
| } |
| }; |
| llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules; |
| |
| PragmaClangAttributeSupport(RecordKeeper &Records); |
| |
| bool isAttributedSupported(const Record &Attribute); |
| |
| void emitMatchRuleList(raw_ostream &OS); |
| |
| std::string generateStrictConformsTo(const Record &Attr, raw_ostream &OS); |
| |
| void generateParsingHelpers(raw_ostream &OS); |
| }; |
| |
| } // end anonymous namespace |
| |
| static bool doesDeclDeriveFrom(const Record *D, const Record *Base) { |
| const Record *CurrentBase = D->getValueAsDef("Base"); |
| if (!CurrentBase) |
| return false; |
| if (CurrentBase == Base) |
| return true; |
| return doesDeclDeriveFrom(CurrentBase, Base); |
| } |
| |
| PragmaClangAttributeSupport::PragmaClangAttributeSupport( |
| RecordKeeper &Records) { |
| std::vector<Record *> MetaSubjects = |
| Records.getAllDerivedDefinitions("AttrSubjectMatcherRule"); |
| auto MapFromSubjectsToRules = [this](const Record *SubjectContainer, |
| const Record *MetaSubject, |
| const Record *Constraint) { |
| Rules.emplace_back(MetaSubject, Constraint); |
| std::vector<Record *> ApplicableSubjects = |
| SubjectContainer->getValueAsListOfDefs("Subjects"); |
| for (const auto *Subject : ApplicableSubjects) { |
| bool Inserted = |
| SubjectsToRules |
| .try_emplace(Subject, RuleOrAggregateRuleSet::getRule( |
| AttributeSubjectMatchRule(MetaSubject, |
| Constraint))) |
| .second; |
| if (!Inserted) { |
| PrintFatalError("Attribute subject match rules should not represent" |
| "same attribute subjects."); |
| } |
| } |
| }; |
| for (const auto *MetaSubject : MetaSubjects) { |
| MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr); |
| std::vector<Record *> Constraints = |
| MetaSubject->getValueAsListOfDefs("Constraints"); |
| for (const auto *Constraint : Constraints) |
| MapFromSubjectsToRules(Constraint, MetaSubject, Constraint); |
| } |
| |
| std::vector<Record *> Aggregates = |
| Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule"); |
| std::vector<Record *> DeclNodes = Records.getAllDerivedDefinitions("DDecl"); |
| for (const auto *Aggregate : Aggregates) { |
| Record *SubjectDecl = Aggregate->getValueAsDef("Subject"); |
| |
| // Gather sub-classes of the aggregate subject that act as attribute |
| // subject rules. |
| std::vector<AttributeSubjectMatchRule> Rules; |
| for (const auto *D : DeclNodes) { |
| if (doesDeclDeriveFrom(D, SubjectDecl)) { |
| auto It = SubjectsToRules.find(D); |
| if (It == SubjectsToRules.end()) |
| continue; |
| if (!It->second.isRule() || It->second.getRule().isSubRule()) |
| continue; // Assume that the rule will be included as well. |
| Rules.push_back(It->second.getRule()); |
| } |
| } |
| |
| bool Inserted = |
| SubjectsToRules |
| .try_emplace(SubjectDecl, |
| RuleOrAggregateRuleSet::getAggregateRuleSet(Rules)) |
| .second; |
| if (!Inserted) { |
| PrintFatalError("Attribute subject match rules should not represent" |
| "same attribute subjects."); |
| } |
| } |
| } |
| |
| static PragmaClangAttributeSupport & |
| getPragmaAttributeSupport(RecordKeeper &Records) { |
| static PragmaClangAttributeSupport Instance(Records); |
| return Instance; |
| } |
| |
| void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) { |
| OS << "#ifndef ATTR_MATCH_SUB_RULE\n"; |
| OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, " |
| "IsNegated) " |
| << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n"; |
| OS << "#endif\n"; |
| for (const auto &Rule : Rules) { |
| OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '('; |
| OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", " |
| << Rule.isAbstractRule(); |
| if (Rule.isSubRule()) |
| OS << ", " |
| << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue() |
| << ", " << Rule.isNegatedSubRule(); |
| OS << ")\n"; |
| } |
| OS << "#undef ATTR_MATCH_SUB_RULE\n"; |
| } |
| |
| bool PragmaClangAttributeSupport::isAttributedSupported( |
| const Record &Attribute) { |
| if (Attribute.getValueAsBit("ForcePragmaAttributeSupport")) |
| return true; |
| // Opt-out rules: |
| // FIXME: The documentation check should be moved before |
| // the ForcePragmaAttributeSupport check after annotate is documented. |
| // No documentation present. |
| if (Attribute.isValueUnset("Documentation")) |
| return false; |
| std::vector<Record *> Docs = Attribute.getValueAsListOfDefs("Documentation"); |
| if (Docs.empty()) |
| return false; |
| if (Docs.size() == 1 && Docs[0]->getName() == "Undocumented") |
| return false; |
| // An attribute requires delayed parsing (LateParsed is on) |
| if (Attribute.getValueAsBit("LateParsed")) |
| return false; |
| // An attribute has no GNU/CXX11 spelling |
| if (!hasGNUorCXX11Spelling(Attribute)) |
| return false; |
| // An attribute subject list has a subject that isn't covered by one of the |
| // subject match rules or has no subjects at all. |
| if (Attribute.isValueUnset("Subjects")) |
| return false; |
| const Record *SubjectObj = Attribute.getValueAsDef("Subjects"); |
| std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); |
| if (Subjects.empty()) |
| return false; |
| for (const auto *Subject : Subjects) { |
| if (SubjectsToRules.find(Subject) == SubjectsToRules.end()) |
| return false; |
| } |
| return true; |
| } |
| |
| std::string |
| PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr, |
| raw_ostream &OS) { |
| if (!isAttributedSupported(Attr)) |
| return "nullptr"; |
| // Generate a function that constructs a set of matching rules that describe |
| // to which declarations the attribute should apply to. |
| std::string FnName = "matchRulesFor" + Attr.getName().str(); |
| OS << "static void " << FnName << "(llvm::SmallVectorImpl<std::pair<" |
| << AttributeSubjectMatchRule::EnumName |
| << ", bool>> &MatchRules, const LangOptions &LangOpts) {\n"; |
| if (Attr.isValueUnset("Subjects")) { |
| OS << "}\n\n"; |
| return FnName; |
| } |
| const Record *SubjectObj = Attr.getValueAsDef("Subjects"); |
| std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); |
| for (const auto *Subject : Subjects) { |
| auto It = SubjectsToRules.find(Subject); |
| assert(It != SubjectsToRules.end() && |
| "This attribute is unsupported by #pragma clang attribute"); |
| for (const auto &Rule : It->getSecond().getAggregateRuleSet()) { |
| // The rule might be language specific, so only subtract it from the given |
| // rules if the specific language options are specified. |
| std::vector<Record *> LangOpts = Rule.getLangOpts(); |
| OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue() |
| << ", /*IsSupported=*/"; |
| if (!LangOpts.empty()) { |
| for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) { |
| const StringRef Part = (*I)->getValueAsString("Name"); |
| if ((*I)->getValueAsBit("Negated")) |
| OS << "!"; |
| OS << "LangOpts." << Part; |
| if (I + 1 != E) |
| OS << " || "; |
| } |
| } else |
| OS << "true"; |
| OS << "));\n"; |
| } |
| } |
| OS << "}\n\n"; |
| return FnName; |
| } |
| |
| void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) { |
| // Generate routines that check the names of sub-rules. |
| OS << "Optional<attr::SubjectMatchRule> " |
| "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n"; |
| OS << " return None;\n"; |
| OS << "}\n\n"; |
| |
| std::map<const Record *, std::vector<AttributeSubjectMatchRule>> |
| SubMatchRules; |
| for (const auto &Rule : Rules) { |
| if (!Rule.isSubRule()) |
| continue; |
| SubMatchRules[Rule.MetaSubject].push_back(Rule); |
| } |
| |
| for (const auto &SubMatchRule : SubMatchRules) { |
| OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_" |
| << SubMatchRule.first->getValueAsString("Name") |
| << "(StringRef Name, bool IsUnless) {\n"; |
| OS << " if (IsUnless)\n"; |
| OS << " return " |
| "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n"; |
| for (const auto &Rule : SubMatchRule.second) { |
| if (Rule.isNegatedSubRule()) |
| OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() |
| << ").\n"; |
| } |
| OS << " Default(None);\n"; |
| OS << " return " |
| "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n"; |
| for (const auto &Rule : SubMatchRule.second) { |
| if (!Rule.isNegatedSubRule()) |
| OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() |
| << ").\n"; |
| } |
| OS << " Default(None);\n"; |
| OS << "}\n\n"; |
| } |
| |
| // Generate the function that checks for the top-level rules. |
| OS << "std::pair<Optional<attr::SubjectMatchRule>, " |
| "Optional<attr::SubjectMatchRule> (*)(StringRef, " |
| "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n"; |
| OS << " return " |
| "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, " |
| "Optional<attr::SubjectMatchRule> (*) (StringRef, " |
| "bool)>>(Name).\n"; |
| for (const auto &Rule : Rules) { |
| if (Rule.isSubRule()) |
| continue; |
| std::string SubRuleFunction; |
| if (SubMatchRules.count(Rule.MetaSubject)) |
| SubRuleFunction = |
| ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str(); |
| else |
| SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor"; |
| OS << " Case(\"" << Rule.getName() << "\", std::make_pair(" |
| << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n"; |
| } |
| OS << " Default(std::make_pair(None, " |
| "defaultIsAttributeSubjectMatchSubRuleFor));\n"; |
| OS << "}\n\n"; |
| |
| // Generate the function that checks for the submatch rules. |
| OS << "const char *validAttributeSubjectMatchSubRules(" |
| << AttributeSubjectMatchRule::EnumName << " Rule) {\n"; |
| OS << " switch (Rule) {\n"; |
| for (const auto &SubMatchRule : SubMatchRules) { |
| OS << " case " |
| << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue() |
