blob: d2d11f5d591482c216f8d2bf8b5b2b780553e861 [file] [log] [blame]
/* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (C) 2015-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chris Forbes <chrisf@ijw.co.nz>
*/
#ifndef VULKAN_SHADER_VALIDATION_H
#define VULKAN_SHADER_VALIDATION_H
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "vulkan/vulkan.h"
#include <SPIRV/spirv.hpp>
#include <generated/spirv_tools_commit_id.h>
#include "spirv-tools/optimizer.hpp"
#include "core_validation_types.h"
// A forward iterator over spirv instructions. Provides easy access to len, opcode, and content words
// without the caller needing to care too much about the physical SPIRV module layout.
struct spirv_inst_iter {
std::vector<uint32_t>::const_iterator zero;
std::vector<uint32_t>::const_iterator it;
uint32_t len() const {
auto result = *it >> 16;
assert(result > 0);
return result;
}
uint32_t opcode() { return *it & 0x0ffffu; }
uint32_t const &word(unsigned n) const {
assert(n < len());
return it[n];
}
uint32_t offset() { return (uint32_t)(it - zero); }
spirv_inst_iter() {}
spirv_inst_iter(std::vector<uint32_t>::const_iterator zero, std::vector<uint32_t>::const_iterator it) : zero(zero), it(it) {}
bool operator==(spirv_inst_iter const &other) const { return it == other.it; }
bool operator!=(spirv_inst_iter const &other) const { return it != other.it; }
spirv_inst_iter operator++(int) { // x++
spirv_inst_iter ii = *this;
it += len();
return ii;
}
spirv_inst_iter operator++() { // ++x;
it += len();
return *this;
}
// The iterator and the value are the same thing.
spirv_inst_iter &operator*() { return *this; }
spirv_inst_iter const &operator*() const { return *this; }
};
struct decoration_set {
enum {
location_bit = 1 << 0,
patch_bit = 1 << 1,
relaxed_precision_bit = 1 << 2,
block_bit = 1 << 3,
buffer_block_bit = 1 << 4,
component_bit = 1 << 5,
input_attachment_index_bit = 1 << 6,
descriptor_set_bit = 1 << 7,
binding_bit = 1 << 8,
nonwritable_bit = 1 << 9,
builtin_bit = 1 << 10,
};
uint32_t flags = 0;
uint32_t location = static_cast<uint32_t>(-1);
uint32_t component = 0;
uint32_t input_attachment_index = 0;
uint32_t descriptor_set = 0;
uint32_t binding = 0;
uint32_t builtin = static_cast<uint32_t>(-1);
void merge(decoration_set const &other) {
if (other.flags & location_bit) location = other.location;
if (other.flags & component_bit) component = other.component;
if (other.flags & input_attachment_index_bit) input_attachment_index = other.input_attachment_index;
if (other.flags & descriptor_set_bit) descriptor_set = other.descriptor_set;
if (other.flags & binding_bit) binding = other.binding;
if (other.flags & builtin_bit) builtin = other.builtin;
flags |= other.flags;
}
void add(uint32_t decoration, uint32_t value);
};
struct SHADER_MODULE_STATE : public BASE_NODE {
// The spirv image itself
std::vector<uint32_t> words;
// A mapping of <id> to the first word of its def. this is useful because walking type
// trees, constant expressions, etc requires jumping all over the instruction stream.
std::unordered_map<unsigned, unsigned> def_index;
std::unordered_map<unsigned, decoration_set> decorations;
struct EntryPoint {
uint32_t offset;
VkShaderStageFlags stage;
};
std::unordered_multimap<std::string, EntryPoint> entry_points;
bool has_valid_spirv;
bool has_specialization_constants;
VkShaderModule vk_shader_module;
uint32_t gpu_validation_shader_id;
std::vector<uint32_t> PreprocessShaderBinary(uint32_t *src_binary, size_t binary_size, spv_target_env env) {
std::vector<uint32_t> src(src_binary, src_binary + binary_size / sizeof(uint32_t));
// Check if there are any group decoration instructions, and flatten them if found.
bool has_group_decoration = false;
bool done = false;
// Walk through the first part of the SPIR-V module, looking for group decoration and specialization constant instructions.
// Skip the header (5 words).
auto itr = spirv_inst_iter(src.begin(), src.begin() + 5);
auto itrend = spirv_inst_iter(src.begin(), src.end());
while (itr != itrend && !done) {
spv::Op opcode = (spv::Op)itr.opcode();
switch (opcode) {
case spv::OpDecorationGroup:
case spv::OpGroupDecorate:
case spv::OpGroupMemberDecorate:
has_group_decoration = true;
break;
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
has_specialization_constants = true;
break;
case spv::OpFunction:
// An OpFunction indicates there are no more decorations
done = true;
break;
default:
break;
}
itr++;
}
if (has_group_decoration) {
spvtools::Optimizer optimizer(env);
optimizer.RegisterPass(spvtools::CreateFlattenDecorationPass());
std::vector<uint32_t> optimized_binary;
// Run optimizer to flatten decorations only, set skip_validation so as to not re-run validator
auto result =
optimizer.Run(src_binary, binary_size / sizeof(uint32_t), &optimized_binary, spvtools::ValidatorOptions(), true);
if (result) {
return optimized_binary;
}
}
// Return the original module.
return src;
}
SHADER_MODULE_STATE(VkShaderModuleCreateInfo const *pCreateInfo, VkShaderModule shaderModule, spv_target_env env,
uint32_t unique_shader_id)
: words(PreprocessShaderBinary((uint32_t *)pCreateInfo->pCode, pCreateInfo->codeSize, env)),
def_index(),
has_valid_spirv(true),
vk_shader_module(shaderModule),
gpu_validation_shader_id(unique_shader_id) {
BuildDefIndex();
}
SHADER_MODULE_STATE() : has_valid_spirv(false), vk_shader_module(VK_NULL_HANDLE), gpu_validation_shader_id(UINT32_MAX) {}
decoration_set get_decorations(unsigned id) const {
// return the actual decorations for this id, or a default set.
