| /* NOLINT(build/header_guard) */ |
| /* Copyright 2013 Google Inc. All Rights Reserved. |
| |
| Distributed under MIT license. |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| */ |
| |
| /* template parameters: EXPORT_FN, FN */ |
| |
| static BROTLI_NOINLINE void EXPORT_FN(CreateBackwardReferences)( |
| const BrotliDictionary* dictionary, |
| const uint16_t* dictionary_hash, |
| size_t num_bytes, size_t position, |
| const uint8_t* ringbuffer, size_t ringbuffer_mask, |
| const BrotliEncoderParams* params, HasherHandle hasher, int* dist_cache, |
| size_t* last_insert_len, Command* commands, size_t* num_commands, |
| size_t* num_literals) { |
| /* Set maximum distance, see section 9.1. of the spec. */ |
| const size_t max_backward_limit = BROTLI_MAX_BACKWARD_LIMIT(params->lgwin); |
| |
| const Command* const orig_commands = commands; |
| size_t insert_length = *last_insert_len; |
| const size_t pos_end = position + num_bytes; |
| const size_t store_end = num_bytes >= FN(StoreLookahead)() ? |
| position + num_bytes - FN(StoreLookahead)() + 1 : position; |
| |
| /* For speed up heuristics for random data. */ |
| const size_t random_heuristics_window_size = |
| LiteralSpreeLengthForSparseSearch(params); |
| size_t apply_random_heuristics = position + random_heuristics_window_size; |
| const size_t gap = 0; |
| |
| /* Minimum score to accept a backward reference. */ |
| const score_t kMinScore = BROTLI_SCORE_BASE + 100; |
| |
| FN(PrepareDistanceCache)(hasher, dist_cache); |
| |
| while (position + FN(HashTypeLength)() < pos_end) { |
| size_t max_length = pos_end - position; |
| size_t max_distance = BROTLI_MIN(size_t, position, max_backward_limit); |
| HasherSearchResult sr; |
| sr.len = 0; |
| sr.len_code_delta = 0; |
| sr.distance = 0; |
| sr.score = kMinScore; |
| FN(FindLongestMatch)(hasher, dictionary, dictionary_hash, ringbuffer, |
| ringbuffer_mask, dist_cache, position, |
| max_length, max_distance, gap, &sr); |
| if (sr.score > kMinScore) { |
| /* Found a match. Let's look for something even better ahead. */ |
| int delayed_backward_references_in_row = 0; |
| --max_length; |
| for (;; --max_length) { |
| const score_t cost_diff_lazy = 175; |
| HasherSearchResult sr2; |
| sr2.len = params->quality < MIN_QUALITY_FOR_EXTENSIVE_REFERENCE_SEARCH ? |
| BROTLI_MIN(size_t, sr.len - 1, max_length) : 0; |
| sr2.len_code_delta = 0; |
| sr2.distance = 0; |
| sr2.score = kMinScore; |
| max_distance = BROTLI_MIN(size_t, position + 1, max_backward_limit); |
| FN(FindLongestMatch)(hasher, dictionary, dictionary_hash, |
| ringbuffer, ringbuffer_mask, dist_cache, position + 1, max_length, |
| max_distance, gap, &sr2); |
| if (sr2.score >= sr.score + cost_diff_lazy) { |
| /* Ok, let's just write one byte for now and start a match from the |
| next byte. */ |
| ++position; |
| ++insert_length; |
| sr = sr2; |
| if (++delayed_backward_references_in_row < 4 && |
| position + FN(HashTypeLength)() < pos_end) { |
| continue; |
| } |
| } |
| break; |
| } |
| apply_random_heuristics = |
| position + 2 * sr.len + random_heuristics_window_size; |
| max_distance = BROTLI_MIN(size_t, position, max_backward_limit); |
| { |
| /* The first 16 codes are special short-codes, |
| and the minimum offset is 1. */ |
| size_t distance_code = |
| ComputeDistanceCode(sr.distance, max_distance + gap, dist_cache); |
| if ((sr.distance <= (max_distance + gap)) && distance_code > 0) { |
| dist_cache[3] = dist_cache[2]; |
| dist_cache[2] = dist_cache[1]; |
| dist_cache[1] = dist_cache[0]; |
| dist_cache[0] = (int)sr.distance; |
| FN(PrepareDistanceCache)(hasher, dist_cache); |
| } |
| InitCommand(commands++, insert_length, sr.len, sr.len_code_delta, |
| distance_code); |
| } |
| *num_literals += insert_length; |
| insert_length = 0; |
| /* Put the hash keys into the table, if there are enough bytes left. |
| Depending on the hasher implementation, it can push all positions |
| in the given range or only a subset of them. |
| Avoid hash poisoning with RLE data. */ |
| { |
| size_t range_start = position + 2; |
| size_t range_end = BROTLI_MIN(size_t, position + sr.len, store_end); |
| if (sr.distance < (sr.len >> 2)) { |
| range_start = BROTLI_MIN(size_t, range_end, BROTLI_MAX(size_t, |
| range_start, position + sr.len - (sr.distance << 2))); |
| } |
| FN(StoreRange)(hasher, ringbuffer, ringbuffer_mask, range_start, |
| range_end); |
| } |
| position += sr.len; |
| } else { |
| ++insert_length; |
| ++position; |
| /* If we have not seen matches for a long time, we can skip some |
| match lookups. Unsuccessful match lookups are very very expensive |
| and this kind of a heuristic speeds up compression quite |
| a lot. */ |
| if (position > apply_random_heuristics) { |
| /* Going through uncompressible data, jump. */ |
| if (position > |
| apply_random_heuristics + 4 * random_heuristics_window_size) { |
| /* It is quite a long time since we saw a copy, so we assume |
| that this data is not compressible, and store hashes less |
| often. Hashes of non compressible data are less likely to |
| turn out to be useful in the future, too, so we store less of |
| them to not to flood out the hash table of good compressible |
| data. */ |
| const size_t kMargin = |
| BROTLI_MAX(size_t, FN(StoreLookahead)() - 1, 4); |
| size_t pos_jump = |
| BROTLI_MIN(size_t, position + 16, pos_end - kMargin); |
| for (; position < pos_jump; position += 4) { |
| FN(Store)(hasher, ringbuffer, ringbuffer_mask, position); |
| insert_length += 4; |
| } |
| } else { |
| const size_t kMargin = |
| BROTLI_MAX(size_t, FN(StoreLookahead)() - 1, 2); |
| size_t pos_jump = |
| BROTLI_MIN(size_t, position + 8, pos_end - kMargin); |
| for (; position < pos_jump; position += 2) { |
| FN(Store)(hasher, ringbuffer, ringbuffer_mask, position); |
| insert_length += 2; |
| } |
| } |
| } |
| } |
| } |
| insert_length += pos_end - position; |
| *last_insert_len = insert_length; |
| *num_commands += (size_t)(commands - orig_commands); |
| } |