| << ":\n"; |
| OS << " return \"'"; |
| bool IsFirst = true; |
| for (const auto &Rule : SubMatchRule.second) { |
| if (!IsFirst) |
| OS << ", '"; |
| IsFirst = false; |
| if (Rule.isNegatedSubRule()) |
| OS << "unless("; |
| OS << Rule.getName(); |
| if (Rule.isNegatedSubRule()) |
| OS << ')'; |
| OS << "'"; |
| } |
| OS << "\";\n"; |
| } |
| OS << " default: return nullptr;\n"; |
| OS << " }\n"; |
| OS << "}\n\n"; |
| } |
| |
| template <typename Fn> |
| static void forEachUniqueSpelling(const Record &Attr, Fn &&F) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); |
| SmallDenseSet<StringRef, 8> Seen; |
| for (const FlattenedSpelling &S : Spellings) { |
| if (Seen.insert(S.name()).second) |
| F(S); |
| } |
| } |
| |
| /// Emits the first-argument-is-type property for attributes. |
| static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { |
| OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| for (const auto *Attr : Attrs) { |
| // Determine whether the first argument is a type. |
| std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); |
| if (Args.empty()) |
| continue; |
| |
| if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument") |
| continue; |
| |
| // All these spellings take a single type argument. |
| forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { |
| OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; |
| }); |
| } |
| OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; |
| } |
| |
| /// Emits the parse-arguments-in-unevaluated-context property for |
| /// attributes. |
| static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { |
| OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; |
| ParsedAttrMap Attrs = getParsedAttrList(Records); |
| for (const auto &I : Attrs) { |
| const Record &Attr = *I.second; |
| |
| if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) |
| continue; |
| |
| // All these spellings take are parsed unevaluated. |
| forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { |
| OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; |
| }); |
| } |
| OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; |
| } |
| |
| static bool isIdentifierArgument(Record *Arg) { |
| return !Arg->getSuperClasses().empty() && |
| llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName()) |
| .Case("IdentifierArgument", true) |
| .Case("EnumArgument", true) |
| .Case("VariadicEnumArgument", true) |
| .Default(false); |
| } |
| |
| static bool isVariadicIdentifierArgument(Record *Arg) { |
| return !Arg->getSuperClasses().empty() && |
| llvm::StringSwitch<bool>( |
| Arg->getSuperClasses().back().first->getName()) |
| .Case("VariadicIdentifierArgument", true) |
| .Default(false); |
| } |
| |
| static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records, |
| raw_ostream &OS) { |
| OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n"; |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| for (const auto *A : Attrs) { |
| // Determine whether the first argument is a variadic identifier. |
| std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); |
| if (Args.empty() || !isVariadicIdentifierArgument(Args[0])) |
| continue; |
| |
| // All these spellings take an identifier argument. |
| forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { |
| OS << ".Case(\"" << S.name() << "\", " |
| << "true" |
| << ")\n"; |
| }); |
| } |
| OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n"; |
| } |
| |
| // Emits the first-argument-is-identifier property for attributes. |
| static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { |
| OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| for (const auto *Attr : Attrs) { |
| // Determine whether the first argument is an identifier. |
| std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); |
| if (Args.empty() || !isIdentifierArgument(Args[0])) |
| continue; |
| |
| // All these spellings take an identifier argument. |
| forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { |
| OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; |
| }); |
| } |
| OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; |
| } |
| |
| namespace clang { |
| |
| // Emits the class definitions for attributes. |
| void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Attribute classes' definitions", OS); |
| |
| OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; |
| OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; |
| |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| |
| // FIXME: Currently, documentation is generated as-needed due to the fact |
| // that there is no way to allow a generated project "reach into" the docs |
| // directory (for instance, it may be an out-of-tree build). However, we want |
| // to ensure that every attribute has a Documentation field, and produce an |
| // error if it has been neglected. Otherwise, the on-demand generation which |
| // happens server-side will fail. This code is ensuring that functionality, |
| // even though this Emitter doesn't technically need the documentation. |
| // When attribute documentation can be generated as part of the build |
| // itself, this code can be removed. |
| (void)R.getValueAsListOfDefs("Documentation"); |
| |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| |
| ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses(); |
| assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); |
| std::string SuperName; |
| bool Inheritable = false; |
| for (const auto &Super : llvm::reverse(Supers)) { |
| const Record *R = Super.first; |
| if (R->getName() != "TargetSpecificAttr" && |
| R->getName() != "DeclOrTypeAttr" && SuperName.empty()) |
| SuperName = R->getName(); |
| if (R->getName() == "InheritableAttr") |
| Inheritable = true; |
| } |
| |
| OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; |
| |
| std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); |
| std::vector<std::unique_ptr<Argument>> Args; |
| Args.reserve(ArgRecords.size()); |
| |
| bool HasOptArg = false; |
| bool HasFakeArg = false; |
| for (const auto *ArgRecord : ArgRecords) { |
| Args.emplace_back(createArgument(*ArgRecord, R.getName())); |
| Args.back()->writeDeclarations(OS); |
| OS << "\n\n"; |
| |
| // For these purposes, fake takes priority over optional. |
| if (Args.back()->isFake()) { |
| HasFakeArg = true; |
| } else if (Args.back()->isOptional()) { |
| HasOptArg = true; |
| } |
| } |
| |
| OS << "public:\n"; |
| |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); |
| |
| // If there are zero or one spellings, all spelling-related functionality |
| // can be elided. If all of the spellings share the same name, the spelling |
| // functionality can also be elided. |
| bool ElideSpelling = (Spellings.size() <= 1) || |
| SpellingNamesAreCommon(Spellings); |
| |
| // This maps spelling index values to semantic Spelling enumerants. |
| SemanticSpellingMap SemanticToSyntacticMap; |
| |
| if (!ElideSpelling) |
| OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); |
| |
| // Emit CreateImplicit factory methods. |
| auto emitCreateImplicit = [&](bool emitFake) { |
| OS << " static " << R.getName() << "Attr *CreateImplicit("; |
| OS << "ASTContext &Ctx"; |
| if (!ElideSpelling) |
| OS << ", Spelling S"; |
| for (auto const &ai : Args) { |
| if (ai->isFake() && !emitFake) continue; |
| OS << ", "; |
| ai->writeCtorParameters(OS); |
| } |
| OS << ", SourceRange Loc = SourceRange()"; |
| OS << ") {\n"; |
| OS << " auto *A = new (Ctx) " << R.getName(); |
| OS << "Attr(Loc, Ctx, "; |
| for (auto const &ai : Args) { |
| if (ai->isFake() && !emitFake) continue; |
| ai->writeImplicitCtorArgs(OS); |
| OS << ", "; |
| } |
| OS << (ElideSpelling ? "0" : "S") << ");\n"; |
| OS << " A->setImplicit(true);\n"; |
| OS << " return A;\n }\n\n"; |
| }; |
| |
| // Emit a CreateImplicit that takes all the arguments. |
| emitCreateImplicit(true); |
| |
| // Emit a CreateImplicit that takes all the non-fake arguments. |
| if (HasFakeArg) { |
| emitCreateImplicit(false); |
| } |
| |
| // Emit constructors. |
| auto emitCtor = [&](bool emitOpt, bool emitFake) { |
| auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) { |
| if (arg->isFake()) return emitFake; |
| if (arg->isOptional()) return emitOpt; |
| return true; |
| }; |
| |
| OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n"; |
| for (auto const &ai : Args) { |
| if (!shouldEmitArg(ai)) continue; |
| OS << " , "; |
| ai->writeCtorParameters(OS); |
| OS << "\n"; |
| } |
| |
| OS << " , "; |
| OS << "unsigned SI\n"; |
| |
| OS << " )\n"; |
| OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, " |
| << ( R.getValueAsBit("LateParsed") ? "true" : "false" ); |
| if (Inheritable) { |
| OS << ", " |
| << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true" |
| : "false"); |
| } |
| OS << ")\n"; |
| |
| for (auto const &ai : Args) { |
| OS << " , "; |
| if (!shouldEmitArg(ai)) { |
| ai->writeCtorDefaultInitializers(OS); |
| } else { |
| ai->writeCtorInitializers(OS); |
| } |
| OS << "\n"; |
| } |
| |
| OS << " {\n"; |
| |
| for (auto const &ai : Args) { |
| if (!shouldEmitArg(ai)) continue; |
| ai->writeCtorBody(OS); |
| } |
| OS << " }\n\n"; |
| }; |
| |
| // Emit a constructor that includes all the arguments. |
| // This is necessary for cloning. |
| emitCtor(true, true); |
| |
| // Emit a constructor that takes all the non-fake arguments. |
| if (HasFakeArg) { |
| emitCtor(true, false); |
| } |
| |
| // Emit a constructor that takes all the non-fake, non-optional arguments. |
| if (HasOptArg) { |
| emitCtor(false, false); |
| } |
| |
| OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; |
| OS << " void printPretty(raw_ostream &OS,\n" |
| << " const PrintingPolicy &Policy) const;\n"; |
| OS << " const char *getSpelling() const;\n"; |
| |
| if (!ElideSpelling) { |
| assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); |
| OS << " Spelling getSemanticSpelling() const {\n"; |
| WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap, |
| OS); |
| OS << " }\n"; |
| } |
| |
| writeAttrAccessorDefinition(R, OS); |
| |
| for (auto const &ai : Args) { |
| ai->writeAccessors(OS); |
| OS << "\n\n"; |
| |
| // Don't write conversion routines for fake arguments. |
| if (ai->isFake()) continue; |
| |
| if (ai->isEnumArg()) |
| static_cast<const EnumArgument *>(ai.get())->writeConversion(OS); |
| else if (ai->isVariadicEnumArg()) |
| static_cast<const VariadicEnumArgument *>(ai.get()) |
| ->writeConversion(OS); |
| } |
| |
| OS << R.getValueAsString("AdditionalMembers"); |
| OS << "\n\n"; |
| |
| OS << " static bool classof(const Attr *A) { return A->getKind() == " |
| << "attr::" << R.getName() << "; }\n"; |
| |
| OS << "};\n\n"; |
| } |
| |
| OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; |
| } |
| |
| // Emits the class method definitions for attributes. |
| void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Attribute classes' member function definitions", OS); |
| |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| for (auto *Attr : Attrs) { |
| Record &R = *Attr; |
| |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| |
| std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); |
| std::vector<std::unique_ptr<Argument>> Args; |
| for (const auto *Arg : ArgRecords) |
| Args.emplace_back(createArgument(*Arg, R.getName())); |
| |
| for (auto const &ai : Args) |
| ai->writeAccessorDefinitions(OS); |
| |
| OS << R.getName() << "Attr *" << R.getName() |
| << "Attr::clone(ASTContext &C) const {\n"; |
| OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C"; |
| for (auto const &ai : Args) { |
| OS << ", "; |
| ai->writeCloneArgs(OS); |
| } |
| OS << ", getSpellingListIndex());\n"; |
| OS << " A->Inherited = Inherited;\n"; |
| OS << " A->IsPackExpansion = IsPackExpansion;\n"; |
| OS << " A->Implicit = Implicit;\n"; |
| OS << " return A;\n}\n\n"; |
| |
| writePrettyPrintFunction(R, Args, OS); |
| writeGetSpellingFunction(R, OS); |
| } |
| |
| // Instead of relying on virtual dispatch we just create a huge dispatch |
| // switch. This is both smaller and faster than virtual functions. |
| auto EmitFunc = [&](const char *Method) { |
| OS << " switch (getKind()) {\n"; |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| |
| OS << " case attr::" << R.getName() << ":\n"; |
| OS << " return cast<" << R.getName() << "Attr>(this)->" << Method |
| << ";\n"; |
| } |
| OS << " }\n"; |
| OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; |
| OS << "}\n\n"; |
| }; |
| |
| OS << "const char *Attr::getSpelling() const {\n"; |
| EmitFunc("getSpelling()"); |
| |
| OS << "Attr *Attr::clone(ASTContext &C) const {\n"; |
| EmitFunc("clone(C)"); |
| |
| OS << "void Attr::printPretty(raw_ostream &OS, " |
| "const PrintingPolicy &Policy) const {\n"; |
| EmitFunc("printPretty(OS, Policy)"); |
| } |
| |
| } // end namespace clang |
| |
| static void emitAttrList(raw_ostream &OS, StringRef Class, |
| const std::vector<Record*> &AttrList) { |
| for (auto Cur : AttrList) { |
| OS << Class << "(" << Cur->getName() << ")\n"; |
| } |
| } |
| |
| // Determines if an attribute has a Pragma spelling. |
| static bool AttrHasPragmaSpelling(const Record *R) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); |
| return llvm::find_if(Spellings, [](const FlattenedSpelling &S) { |
| return S.variety() == "Pragma"; |
| }) != Spellings.end(); |
| } |
| |
| namespace { |
| |
| struct AttrClassDescriptor { |
| const char * const MacroName; |
| const char * const TableGenName; |
| }; |
| |
| } // end anonymous namespace |
| |
| static const AttrClassDescriptor AttrClassDescriptors[] = { |
| { "ATTR", "Attr" }, |
| { "STMT_ATTR", "StmtAttr" }, |
| { "INHERITABLE_ATTR", "InheritableAttr" }, |
| { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" }, |
| { "PARAMETER_ABI_ATTR", "ParameterABIAttr" } |
| }; |
| |
| static void emitDefaultDefine(raw_ostream &OS, StringRef name, |
| const char *superName) { |
| OS << "#ifndef " << name << "\n"; |
| OS << "#define " << name << "(NAME) "; |
| if (superName) OS << superName << "(NAME)"; |
| OS << "\n#endif\n\n"; |
| } |
| |
| namespace { |
| |
| /// A class of attributes. |
| struct AttrClass { |
| const AttrClassDescriptor &Descriptor; |
| Record *TheRecord; |
| AttrClass *SuperClass = nullptr; |
| std::vector<AttrClass*> SubClasses; |
| std::vector<Record*> Attrs; |
| |
| AttrClass(const AttrClassDescriptor &Descriptor, Record *R) |
| : Descriptor(Descriptor), TheRecord(R) {} |
| |
| void emitDefaultDefines(raw_ostream &OS) const { |
| // Default the macro unless this is a root class (i.e. Attr). |
| if (SuperClass) { |
| emitDefaultDefine(OS, Descriptor.MacroName, |
| SuperClass->Descriptor.MacroName); |
| } |
| } |
| |
| void emitUndefs(raw_ostream &OS) const { |
| OS << "#undef " << Descriptor.MacroName << "\n"; |
| } |
| |
| void emitAttrList(raw_ostream &OS) const { |
| for (auto SubClass : SubClasses) { |
| SubClass->emitAttrList(OS); |
| } |
| |
| ::emitAttrList(OS, Descriptor.MacroName, Attrs); |
| } |
| |
| void classifyAttrOnRoot(Record *Attr) { |
| bool result = classifyAttr(Attr); |
| assert(result && "failed to classify on root"); (void) result; |
| } |
| |
| void emitAttrRange(raw_ostream &OS) const { |
| OS << "ATTR_RANGE(" << Descriptor.TableGenName |
| << ", " << getFirstAttr()->getName() |
| << ", " << getLastAttr()->getName() << ")\n"; |
| } |
| |
| private: |
| bool classifyAttr(Record *Attr) { |
| // Check all the subclasses. |
| for (auto SubClass : SubClasses) { |
| if (SubClass->classifyAttr(Attr)) |
| return true; |
| } |
| |
| // It's not more specific than this class, but it might still belong here. |
| if (Attr->isSubClassOf(TheRecord)) { |
| Attrs.push_back(Attr); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Record *getFirstAttr() const { |
| if (!SubClasses.empty()) |
| return SubClasses.front()->getFirstAttr(); |
| return Attrs.front(); |
| } |
| |
| Record *getLastAttr() const { |
| if (!Attrs.empty()) |
| return Attrs.back(); |
| return SubClasses.back()->getLastAttr(); |
| } |
| }; |
| |
| /// The entire hierarchy of attribute classes. |
| class AttrClassHierarchy { |
| std::vector<std::unique_ptr<AttrClass>> Classes; |
| |
| public: |
| AttrClassHierarchy(RecordKeeper &Records) { |
| // Find records for all the classes. |
| for (auto &Descriptor : AttrClassDescriptors) { |
| Record *ClassRecord = Records.getClass(Descriptor.TableGenName); |
| AttrClass *Class = new AttrClass(Descriptor, ClassRecord); |
| Classes.emplace_back(Class); |
| } |
| |
| // Link up the hierarchy. |
| for (auto &Class : Classes) { |
| if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) { |
| Class->SuperClass = SuperClass; |
| SuperClass->SubClasses.push_back(Class.get()); |
| } |
| } |
| |
| #ifndef NDEBUG |
| for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) { |
| assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) && |
| "only the first class should be a root class!"); |
| } |
| #endif |
| } |
| |
| void emitDefaultDefines(raw_ostream &OS) const { |
| for (auto &Class : Classes) { |
| Class->emitDefaultDefines(OS); |
| } |
| } |
| |
| void emitUndefs(raw_ostream &OS) const { |
| for (auto &Class : Classes) { |
| Class->emitUndefs(OS); |
| } |
| } |
| |
| void emitAttrLists(raw_ostream &OS) const { |
| // Just start from the root class. |
| Classes[0]->emitAttrList(OS); |
| } |
| |
| void emitAttrRanges(raw_ostream &OS) const { |
| for (auto &Class : Classes) |
| Class->emitAttrRange(OS); |
| } |
| |
| void classifyAttr(Record *Attr) { |
| // Add the attribute to the root class. |
| Classes[0]->classifyAttrOnRoot(Attr); |
| } |
| |
| private: |
| AttrClass *findClassByRecord(Record *R) const { |
| for (auto &Class : Classes) { |
| if (Class->TheRecord == R) |
| return Class.get(); |
| } |
| return nullptr; |
| } |
| |
| AttrClass *findSuperClass(Record *R) const { |
| // TableGen flattens the superclass list, so we just need to walk it |
| // in reverse. |
| auto SuperClasses = R->getSuperClasses(); |
| for (signed i = 0, e = SuperClasses.size(); i != e; ++i) { |
| auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first); |
| if (SuperClass) return SuperClass; |
| } |
| return nullptr; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace clang { |
| |
| // Emits the enumeration list for attributes. |
| void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("List of all attributes that Clang recognizes", OS); |
| |
| AttrClassHierarchy Hierarchy(Records); |
| |
| // Add defaulting macro definitions. |
| Hierarchy.emitDefaultDefines(OS); |
| emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr); |
| |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| std::vector<Record *> PragmaAttrs; |
| for (auto *Attr : Attrs) { |
| if (!Attr->getValueAsBit("ASTNode")) |
| continue; |
| |
| // Add the attribute to the ad-hoc groups. |
| if (AttrHasPragmaSpelling(Attr)) |
| PragmaAttrs.push_back(Attr); |
| |
| // Place it in the hierarchy. |
| Hierarchy.classifyAttr(Attr); |
| } |
| |
| // Emit the main attribute list. |
| Hierarchy.emitAttrLists(OS); |
| |
| // Emit the ad hoc groups. |
| emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); |
| |
| // Emit the attribute ranges. |
| OS << "#ifdef ATTR_RANGE\n"; |