auto it = decorations.find(id);
if (it != decorations.end()) return it->second;
return decoration_set();
}
// Expose begin() / end() to enable range-based for
spirv_inst_iter begin() const { return spirv_inst_iter(words.begin(), words.begin() + 5); } // First insn
spirv_inst_iter end() const { return spirv_inst_iter(words.begin(), words.end()); } // Just past last insn
// Given an offset into the module, produce an iterator there.
spirv_inst_iter at(unsigned offset) const { return spirv_inst_iter(words.begin(), words.begin() + offset); }
// Gets an iterator to the definition of an id
spirv_inst_iter get_def(unsigned id) const {
auto it = def_index.find(id);
if (it == def_index.end()) {
return end();
}
return at(it->second);
}
void BuildDefIndex();
};
class ValidationCache {
// hashes of shaders that have passed validation before, and can be skipped.
// we don't store negative results, as we would have to also store what was
// wrong with them; also, we expect they will get fixed, so we're less
// likely to see them again.
std::unordered_set<uint32_t> good_shader_hashes;
ValidationCache() {}
public:
static VkValidationCacheEXT Create(VkValidationCacheCreateInfoEXT const *pCreateInfo) {
auto cache = new ValidationCache();
cache->Load(pCreateInfo);
return VkValidationCacheEXT(cache);
}
void Load(VkValidationCacheCreateInfoEXT const *pCreateInfo) {
const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE;
auto size = headerSize;
if (!pCreateInfo->pInitialData || pCreateInfo->initialDataSize < size) return;
uint32_t const *data = (uint32_t const *)pCreateInfo->pInitialData;
if (data[0] != size) return;
if (data[1] != VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT) return;
uint8_t expected_uuid[VK_UUID_SIZE];
Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, expected_uuid);
if (memcmp(&data[2], expected_uuid, VK_UUID_SIZE) != 0) return; // different version
data = (uint32_t const *)(reinterpret_cast<uint8_t const *>(data) + headerSize);
for (; size < pCreateInfo->initialDataSize; data++, size += sizeof(uint32_t)) {
good_shader_hashes.insert(*data);
}
}
void Write(size_t *pDataSize, void *pData) {
const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; // 4 bytes for header size + 4 bytes for version number + UUID
if (!pData) {
*pDataSize = headerSize + good_shader_hashes.size() * sizeof(uint32_t);
return;
}
if (*pDataSize < headerSize) {
*pDataSize = 0;
return; // Too small for even the header!
}
uint32_t *out = (uint32_t *)pData;
size_t actualSize = headerSize;
// Write the header
*out++ = headerSize;
*out++ = VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT;
Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, reinterpret_cast<uint8_t *>(out));
out = (uint32_t *)(reinterpret_cast<uint8_t *>(out) + VK_UUID_SIZE);
for (auto it = good_shader_hashes.begin(); it != good_shader_hashes.end() && actualSize < *pDataSize;
it++, out++, actualSize += sizeof(uint32_t)) {
*out = *it;
}
*pDataSize = actualSize;
}
void Merge(ValidationCache const *other) {
good_shader_hashes.reserve(good_shader_hashes.size() + other->good_shader_hashes.size());
for (auto h : other->good_shader_hashes) good_shader_hashes.insert(h);
}
static uint32_t MakeShaderHash(VkShaderModuleCreateInfo const *smci);
bool Contains(uint32_t hash) { return good_shader_hashes.count(hash) != 0; }
void Insert(uint32_t hash) { good_shader_hashes.insert(hash); }
private:
void Sha1ToVkUuid(const char *sha1_str, uint8_t *uuid) {
// Convert sha1_str from a hex string to binary. We only need VK_UUID_SIZE bytes of
// output, so pad with zeroes if the input string is shorter than that, and truncate
// if it's longer.
char padded_sha1_str[2 * VK_UUID_SIZE + 1] = {}; // 2 hex digits == 1 byte
std::strncpy(padded_sha1_str, sha1_str, 2 * VK_UUID_SIZE);
for (uint32_t i = 0; i < VK_UUID_SIZE; ++i) {
const char byte_str[] = {padded_sha1_str[2 * i + 0], padded_sha1_str[2 * i + 1], '\0'};
uuid[i] = static_cast<uint8_t>(std::strtoul(byte_str, nullptr, 16));
}
}
};
spirv_inst_iter FindEntrypoint(SHADER_MODULE_STATE const *src, char const *name, VkShaderStageFlagBits stageBits);
// For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is
// important for identifying the set of shader resources actually used by an entrypoint, for example.
// Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
// - NOT the shader input/output interfaces.
//
// TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
// converting parts of this to be generated from the machine-readable spec instead.
std::unordered_set<uint32_t> MarkAccessibleIds(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint);
void ProcessExecutionModes(SHADER_MODULE_STATE const *src, const spirv_inst_iter &entrypoint, PIPELINE_STATE *pipeline);
std::vector<std::pair<descriptor_slot_t, interface_var>> CollectInterfaceByDescriptorSlot(
debug_report_data const *report_data, SHADER_MODULE_STATE const *src, std::unordered_set<uint32_t> const &accessible_ids,
bool *has_writable_descriptor);
uint32_t DescriptorTypeToReqs(SHADER_MODULE_STATE const *module, uint32_t type_id);
#endif // VULKAN_SHADER_VALIDATION_H