blob: acb81358868cf5a2828f6e2999df4aac36b39ee4 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_metrics.h"
#include <windows.h> // Must be in front of other Windows header files.
#include <psapi.h>
#include <winternl.h>
#include <algorithm>
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/process/memory.h"
#include "base/process/process_metrics_iocounters.h"
#include "base/sys_info.h"
#include "starboard/memory.h"
#include "starboard/types.h"
namespace base {
namespace {
// System pagesize. This value remains constant on x86/64 architectures.
const int PAGESIZE_KB = 4;
// ntstatus.h conflicts with windows.h so define this locally.
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
// Definition of this struct is taken from the book:
// Windows NT/200, Native API reference, Gary Nebbett
struct SYSTEM_PERFORMANCE_INFORMATION {
// Total idle time of all processes in the system (units of 100 ns).
LARGE_INTEGER IdleTime;
// Number of bytes read (by all call to ZwReadFile).
LARGE_INTEGER ReadTransferCount;
// Number of bytes written (by all call to ZwWriteFile).
LARGE_INTEGER WriteTransferCount;
// Number of bytes transferred (e.g. DeviceIoControlFile)
LARGE_INTEGER OtherTransferCount;
// The amount of read operations.
ULONG ReadOperationCount;
// The amount of write operations.
ULONG WriteOperationCount;
// The amount of other operations.
ULONG OtherOperationCount;
// The number of pages of physical memory available to processes running on
// the system.
ULONG AvailablePages;
ULONG TotalCommittedPages;
ULONG TotalCommitLimit;
ULONG PeakCommitment;
ULONG PageFaults;
ULONG WriteCopyFaults;
ULONG TransitionFaults;
ULONG CacheTransitionFaults;
ULONG DemandZeroFaults;
// The number of pages read from disk to resolve page faults.
ULONG PagesRead;
// The number of read operations initiated to resolve page faults.
ULONG PageReadIos;
ULONG CacheReads;
ULONG CacheIos;
// The number of pages written to the system's pagefiles.
ULONG PagefilePagesWritten;
// The number of write operations performed on the system's pagefiles.
ULONG PagefilePageWriteIos;
ULONG MappedFilePagesWritten;
ULONG MappedFilePageWriteIos;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG PagedPoolAllocs;
ULONG PagedPoolFrees;
ULONG NonPagedPoolAllocs;
ULONG NonPagedPoolFrees;
ULONG TotalFreeSystemPtes;
ULONG SystemCodePage;
ULONG TotalSystemDriverPages;
ULONG TotalSystemCodePages;
ULONG SmallNonPagedLookasideListAllocateHits;
ULONG SmallPagedLookasideListAllocateHits;
ULONG Reserved3;
ULONG MmSystemCachePage;
ULONG PagedPoolPage;
ULONG SystemDriverPage;
ULONG FastReadNoWait;
ULONG FastReadWait;
ULONG FastReadResourceMiss;
ULONG FastReadNotPossible;
ULONG FastMdlReadNoWait;
ULONG FastMdlReadWait;
ULONG FastMdlReadResourceMiss;
ULONG FastMdlReadNotPossible;
ULONG MapDataNoWait;
ULONG MapDataWait;
ULONG MapDataNoWaitMiss;
ULONG MapDataWaitMiss;
ULONG PinMappedDataCount;
ULONG PinReadNoWait;
ULONG PinReadWait;
ULONG PinReadNoWaitMiss;
ULONG PinReadWaitMiss;
ULONG CopyReadNoWait;
ULONG CopyReadWait;
ULONG CopyReadNoWaitMiss;
ULONG CopyReadWaitMiss;
ULONG MdlReadNoWait;
ULONG MdlReadWait;
ULONG MdlReadNoWaitMiss;
ULONG MdlReadWaitMiss;
ULONG ReadAheadIos;
ULONG LazyWriteIos;
ULONG LazyWritePages;
ULONG DataFlushes;
ULONG DataPages;
ULONG ContextSwitches;
ULONG FirstLevelTbFills;
ULONG SecondLevelTbFills;
ULONG SystemCalls;
};
} // namespace
ProcessMetrics::~ProcessMetrics() { }
size_t GetMaxFds() {
// Windows is only limited by the amount of physical memory.