| Hierarchy.emitAttrRanges(OS); |
| OS << "#undef ATTR_RANGE\n"; |
| OS << "#endif\n"; |
| |
| Hierarchy.emitUndefs(OS); |
| OS << "#undef PRAGMA_SPELLING_ATTR\n"; |
| } |
| |
| // Emits the enumeration list for attributes. |
| void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader( |
| "List of all attribute subject matching rules that Clang recognizes", OS); |
| PragmaClangAttributeSupport &PragmaAttributeSupport = |
| getPragmaAttributeSupport(Records); |
| emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr); |
| PragmaAttributeSupport.emitMatchRuleList(OS); |
| OS << "#undef ATTR_MATCH_RULE\n"; |
| } |
| |
| // Emits the code to read an attribute from a precompiled header. |
| void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Attribute deserialization code", OS); |
| |
| Record *InhClass = Records.getClass("InheritableAttr"); |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), |
| ArgRecords; |
| std::vector<std::unique_ptr<Argument>> Args; |
| |
| OS << " switch (Kind) {\n"; |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| |
| OS << " case attr::" << R.getName() << ": {\n"; |
| if (R.isSubClassOf(InhClass)) |
| OS << " bool isInherited = Record.readInt();\n"; |
| OS << " bool isImplicit = Record.readInt();\n"; |
| OS << " unsigned Spelling = Record.readInt();\n"; |
| ArgRecords = R.getValueAsListOfDefs("Args"); |
| Args.clear(); |
| for (const auto *Arg : ArgRecords) { |
| Args.emplace_back(createArgument(*Arg, R.getName())); |
| Args.back()->writePCHReadDecls(OS); |
| } |
| OS << " New = new (Context) " << R.getName() << "Attr(Range, Context"; |
| for (auto const &ri : Args) { |
| OS << ", "; |
| ri->writePCHReadArgs(OS); |
| } |
| OS << ", Spelling);\n"; |
| if (R.isSubClassOf(InhClass)) |
| OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n"; |
| OS << " New->setImplicit(isImplicit);\n"; |
| OS << " break;\n"; |
| OS << " }\n"; |
| } |
| OS << " }\n"; |
| } |
| |
| // Emits the code to write an attribute to a precompiled header. |
| void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Attribute serialization code", OS); |
| |
| Record *InhClass = Records.getClass("InheritableAttr"); |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; |
| |
| OS << " switch (A->getKind()) {\n"; |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| OS << " case attr::" << R.getName() << ": {\n"; |
| Args = R.getValueAsListOfDefs("Args"); |
| if (R.isSubClassOf(InhClass) || !Args.empty()) |
| OS << " const auto *SA = cast<" << R.getName() |
| << "Attr>(A);\n"; |
| if (R.isSubClassOf(InhClass)) |
| OS << " Record.push_back(SA->isInherited());\n"; |
| OS << " Record.push_back(A->isImplicit());\n"; |
| OS << " Record.push_back(A->getSpellingListIndex());\n"; |
| |
| for (const auto *Arg : Args) |
| createArgument(*Arg, R.getName())->writePCHWrite(OS); |
| OS << " break;\n"; |
| OS << " }\n"; |
| } |
| OS << " }\n"; |
| } |
| |
| // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test' |
| // parameter with only a single check type, if applicable. |
| static void GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test, |
| std::string *FnName, |
| StringRef ListName, |
| StringRef CheckAgainst, |
| StringRef Scope) { |
| if (!R->isValueUnset(ListName)) { |
| Test += " && ("; |
| std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName); |
| for (auto I = Items.begin(), E = Items.end(); I != E; ++I) { |
| StringRef Part = *I; |
| Test += CheckAgainst; |
| Test += " == "; |
| Test += Scope; |
| Test += Part; |
| if (I + 1 != E) |
| Test += " || "; |
| if (FnName) |
| *FnName += Part; |
| } |
| Test += ")"; |
| } |
| } |
| |
| // Generate a conditional expression to check if the current target satisfies |
| // the conditions for a TargetSpecificAttr record, and append the code for |
| // those checks to the Test string. If the FnName string pointer is non-null, |
| // append a unique suffix to distinguish this set of target checks from other |
| // TargetSpecificAttr records. |
| static void GenerateTargetSpecificAttrChecks(const Record *R, |
| std::vector<StringRef> &Arches, |
| std::string &Test, |
| std::string *FnName) { |
| // It is assumed that there will be an llvm::Triple object |
| // named "T" and a TargetInfo object named "Target" within |
| // scope that can be used to determine whether the attribute exists in |
| // a given target. |
| Test += "true"; |
| // If one or more architectures is specified, check those. Arches are handled |
| // differently because GenerateTargetRequirements needs to combine the list |
| // with ParseKind. |
| if (!Arches.empty()) { |
| Test += " && ("; |
| for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { |
| StringRef Part = *I; |
| Test += "T.getArch() == llvm::Triple::"; |
| Test += Part; |
| if (I + 1 != E) |
| Test += " || "; |
| if (FnName) |
| *FnName += Part; |
| } |
| Test += ")"; |
| } |
| |
| // If the attribute is specific to particular OSes, check those. |
| GenerateTargetSpecificAttrCheck(R, Test, FnName, "OSes", "T.getOS()", |
| "llvm::Triple::"); |
| |
| // If one or more CXX ABIs are specified, check those as well. |
| GenerateTargetSpecificAttrCheck(R, Test, FnName, "CXXABIs", |
| "Target.getCXXABI().getKind()", |
| "TargetCXXABI::"); |
| // If one or more object formats is specified, check those. |
| GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats", |
| "T.getObjectFormat()", "llvm::Triple::"); |
| } |
| |
| static void GenerateHasAttrSpellingStringSwitch( |
| const std::vector<Record *> &Attrs, raw_ostream &OS, |
| const std::string &Variety = "", const std::string &Scope = "") { |
| for (const auto *Attr : Attrs) { |
| // C++11-style attributes have specific version information associated with |
| // them. If the attribute has no scope, the version information must not |
| // have the default value (1), as that's incorrect. Instead, the unscoped |
| // attribute version information should be taken from the SD-6 standing |
| // document, which can be found at: |
| // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations |
| int Version = 1; |
| |
| if (Variety == "CXX11") { |
| std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings"); |
| for (const auto &Spelling : Spellings) { |
| if (Spelling->getValueAsString("Variety") == "CXX11") { |
| Version = static_cast<int>(Spelling->getValueAsInt("Version")); |
| if (Scope.empty() && Version == 1) |
| PrintError(Spelling->getLoc(), "C++ standard attributes must " |
| "have valid version information."); |
| break; |
| } |
| } |
| } |
| |
| std::string Test; |
| if (Attr->isSubClassOf("TargetSpecificAttr")) { |
| const Record *R = Attr->getValueAsDef("Target"); |
| std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); |
| GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); |
| |
| // If this is the C++11 variety, also add in the LangOpts test. |
| if (Variety == "CXX11") |
| Test += " && LangOpts.CPlusPlus11"; |
| else if (Variety == "C2x") |
| Test += " && LangOpts.DoubleSquareBracketAttributes"; |
| } else if (Variety == "CXX11") |
| // C++11 mode should be checked against LangOpts, which is presumed to be |
| // present in the caller. |
| Test = "LangOpts.CPlusPlus11"; |
| else if (Variety == "C2x") |
| Test = "LangOpts.DoubleSquareBracketAttributes"; |
| |
| std::string TestStr = |
| !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1"; |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); |
| for (const auto &S : Spellings) |
| if (Variety.empty() || (Variety == S.variety() && |
| (Scope.empty() || Scope == S.nameSpace()))) |
| OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; |
| } |
| OS << " .Default(0);\n"; |
| } |
| |
| // Emits the list of spellings for attributes. |
| void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Code to implement the __has_attribute logic", OS); |
| |
| // Separate all of the attributes out into four group: generic, C++11, GNU, |
| // and declspecs. Then generate a big switch statement for each of them. |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| std::vector<Record *> Declspec, Microsoft, GNU, Pragma; |
| std::map<std::string, std::vector<Record *>> CXX, C2x; |
| |
| // Walk over the list of all attributes, and split them out based on the |
| // spelling variety. |
| for (auto *R : Attrs) { |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); |
| for (const auto &SI : Spellings) { |
| const std::string &Variety = SI.variety(); |
| if (Variety == "GNU") |
| GNU.push_back(R); |
| else if (Variety == "Declspec") |
| Declspec.push_back(R); |
| else if (Variety == "Microsoft") |
| Microsoft.push_back(R); |
| else if (Variety == "CXX11") |
| CXX[SI.nameSpace()].push_back(R); |
| else if (Variety == "C2x") |
| C2x[SI.nameSpace()].push_back(R); |
| else if (Variety == "Pragma") |
| Pragma.push_back(R); |
| } |
| } |
| |
| OS << "const llvm::Triple &T = Target.getTriple();\n"; |
| OS << "switch (Syntax) {\n"; |
| OS << "case AttrSyntax::GNU:\n"; |
| OS << " return llvm::StringSwitch<int>(Name)\n"; |
| GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); |
| OS << "case AttrSyntax::Declspec:\n"; |
| OS << " return llvm::StringSwitch<int>(Name)\n"; |
| GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); |
| OS << "case AttrSyntax::Microsoft:\n"; |
| OS << " return llvm::StringSwitch<int>(Name)\n"; |
| GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft"); |
| OS << "case AttrSyntax::Pragma:\n"; |
| OS << " return llvm::StringSwitch<int>(Name)\n"; |
| GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); |
| auto fn = [&OS](const char *Spelling, const char *Variety, |