return std::numeric_limits<size_t>::max();
}
// static
std::unique_ptr<ProcessMetrics> ProcessMetrics::CreateProcessMetrics(
ProcessHandle process) {
return WrapUnique(new ProcessMetrics(process));
}
namespace {
class WorkingSetInformationBuffer {
public:
WorkingSetInformationBuffer() {}
~WorkingSetInformationBuffer() { Clear(); }
bool Reserve(size_t size) {
Clear();
// Use UncheckedMalloc here because this can be called from the code
// that handles low memory condition.
return UncheckedMalloc(size, reinterpret_cast<void**>(&buffer_));
}
const PSAPI_WORKING_SET_INFORMATION* operator ->() const { return buffer_; }
size_t GetPageEntryCount() const { return number_of_entries; }
// This function is used to get page entries for a process.
bool QueryPageEntries(const ProcessHandle& process) {
int retries = 5;
number_of_entries = 4096; // Just a guess.
for (;;) {
size_t buffer_size =
sizeof(PSAPI_WORKING_SET_INFORMATION) +
(number_of_entries * sizeof(PSAPI_WORKING_SET_BLOCK));
if (!Reserve(buffer_size))
return false;
// On success, |buffer_| is populated with info about the working set of
// |process|. On ERROR_BAD_LENGTH failure, increase the size of the
// buffer and try again.
if (QueryWorkingSet(process, buffer_, buffer_size))
break; // Success
if (GetLastError() != ERROR_BAD_LENGTH)
return false;
number_of_entries = buffer_->NumberOfEntries;
// Maybe some entries are being added right now. Increase the buffer to
// take that into account. Increasing by 10% should generally be enough,
// especially considering the potentially low memory condition during the
// call (when called from OomMemoryDetails) and the potentially high
// number of entries (300K was observed in crash dumps).
number_of_entries *= 1.1;
if (--retries == 0) {
// If we're looping, eventually fail.
return false;
}
}
// TODO(chengx): Remove the comment and the logic below. It is no longer
// needed since we don't have Win2000 support.
// On windows 2000 the function returns 1 even when the buffer is too small.
// The number of entries that we are going to parse is the minimum between
// the size we allocated and the real number of entries.
number_of_entries = std::min(number_of_entries,
static_cast<size_t>(buffer_->NumberOfEntries));
return true;
}
private:
void Clear() {
SbMemoryDeallocate(buffer_);
buffer_ = nullptr;
}
PSAPI_WORKING_SET_INFORMATION* buffer_ = nullptr;
// Number of page entries.
size_t number_of_entries = 0;
DISALLOW_COPY_AND_ASSIGN(WorkingSetInformationBuffer);
};
} // namespace
TimeDelta ProcessMetrics::GetCumulativeCPUUsage() {
FILETIME creation_time;
FILETIME exit_time;
FILETIME kernel_time;
FILETIME user_time;
if (!GetProcessTimes(process_.Get(), &creation_time, &exit_time, &kernel_time,
&user_time)) {
// We don't assert here because in some cases (such as in the Task Manager)
// we may call this function on a process that has just exited but we have
// not yet received the notification.
return TimeDelta();
}
return TimeDelta::FromFileTime(kernel_time) +
TimeDelta::FromFileTime(user_time);
}
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
return GetProcessIoCounters(process_.Get(), io_counters) != FALSE;
}
uint64_t ProcessMetrics::GetCumulativeDiskUsageInBytes() {
IoCounters counters;
if (!GetIOCounters(&counters))
return 0;
return counters.ReadTransferCount + counters.WriteTransferCount +
counters.OtherTransferCount;
}
ProcessMetrics::ProcessMetrics(ProcessHandle process) {
if (process) {
HANDLE duplicate_handle = INVALID_HANDLE_VALUE;
BOOL result = ::DuplicateHandle(::GetCurrentProcess(), process,
::GetCurrentProcess(), &duplicate_handle,
PROCESS_QUERY_INFORMATION, FALSE, 0);
DPCHECK(result);
process_.Set(duplicate_handle);
}
}
size_t GetSystemCommitCharge() {
// Get the System Page Size.