| const std::map<std::string, std::vector<Record *>> &List) { |
| OS << "case AttrSyntax::" << Variety << ": {\n"; |
| // C++11-style attributes are further split out based on the Scope. |
| for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) { |
| if (I != List.cbegin()) |
| OS << " else "; |
| if (I->first.empty()) |
| OS << "if (!Scope || Scope->getName() == \"\") {\n"; |
| else |
| OS << "if (Scope->getName() == \"" << I->first << "\") {\n"; |
| OS << " return llvm::StringSwitch<int>(Name)\n"; |
| GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first); |
| OS << "}"; |
| } |
| OS << "\n} break;\n"; |
| }; |
| fn("CXX11", "CXX", CXX); |
| fn("C2x", "C", C2x); |
| OS << "}\n"; |
| } |
| |
| void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Code to translate different attribute spellings " |
| "into internal identifiers", OS); |
| |
| OS << " switch (AttrKind) {\n"; |
| |
| ParsedAttrMap Attrs = getParsedAttrList(Records); |
| for (const auto &I : Attrs) { |
| const Record &R = *I.second; |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); |
| OS << " case AT_" << I.first << ": {\n"; |
| for (unsigned I = 0; I < Spellings.size(); ++ I) { |
| OS << " if (Name == \"" << Spellings[I].name() << "\" && " |
| << "SyntaxUsed == " |
| << StringSwitch<unsigned>(Spellings[I].variety()) |
| .Case("GNU", 0) |
| .Case("CXX11", 1) |
| .Case("C2x", 2) |
| .Case("Declspec", 3) |
| .Case("Microsoft", 4) |
| .Case("Keyword", 5) |
| .Case("Pragma", 6) |
| .Default(0) |
| << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" |
| << " return " << I << ";\n"; |
| } |
| |
| OS << " break;\n"; |
| OS << " }\n"; |
| } |
| |
| OS << " }\n"; |
| OS << " return 0;\n"; |
| } |
| |
| // Emits code used by RecursiveASTVisitor to visit attributes |
| void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); |
| |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| // Write method declarations for Traverse* methods. |
| // We emit this here because we only generate methods for attributes that |
| // are declared as ASTNodes. |
| OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| OS << " bool Traverse" |
| << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; |
| OS << " bool Visit" |
| << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" |
| << " return true; \n" |
| << " }\n"; |
| } |
| OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; |
| |
| // Write individual Traverse* methods for each attribute class. |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| |
| OS << "template <typename Derived>\n" |
| << "bool VISITORCLASS<Derived>::Traverse" |
| << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" |
| << " if (!getDerived().VisitAttr(A))\n" |
| << " return false;\n" |
| << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" |
| << " return false;\n"; |
| |
| std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); |
| for (const auto *Arg : ArgRecords) |
| createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); |
| |
| OS << " return true;\n"; |
| OS << "}\n\n"; |
| } |
| |
| // Write generic Traverse routine |
| OS << "template <typename Derived>\n" |
| << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n" |
| << " if (!A)\n" |
| << " return true;\n" |
| << "\n" |
| << " switch (A->getKind()) {\n"; |
| |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| |
| OS << " case attr::" << R.getName() << ":\n" |
| << " return getDerived().Traverse" << R.getName() << "Attr(" |
| << "cast<" << R.getName() << "Attr>(A));\n"; |
| } |
| OS << " }\n"; // end switch |
| OS << " llvm_unreachable(\"bad attribute kind\");\n"; |
| OS << "}\n"; // end function |
| OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; |
| } |
| |
| void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs, |
| raw_ostream &OS, |
| bool AppliesToDecl) { |
| |
| OS << " switch (At->getKind()) {\n"; |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| OS << " case attr::" << R.getName() << ": {\n"; |
| bool ShouldClone = R.getValueAsBit("Clone") && |
| (!AppliesToDecl || |
| R.getValueAsBit("MeaningfulToClassTemplateDefinition")); |
| |
| if (!ShouldClone) { |
| OS << " return nullptr;\n"; |
| OS << " }\n"; |
| continue; |
| } |
| |
| OS << " const auto *A = cast<" |
| << R.getName() << "Attr>(At);\n"; |
| bool TDependent = R.getValueAsBit("TemplateDependent"); |
| |
| if (!TDependent) { |
| OS << " return A->clone(C);\n"; |
| OS << " }\n"; |
| continue; |
| } |
| |
| std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); |
| std::vector<std::unique_ptr<Argument>> Args; |
| Args.reserve(ArgRecords.size()); |
| |
| for (const auto *ArgRecord : ArgRecords) |
| Args.emplace_back(createArgument(*ArgRecord, R.getName())); |
| |
| for (auto const &ai : Args) |
| ai->writeTemplateInstantiation(OS); |
| |
| OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C"; |
| for (auto const &ai : Args) { |
| OS << ", "; |
| ai->writeTemplateInstantiationArgs(OS); |
| } |
| OS << ", A->getSpellingListIndex());\n }\n"; |
| } |
| OS << " } // end switch\n" |
| << " llvm_unreachable(\"Unknown attribute!\");\n" |
| << " return nullptr;\n"; |
| } |
| |
| // Emits code to instantiate dependent attributes on templates. |
| void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Template instantiation code for attributes", OS); |
| |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| |
| OS << "namespace clang {\n" |
| << "namespace sema {\n\n" |
| << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " |
| << "Sema &S,\n" |
| << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; |
| EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false); |
| OS << "}\n\n" |
| << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n" |
| << " ASTContext &C, Sema &S,\n" |
| << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; |
| EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true); |
| OS << "}\n\n" |
| << "} // end namespace sema\n" |
| << "} // end namespace clang\n"; |
| } |
| |
| // Emits the list of parsed attributes. |
| void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("List of all attributes that Clang recognizes", OS); |
| |
| OS << "#ifndef PARSED_ATTR\n"; |
| OS << "#define PARSED_ATTR(NAME) NAME\n"; |
| OS << "#endif\n\n"; |
| |
| ParsedAttrMap Names = getParsedAttrList(Records); |
| for (const auto &I : Names) { |
| OS << "PARSED_ATTR(" << I.first << ")\n"; |
| } |
| } |
| |
| static bool isArgVariadic(const Record &R, StringRef AttrName) { |
| return createArgument(R, AttrName)->isVariadic(); |
| } |
| |
| static void emitArgInfo(const Record &R, raw_ostream &OS) { |
| // This function will count the number of arguments specified for the |
| // attribute and emit the number of required arguments followed by the |
| // number of optional arguments. |
| std::vector<Record *> Args = R.getValueAsListOfDefs("Args"); |
| unsigned ArgCount = 0, OptCount = 0; |
| bool HasVariadic = false; |
| for (const auto *Arg : Args) { |
| // If the arg is fake, it's the user's job to supply it: general parsing |
| // logic shouldn't need to know anything about it. |
| if (Arg->getValueAsBit("Fake")) |
| continue; |
| Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; |
| if (!HasVariadic && isArgVariadic(*Arg, R.getName())) |
| HasVariadic = true; |
| } |
| |
| // If there is a variadic argument, we will set the optional argument count |
| // to its largest value. Since it's currently a 4-bit number, we set it to 15. |
| OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount); |
| } |
| |
| static void GenerateDefaultAppertainsTo(raw_ostream &OS) { |
| OS << "static bool defaultAppertainsTo(Sema &, const ParsedAttr &,"; |
| OS << "const Decl *) {\n"; |
| OS << " return true;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static std::string GetDiagnosticSpelling(const Record &R) { |
| std::string Ret = R.getValueAsString("DiagSpelling"); |
| if (!Ret.empty()) |
| return Ret; |
| |
| // If we couldn't find the DiagSpelling in this object, we can check to see |
| // if the object is one that has a base, and if it is, loop up to the Base |
| // member recursively. |
| std::string Super = R.getSuperClasses().back().first->getName(); |
| if (Super == "DDecl" || Super == "DStmt") |
| return GetDiagnosticSpelling(*R.getValueAsDef("Base")); |
| |
| return ""; |
| } |
| |
| static std::string CalculateDiagnostic(const Record &S) { |
| // If the SubjectList object has a custom diagnostic associated with it, |
| // return that directly. |
| const StringRef CustomDiag = S.getValueAsString("CustomDiag"); |
| if (!CustomDiag.empty()) |
| return ("\"" + Twine(CustomDiag) + "\"").str(); |
| |
| std::vector<std::string> DiagList; |
| std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects"); |
| for (const auto *Subject : Subjects) { |
| const Record &R = *Subject; |
| // Get the diagnostic text from the Decl or Stmt node given. |
| std::string V = GetDiagnosticSpelling(R); |
| if (V.empty()) { |
| PrintError(R.getLoc(), |
| "Could not determine diagnostic spelling for the node: " + |
| R.getName() + "; please add one to DeclNodes.td"); |
| } else { |
| // The node may contain a list of elements itself, so split the elements |
| // by a comma, and trim any whitespace. |
| SmallVector<StringRef, 2> Frags; |
| llvm::SplitString(V, Frags, ","); |
| for (auto Str : Frags) { |
| DiagList.push_back(Str.trim()); |
| } |
| } |
| } |
| |
| if (DiagList.empty()) { |
| PrintFatalError(S.getLoc(), |
| "Could not deduce diagnostic argument for Attr subjects"); |
| return ""; |
| } |
| |
| // FIXME: this is not particularly good for localization purposes and ideally |
| // should be part of the diagnostics engine itself with some sort of list |
| // specifier. |
| |
| // A single member of the list can be returned directly. |
| if (DiagList.size() == 1) |
| return '"' + DiagList.front() + '"'; |
| |
| if (DiagList.size() == 2) |
| return '"' + DiagList[0] + " and " + DiagList[1] + '"'; |
| |
| // If there are more than two in the list, we serialize the first N - 1 |
| // elements with a comma. This leaves the string in the state: foo, bar, |
| // baz (but misses quux). We can then add ", and " for the last element |
| // manually. |
| std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", "); |
| return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"'; |
| } |
| |
| static std::string GetSubjectWithSuffix(const Record *R) { |
| const std::string &B = R->getName(); |
| if (B == "DeclBase") |
| return "Decl"; |
| return B + "Decl"; |
| } |
| |
| static std::string functionNameForCustomAppertainsTo(const Record &Subject) { |
| return "is" + Subject.getName().str(); |
| } |
| |
| static std::string GenerateCustomAppertainsTo(const Record &Subject, |
| raw_ostream &OS) { |
| std::string FnName = functionNameForCustomAppertainsTo(Subject); |
| |
| // If this code has already been generated, simply return the previous |
| // instance of it. |
| static std::set<std::string> CustomSubjectSet; |
| auto I = CustomSubjectSet.find(FnName); |
| if (I != CustomSubjectSet.end()) |
| return *I; |
| |
| Record *Base = Subject.getValueAsDef("Base"); |
| |
| // Not currently support custom subjects within custom subjects. |
| if (Base->isSubClassOf("SubsetSubject")) { |
| PrintFatalError(Subject.getLoc(), |
| "SubsetSubjects within SubsetSubjects is not supported"); |
| return ""; |
| } |
| |
| OS << "static bool " << FnName << "(const Decl *D) {\n"; |
| OS << " if (const auto *S = dyn_cast<"; |
| OS << GetSubjectWithSuffix(Base); |
| OS << ">(D))\n"; |
| OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; |
| OS << " return false;\n"; |
| OS << "}\n\n"; |
| |
| CustomSubjectSet.insert(FnName); |
| return FnName; |
| } |
| |
| static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { |
| // If the attribute does not contain a Subjects definition, then use the |
| // default appertainsTo logic. |
| if (Attr.isValueUnset("Subjects")) |
| return "defaultAppertainsTo"; |
| |
| const Record *SubjectObj = Attr.getValueAsDef("Subjects"); |
| std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); |
| |
| // If the list of subjects is empty, it is assumed that the attribute |
| // appertains to everything. |
| if (Subjects.empty()) |
| return "defaultAppertainsTo"; |
| |
| bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); |
| |
| // Otherwise, generate an appertainsTo check specific to this attribute which |
| // checks all of the given subjects against the Decl passed in. Return the |
| // name of that check to the caller. |
| // |
| // If D is null, that means the attribute was not applied to a declaration |
| // at all (for instance because it was applied to a type), or that the caller |
| // has determined that the check should fail (perhaps prior to the creation |
| // of the declaration). |
| std::string FnName = "check" + Attr.getName().str() + "AppertainsTo"; |
| std::stringstream SS; |
| SS << "static bool " << FnName << "(Sema &S, const ParsedAttr &Attr, "; |
| SS << "const Decl *D) {\n"; |
| SS << " if (!D || ("; |
| for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { |
| // If the subject has custom code associated with it, generate a function |
| // for it. The function cannot be inlined into this check (yet) because it |
| // requires the subject to be of a specific type, and were that information |
| // inlined here, it would not support an attribute with multiple custom |
| // subjects. |
| if ((*I)->isSubClassOf("SubsetSubject")) { |
| SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)"; |
| } else { |
| SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; |
| } |
| |
| if (I + 1 != E) |
| SS << " && "; |
| } |
| SS << ")) {\n"; |
| SS << " S.Diag(Attr.getLoc(), diag::"; |
| SS << (Warn ? "warn_attribute_wrong_decl_type_str" : |
| "err_attribute_wrong_decl_type_str"); |
| SS << ")\n"; |
| SS << " << Attr.getName() << "; |
| SS << CalculateDiagnostic(*SubjectObj) << ";\n"; |
| SS << " return false;\n"; |
| SS << " }\n"; |
| SS << " return true;\n"; |
| SS << "}\n\n"; |
| |
| OS << SS.str(); |
| return FnName; |
| } |
| |
| static void |
| emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport, |
| raw_ostream &OS) { |
| OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, " |
| << AttributeSubjectMatchRule::EnumName << " rule) {\n"; |
| OS << " switch (rule) {\n"; |
| for (const auto &Rule : PragmaAttributeSupport.Rules) { |
| if (Rule.isAbstractRule()) { |
| OS << " case " << Rule.getEnumValue() << ":\n"; |
| OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n"; |
| OS << " return false;\n"; |
| continue; |
| } |
| std::vector<Record *> Subjects = Rule.getSubjects(); |
| assert(!Subjects.empty() && "Missing subjects"); |
| OS << " case " << Rule.getEnumValue() << ":\n"; |
| OS << " return "; |
| for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { |
| // If the subject has custom code associated with it, use the function |
| // that was generated for GenerateAppertainsTo to check if the declaration |
| // is valid. |
| if ((*I)->isSubClassOf("SubsetSubject")) |
| OS << functionNameForCustomAppertainsTo(**I) << "(D)"; |
| else |
| OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)"; |
| |
| if (I + 1 != E) |
| OS << " || "; |
| } |
| OS << ";\n"; |
| } |
| OS << " }\n"; |
| OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static void GenerateDefaultLangOptRequirements(raw_ostream &OS) { |
| OS << "static bool defaultDiagnoseLangOpts(Sema &, "; |
| OS << "const ParsedAttr &) {\n"; |
| OS << " return true;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static std::string GenerateLangOptRequirements(const Record &R, |
| raw_ostream &OS) { |
| // If the attribute has an empty or unset list of language requirements, |
| // return the default handler. |
| std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts"); |
| if (LangOpts.empty()) |
| return "defaultDiagnoseLangOpts"; |
| |
| // Generate the test condition, as well as a unique function name for the |
| // diagnostic test. The list of options should usually be short (one or two |
| // options), and the uniqueness isn't strictly necessary (it is just for |
| // codegen efficiency). |
| std::string FnName = "check", Test; |
| for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) { |
| const StringRef Part = (*I)->getValueAsString("Name"); |
| if ((*I)->getValueAsBit("Negated")) { |
| FnName += "Not"; |
| Test += "!"; |
| } |
| Test += "S.LangOpts."; |
| Test += Part; |
| if (I + 1 != E) |
| Test += " || "; |
| FnName += Part; |
| } |
| FnName += "LangOpts"; |
| |
| // If this code has already been generated, simply return the previous |
| // instance of it. |
| static std::set<std::string> CustomLangOptsSet; |
| auto I = CustomLangOptsSet.find(FnName); |
| if (I != CustomLangOptsSet.end()) |
| return *I; |
| |
| OS << "static bool " << FnName << "(Sema &S, const ParsedAttr &Attr) {\n"; |
| OS << " if (" << Test << ")\n"; |
| OS << " return true;\n\n"; |
| OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) "; |
| OS << "<< Attr.getName();\n"; |
| OS << " return false;\n"; |
| OS << "}\n\n"; |
| |
| CustomLangOptsSet.insert(FnName); |
| return FnName; |
| } |
| |
| static void GenerateDefaultTargetRequirements(raw_ostream &OS) { |
| OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n"; |
| OS << " return true;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static std::string GenerateTargetRequirements(const Record &Attr, |
| const ParsedAttrMap &Dupes, |
| raw_ostream &OS) { |
| // If the attribute is not a target specific attribute, return the default |
| // target handler. |
| if (!Attr.isSubClassOf("TargetSpecificAttr")) |
| return "defaultTargetRequirements"; |
| |
| // Get the list of architectures to be tested for. |
| const Record *R = Attr.getValueAsDef("Target"); |
| std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); |
| |
| // If there are other attributes which share the same parsed attribute kind, |
| // such as target-specific attributes with a shared spelling, collapse the |
| // duplicate architectures. This is required because a shared target-specific |
| // attribute has only one ParsedAttr::Kind enumeration value, but it |
| // applies to multiple target architectures. In order for the attribute to be |
| // considered valid, all of its architectures need to be included. |
| if (!Attr.isValueUnset("ParseKind")) { |
| const StringRef APK = Attr.getValueAsString("ParseKind"); |
| for (const auto &I : Dupes) { |
| if (I.first == APK) { |
| std::vector<StringRef> DA = |
| I.second->getValueAsDef("Target")->getValueAsListOfStrings( |
| "Arches"); |
| Arches.insert(Arches.end(), DA.begin(), DA.end()); |
| } |
| } |
| } |
| |
| std::string FnName = "isTarget"; |
| std::string Test; |
| GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); |
| |
| // If this code has already been generated, simply return the previous |
| // instance of it. |
| static std::set<std::string> CustomTargetSet; |
| auto I = CustomTargetSet.find(FnName); |
| if (I != CustomTargetSet.end()) |
| return *I; |
| |
| OS << "static bool " << FnName << "(const TargetInfo &Target) {\n"; |
| OS << " const llvm::Triple &T = Target.getTriple();\n"; |