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
PERFORMANCE_INFORMATION info;
if (!GetPerformanceInfo(&info, sizeof(info))) {
DLOG(ERROR) << "Failed to fetch internal performance info.";
return 0;
}
return (info.CommitTotal * system_info.dwPageSize) / 1024;
}
size_t GetPageSize() {
return PAGESIZE_KB * 1024;
}
// This function uses the following mapping between MEMORYSTATUSEX and
// SystemMemoryInfoKB:
// ullTotalPhys ==> total
// ullAvailPhys ==> avail_phys
// ullTotalPageFile ==> swap_total
// ullAvailPageFile ==> swap_free
bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) {
MEMORYSTATUSEX mem_status;
mem_status.dwLength = sizeof(mem_status);
if (!::GlobalMemoryStatusEx(&mem_status))
return false;
meminfo->total = mem_status.ullTotalPhys / 1024;
meminfo->avail_phys = mem_status.ullAvailPhys / 1024;
meminfo->swap_total = mem_status.ullTotalPageFile / 1024;
meminfo->swap_free = mem_status.ullAvailPageFile / 1024;
return true;
}
size_t ProcessMetrics::GetMallocUsage() {
// Unsupported as getting malloc usage on Windows requires iterating through
// the heap which is slow and crashes.
return 0;
}
SystemPerformanceInfo::SystemPerformanceInfo() = default;
SystemPerformanceInfo::SystemPerformanceInfo(
const SystemPerformanceInfo& other) = default;
std::unique_ptr<Value> SystemPerformanceInfo::ToValue() const {
std::unique_ptr<DictionaryValue> result(new DictionaryValue());
// Write out uint64_t variables as doubles.
// Note: this may discard some precision, but for JS there's no other option.
result->SetDouble("idle_time", strict_cast<double>(idle_time));
result->SetDouble("read_transfer_count",
strict_cast<double>(read_transfer_count));
result->SetDouble("write_transfer_count",
strict_cast<double>(write_transfer_count));
result->SetDouble("other_transfer_count",
strict_cast<double>(other_transfer_count));
result->SetDouble("read_operation_count",
strict_cast<double>(read_operation_count));
result->SetDouble("write_operation_count",
strict_cast<double>(write_operation_count));
result->SetDouble("other_operation_count",
strict_cast<double>(other_operation_count));
result->SetDouble("pagefile_pages_written",
strict_cast<double>(pagefile_pages_written));
result->SetDouble("pagefile_pages_write_ios",
strict_cast<double>(pagefile_pages_write_ios));
result->SetDouble("available_pages", strict_cast<double>(available_pages));
result->SetDouble("pages_read", strict_cast<double>(pages_read));
result->SetDouble("page_read_ios", strict_cast<double>(page_read_ios));
return result;
}
// Retrieves performance counters from the operating system.
// Fills in the provided |info| structure. Returns true on success.
BASE_EXPORT bool GetSystemPerformanceInfo(SystemPerformanceInfo* info) {
static const auto query_system_information_ptr =
reinterpret_cast<decltype(&::NtQuerySystemInformation)>(GetProcAddress(
GetModuleHandle(L"ntdll.dll"), "NtQuerySystemInformation"));
if (!query_system_information_ptr)
return false;
SYSTEM_PERFORMANCE_INFORMATION counters = {};
const NTSTATUS status = query_system_information_ptr(
::SystemPerformanceInformation, &counters,
sizeof(SYSTEM_PERFORMANCE_INFORMATION), nullptr);
if (status != STATUS_SUCCESS)
return false;
info->idle_time = counters.IdleTime.QuadPart;
info->read_transfer_count = counters.ReadTransferCount.QuadPart;
info->write_transfer_count = counters.WriteTransferCount.QuadPart;
info->other_transfer_count = counters.OtherTransferCount.QuadPart;
info->read_operation_count = counters.ReadOperationCount;
info->write_operation_count = counters.WriteOperationCount;
info->other_operation_count = counters.OtherOperationCount;
info->pagefile_pages_written = counters.PagefilePagesWritten;
info->pagefile_pages_write_ios = counters.PagefilePageWriteIos;
info->available_pages = counters.AvailablePages;
info->pages_read = counters.PagesRead;
info->page_read_ios = counters.PageReadIos;
return true;
}
} // namespace base