| OS << " return " << Test << ";\n"; |
| OS << "}\n\n"; |
| |
| CustomTargetSet.insert(FnName); |
| return FnName; |
| } |
| |
| static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) { |
| OS << "static unsigned defaultSpellingIndexToSemanticSpelling(" |
| << "const ParsedAttr &Attr) {\n"; |
| OS << " return UINT_MAX;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr, |
| raw_ostream &OS) { |
| // If the attribute does not have a semantic form, we can bail out early. |
| if (!Attr.getValueAsBit("ASTNode")) |
| return "defaultSpellingIndexToSemanticSpelling"; |
| |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); |
| |
| // If there are zero or one spellings, or all of the spellings share the same |
| // name, we can also bail out early. |
| if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) |
| return "defaultSpellingIndexToSemanticSpelling"; |
| |
| // Generate the enumeration we will use for the mapping. |
| SemanticSpellingMap SemanticToSyntacticMap; |
| std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); |
| std::string Name = Attr.getName().str() + "AttrSpellingMap"; |
| |
| OS << "static unsigned " << Name << "(const ParsedAttr &Attr) {\n"; |
| OS << Enum; |
| OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; |
| WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); |
| OS << "}\n\n"; |
| |
| return Name; |
| } |
| |
| static bool IsKnownToGCC(const Record &Attr) { |
| // Look at the spellings for this subject; if there are any spellings which |
| // claim to be known to GCC, the attribute is known to GCC. |
| return llvm::any_of( |
| GetFlattenedSpellings(Attr), |
| [](const FlattenedSpelling &S) { return S.knownToGCC(); }); |
| } |
| |
| /// Emits the parsed attribute helpers |
| void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Parsed attribute helpers", OS); |
| |
| PragmaClangAttributeSupport &PragmaAttributeSupport = |
| getPragmaAttributeSupport(Records); |
| |
| // Get the list of parsed attributes, and accept the optional list of |
| // duplicates due to the ParseKind. |
| ParsedAttrMap Dupes; |
| ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); |
| |
| // Generate the default appertainsTo, target and language option diagnostic, |
| // and spelling list index mapping methods. |
| GenerateDefaultAppertainsTo(OS); |
| GenerateDefaultLangOptRequirements(OS); |
| GenerateDefaultTargetRequirements(OS); |
| GenerateDefaultSpellingIndexToSemanticSpelling(OS); |
| |
| // Generate the appertainsTo diagnostic methods and write their names into |
| // another mapping. At the same time, generate the AttrInfoMap object |
| // contents. Due to the reliance on generated code, use separate streams so |
| // that code will not be interleaved. |
| std::string Buffer; |
| raw_string_ostream SS {Buffer}; |
| for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { |
| // TODO: If the attribute's kind appears in the list of duplicates, that is |
| // because it is a target-specific attribute that appears multiple times. |
| // It would be beneficial to test whether the duplicates are "similar |
| // enough" to each other to not cause problems. For instance, check that |
| // the spellings are identical, and custom parsing rules match, etc. |
| |
| // We need to generate struct instances based off ParsedAttrInfo from |
| // ParsedAttr.cpp. |
| SS << " { "; |
| emitArgInfo(*I->second, SS); |
| SS << ", " << I->second->getValueAsBit("HasCustomParsing"); |
| SS << ", " << I->second->isSubClassOf("TargetSpecificAttr"); |
| SS << ", " |
| << (I->second->isSubClassOf("TypeAttr") || |
| I->second->isSubClassOf("DeclOrTypeAttr")); |
| SS << ", " << I->second->isSubClassOf("StmtAttr"); |
| SS << ", " << IsKnownToGCC(*I->second); |
| SS << ", " << PragmaAttributeSupport.isAttributedSupported(*I->second); |
| SS << ", " << GenerateAppertainsTo(*I->second, OS); |
| SS << ", " << GenerateLangOptRequirements(*I->second, OS); |
| SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS); |
| SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS); |
| SS << ", " |
| << PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS); |
| SS << " }"; |
| |
| if (I + 1 != E) |
| SS << ","; |
| |
| SS << " // AT_" << I->first << "\n"; |
| } |
| |
| OS << "static const ParsedAttrInfo AttrInfoMap[ParsedAttr::UnknownAttribute " |
| "+ 1] = {\n"; |
| OS << SS.str(); |
| OS << "};\n\n"; |
| |
| // Generate the attribute match rules. |
| emitAttributeMatchRules(PragmaAttributeSupport, OS); |
| } |
| |
| // Emits the kind list of parsed attributes |
| void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Attribute name matcher", OS); |
| |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11, |
| Keywords, Pragma, C2x; |
| std::set<std::string> Seen; |
| for (const auto *A : Attrs) { |
| const Record &Attr = *A; |
| |
| bool SemaHandler = Attr.getValueAsBit("SemaHandler"); |
| bool Ignored = Attr.getValueAsBit("Ignored"); |
| if (SemaHandler || Ignored) { |
| // Attribute spellings can be shared between target-specific attributes, |
| // and can be shared between syntaxes for the same attribute. For |
| // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- |
| // specific attribute, or MSP430-specific attribute. Additionally, an |
| // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> |
| // for the same semantic attribute. Ultimately, we need to map each of |
| // these to a single ParsedAttr::Kind value, but the StringMatcher |
| // class cannot handle duplicate match strings. So we generate a list of |
| // string to match based on the syntax, and emit multiple string matchers |
| // depending on the syntax used. |
| std::string AttrName; |
| if (Attr.isSubClassOf("TargetSpecificAttr") && |
| !Attr.isValueUnset("ParseKind")) { |
| AttrName = Attr.getValueAsString("ParseKind"); |
| if (Seen.find(AttrName) != Seen.end()) |
| continue; |
| Seen.insert(AttrName); |
| } else |
| AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); |
| |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); |
| for (const auto &S : Spellings) { |
| const std::string &RawSpelling = S.name(); |
| std::vector<StringMatcher::StringPair> *Matches = nullptr; |
| std::string Spelling; |
| const std::string &Variety = S.variety(); |
| if (Variety == "CXX11") { |
| Matches = &CXX11; |
| Spelling += S.nameSpace(); |
| Spelling += "::"; |
| } else if (Variety == "C2x") { |
| Matches = &C2x; |
| Spelling += S.nameSpace(); |
| Spelling += "::"; |
| } else if (Variety == "GNU") |
| Matches = &GNU; |
| else if (Variety == "Declspec") |
| Matches = &Declspec; |
| else if (Variety == "Microsoft") |
| Matches = &Microsoft; |
| else if (Variety == "Keyword") |
| Matches = &Keywords; |
| else if (Variety == "Pragma") |
| Matches = &Pragma; |
| |
| assert(Matches && "Unsupported spelling variety found"); |
| |
| if (Variety == "GNU") |
| Spelling += NormalizeGNUAttrSpelling(RawSpelling); |
| else |
| Spelling += RawSpelling; |
| |
| if (SemaHandler) |
| Matches->push_back(StringMatcher::StringPair( |
| Spelling, "return ParsedAttr::AT_" + AttrName + ";")); |
| else |
| Matches->push_back(StringMatcher::StringPair( |
| Spelling, "return ParsedAttr::IgnoredAttribute;")); |
| } |
| } |
| } |
| |
| OS << "static ParsedAttr::Kind getAttrKind(StringRef Name, "; |
| OS << "ParsedAttr::Syntax Syntax) {\n"; |
| OS << " if (ParsedAttr::AS_GNU == Syntax) {\n"; |
| StringMatcher("Name", GNU, OS).Emit(); |
| OS << " } else if (ParsedAttr::AS_Declspec == Syntax) {\n"; |
| StringMatcher("Name", Declspec, OS).Emit(); |
| OS << " } else if (ParsedAttr::AS_Microsoft == Syntax) {\n"; |
| StringMatcher("Name", Microsoft, OS).Emit(); |
| OS << " } else if (ParsedAttr::AS_CXX11 == Syntax) {\n"; |
| StringMatcher("Name", CXX11, OS).Emit(); |
| OS << " } else if (ParsedAttr::AS_C2x == Syntax) {\n"; |
| StringMatcher("Name", C2x, OS).Emit(); |
| OS << " } else if (ParsedAttr::AS_Keyword == Syntax || "; |
| OS << "ParsedAttr::AS_ContextSensitiveKeyword == Syntax) {\n"; |
| StringMatcher("Name", Keywords, OS).Emit(); |
| OS << " } else if (ParsedAttr::AS_Pragma == Syntax) {\n"; |
| StringMatcher("Name", Pragma, OS).Emit(); |
| OS << " }\n"; |
| OS << " return ParsedAttr::UnknownAttribute;\n" |
| << "}\n"; |
| } |
| |
| // Emits the code to dump an attribute. |
| void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS) { |
| emitSourceFileHeader("Attribute dumper", OS); |
| |
| OS << " switch (A->getKind()) {\n"; |
| std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; |
| for (const auto *Attr : Attrs) { |
| const Record &R = *Attr; |
| if (!R.getValueAsBit("ASTNode")) |
| continue; |
| OS << " case attr::" << R.getName() << ": {\n"; |
| |
| // If the attribute has a semantically-meaningful name (which is determined |
| // by whether there is a Spelling enumeration for it), then write out the |
| // spelling used for the attribute. |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); |
| if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) |
| OS << " OS << \" \" << A->getSpelling();\n"; |
| |
| Args = R.getValueAsListOfDefs("Args"); |
| if (!Args.empty()) { |
| OS << " const auto *SA = cast<" << R.getName() |
| << "Attr>(A);\n"; |
| for (const auto *Arg : Args) |
| createArgument(*Arg, R.getName())->writeDump(OS); |
| |
| for (const auto *AI : Args) |
| createArgument(*AI, R.getName())->writeDumpChildren(OS); |
| } |
| OS << |
| " break;\n" |
| " }\n"; |
| } |
| OS << " }\n"; |
| } |
| |
| void EmitClangAttrParserStringSwitches(RecordKeeper &Records, |
| raw_ostream &OS) { |
| emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); |
| emitClangAttrArgContextList(Records, OS); |
| emitClangAttrIdentifierArgList(Records, OS); |
| emitClangAttrVariadicIdentifierArgList(Records, OS); |
| emitClangAttrTypeArgList(Records, OS); |
| emitClangAttrLateParsedList(Records, OS); |
| } |
| |
| void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records, |
| raw_ostream &OS) { |
| getPragmaAttributeSupport(Records).generateParsingHelpers(OS); |
| } |
| |
| class DocumentationData { |
| public: |
| const Record *Documentation; |
| const Record *Attribute; |
| std::string Heading; |
| unsigned SupportedSpellings; |
| |
| DocumentationData(const Record &Documentation, const Record &Attribute, |
| const std::pair<std::string, unsigned> HeadingAndKinds) |
| : Documentation(&Documentation), Attribute(&Attribute), |
| Heading(std::move(HeadingAndKinds.first)), |
| SupportedSpellings(HeadingAndKinds.second) {} |
| }; |
| |
| static void WriteCategoryHeader(const Record *DocCategory, |
| raw_ostream &OS) { |
| const StringRef Name = DocCategory->getValueAsString("Name"); |
| OS << Name << "\n" << std::string(Name.size(), '=') << "\n"; |
| |
| // If there is content, print that as well. |
| const StringRef ContentStr = DocCategory->getValueAsString("Content"); |
| // Trim leading and trailing newlines and spaces. |
| OS << ContentStr.trim(); |
| |
| OS << "\n\n"; |
| } |
| |
| enum SpellingKind { |
| GNU = 1 << 0, |
| CXX11 = 1 << 1, |
| C2x = 1 << 2, |
| Declspec = 1 << 3, |
| Microsoft = 1 << 4, |
| Keyword = 1 << 5, |
| Pragma = 1 << 6 |
| }; |
| |
| static std::pair<std::string, unsigned> |
| GetAttributeHeadingAndSpellingKinds(const Record &Documentation, |
| const Record &Attribute) { |
| // FIXME: there is no way to have a per-spelling category for the attribute |
| // documentation. This may not be a limiting factor since the spellings |
| // should generally be consistently applied across the category. |
| |
| std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); |
| |
| // Determine the heading to be used for this attribute. |
| std::string Heading = Documentation.getValueAsString("Heading"); |
| bool CustomHeading = !Heading.empty(); |
| if (Heading.empty()) { |
| // If there's only one spelling, we can simply use that. |
| if (Spellings.size() == 1) |
| Heading = Spellings.begin()->name(); |
| else { |
| std::set<std::string> Uniques; |
| for (auto I = Spellings.begin(), E = Spellings.end(); |
| I != E && Uniques.size() <= 1; ++I) { |
| std::string Spelling = NormalizeNameForSpellingComparison(I->name()); |
| Uniques.insert(Spelling); |
| } |
| // If the semantic map has only one spelling, that is sufficient for our |
| // needs. |
| if (Uniques.size() == 1) |
| Heading = *Uniques.begin(); |
| } |
| } |
| |
| // If the heading is still empty, it is an error. |
| if (Heading.empty()) |
| PrintFatalError(Attribute.getLoc(), |
| "This attribute requires a heading to be specified"); |
| |
| // Gather a list of unique spellings; this is not the same as the semantic |
| // spelling for the attribute. Variations in underscores and other non- |
| // semantic characters are still acceptable. |
| std::vector<std::string> Names; |
| |
| unsigned SupportedSpellings = 0; |
| for (const auto &I : Spellings) { |
| SpellingKind Kind = StringSwitch<SpellingKind>(I.variety()) |
| .Case("GNU", GNU) |
| .Case("CXX11", CXX11) |
| .Case("C2x", C2x) |
| .Case("Declspec", Declspec) |
| .Case("Microsoft", Microsoft) |
| .Case("Keyword", Keyword) |
| .Case("Pragma", Pragma); |
| |
| // Mask in the supported spelling. |
| SupportedSpellings |= Kind; |
| |
| std::string Name; |
| if ((Kind == CXX11 || Kind == C2x) && !I.nameSpace().empty()) |
| Name = I.nameSpace() + "::"; |
| Name += I.name(); |
| |
| // If this name is the same as the heading, do not add it. |
| if (Name != Heading) |
| Names.push_back(Name); |
| } |
| |
| // Print out the heading for the attribute. If there are alternate spellings, |
| // then display those after the heading. |
| if (!CustomHeading && !Names.empty()) { |
| Heading += " ("; |
| for (auto I = Names.begin(), E = Names.end(); I != E; ++I) { |
| if (I != Names.begin()) |
| Heading += ", "; |
| Heading += *I; |
| } |
| Heading += ")"; |
| } |
| if (!SupportedSpellings) |
| PrintFatalError(Attribute.getLoc(), |
| "Attribute has no supported spellings; cannot be " |
| "documented"); |
| return std::make_pair(std::move(Heading), SupportedSpellings); |
| } |
| |
| static void WriteDocumentation(RecordKeeper &Records, |
| const DocumentationData &Doc, raw_ostream &OS) { |
| OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n"; |
| |
| // List what spelling syntaxes the attribute supports. |
| OS << ".. csv-table:: Supported Syntaxes\n"; |
| OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"__declspec\", \"Keyword\","; |
| OS << " \"Pragma\", \"Pragma clang attribute\"\n\n"; |
| OS << " \""; |
| if (Doc.SupportedSpellings & GNU) OS << "X"; |
| OS << "\",\""; |
| if (Doc.SupportedSpellings & CXX11) OS << "X"; |
| OS << "\",\""; |
| if (Doc.SupportedSpellings & C2x) OS << "X"; |
| OS << "\",\""; |
| if (Doc.SupportedSpellings & Declspec) OS << "X"; |
| OS << "\",\""; |
| if (Doc.SupportedSpellings & Keyword) OS << "X"; |
| OS << "\", \""; |
| if (Doc.SupportedSpellings & Pragma) OS << "X"; |
| OS << "\", \""; |
| if (getPragmaAttributeSupport(Records).isAttributedSupported(*Doc.Attribute)) |
| OS << "X"; |
| OS << "\"\n\n"; |
| |
| // If the attribute is deprecated, print a message about it, and possibly |
| // provide a replacement attribute. |
| if (!Doc.Documentation->isValueUnset("Deprecated")) { |
| OS << "This attribute has been deprecated, and may be removed in a future " |
| << "version of Clang."; |
| const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); |
| const StringRef Replacement = Deprecated.getValueAsString("Replacement"); |
| if (!Replacement.empty()) |
| OS << " This attribute has been superseded by ``" << Replacement |
| << "``."; |
| OS << "\n\n"; |
| } |
| |
| const StringRef ContentStr = Doc.Documentation->getValueAsString("Content"); |
| // Trim leading and trailing newlines and spaces. |
| OS << ContentStr.trim(); |
| |
| OS << "\n\n\n"; |
| } |
| |
| void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { |
| // Get the documentation introduction paragraph. |
| const Record *Documentation = Records.getDef("GlobalDocumentation"); |
| if (!Documentation) { |
| PrintFatalError("The Documentation top-level definition is missing, " |
| "no documentation will be generated."); |
| return; |
| } |
| |
| OS << Documentation->getValueAsString("Intro") << "\n"; |
| |
| // Gather the Documentation lists from each of the attributes, based on the |
| // category provided. |
| std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); |
| std::map<const Record *, std::vector<DocumentationData>> SplitDocs; |
| for (const auto *A : Attrs) { |
| const Record &Attr = *A; |
| std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation"); |
| for (const auto *D : Docs) { |
| const Record &Doc = *D; |
| const Record *Category = Doc.getValueAsDef("Category"); |
| // If the category is "undocumented", then there cannot be any other |
| // documentation categories (otherwise, the attribute would become |
| // documented). |
| const StringRef Cat = Category->getValueAsString("Name"); |
| bool Undocumented = Cat == "Undocumented"; |
| if (Undocumented && Docs.size() > 1) |
| PrintFatalError(Doc.getLoc(), |
| "Attribute is \"Undocumented\", but has multiple " |
| "documentation categories"); |
| |
| if (!Undocumented) |
| SplitDocs[Category].push_back(DocumentationData( |
| Doc, Attr, GetAttributeHeadingAndSpellingKinds(Doc, Attr))); |
| } |
| } |
| |
| // Having split the attributes out based on what documentation goes where, |
| // we can begin to generate sections of documentation. |
| for (auto &I : SplitDocs) { |
| WriteCategoryHeader(I.first, OS); |
| |
| llvm::sort(I.second.begin(), I.second.end(), |
| [](const DocumentationData &D1, const DocumentationData &D2) { |
| return D1.Heading < D2.Heading; |
| }); |
| |
| // Walk over each of the attributes in the category and write out their |
| // documentation. |
| for (const auto &Doc : I.second) |
| WriteDocumentation(Records, Doc, OS); |
| } |
| } |
| |
| void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records, |
| raw_ostream &OS) { |
| PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records); |
| ParsedAttrMap Attrs = getParsedAttrList(Records); |
| unsigned NumAttrs = 0; |
| for (const auto &I : Attrs) { |
| if (Support.isAttributedSupported(*I.second)) |
| ++NumAttrs; |
| } |
| OS << "#pragma clang attribute supports " << NumAttrs << " attributes:\n"; |
| for (const auto &I : Attrs) { |
| if (!Support.isAttributedSupported(*I.second)) |
| continue; |
| OS << I.first; |
| if (I.second->isValueUnset("Subjects")) { |
| OS << " ()\n"; |
| continue; |
| } |
| const Record *SubjectObj = I.second->getValueAsDef("Subjects"); |
| std::vector<Record *> Subjects = |
| SubjectObj->getValueAsListOfDefs("Subjects"); |
| OS << " ("; |
| for (const auto &Subject : llvm::enumerate(Subjects)) { |
| if (Subject.index()) |
| OS << ", "; |
| PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet = |
| Support.SubjectsToRules.find(Subject.value())->getSecond(); |
| if (RuleSet.isRule()) { |
| OS << RuleSet.getRule().getEnumValueName(); |
| continue; |
| } |
| OS << "("; |
| for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) { |
| if (Rule.index()) |
| OS << ", "; |
| OS << Rule.value().getEnumValueName(); |
| } |
| OS << ")"; |
| } |
| OS << ")\n"; |
| } |
| } |
| |
| } // end namespace clang |