| Compiler-RT | 
 | ================================ | 
 |  | 
 | This directory and its subdirectories contain source code for the compiler | 
 | support routines. | 
 |  | 
 | Compiler-RT is open source software. You may freely distribute it under the | 
 | terms of the license agreement found in LICENSE.txt. | 
 |  | 
 | ================================ | 
 |  | 
 | This is a replacement library for libgcc.  Each function is contained | 
 | in its own file.  Each function has a corresponding unit test under | 
 | test/Unit. | 
 |  | 
 | A rudimentary script to test each file is in the file called | 
 | test/Unit/test. | 
 |  | 
 | Here is the specification for this library: | 
 |  | 
 | http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc | 
 |  | 
 | Here is a synopsis of the contents of this library: | 
 |  | 
 | typedef      int si_int; | 
 | typedef unsigned su_int; | 
 |  | 
 | typedef          long long di_int; | 
 | typedef unsigned long long du_int; | 
 |  | 
 | // Integral bit manipulation | 
 |  | 
 | di_int __ashldi3(di_int a, si_int b);      // a << b | 
 | ti_int __ashlti3(ti_int a, si_int b);      // a << b | 
 |  | 
 | di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill) | 
 | ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill) | 
 | di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill) | 
 | ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill) | 
 |  | 
 | si_int __clzsi2(si_int a);  // count leading zeros | 
 | si_int __clzdi2(di_int a);  // count leading zeros | 
 | si_int __clzti2(ti_int a);  // count leading zeros | 
 | si_int __ctzsi2(si_int a);  // count trailing zeros | 
 | si_int __ctzdi2(di_int a);  // count trailing zeros | 
 | si_int __ctzti2(ti_int a);  // count trailing zeros | 
 |  | 
 | si_int __ffssi2(si_int a);  // find least significant 1 bit | 
 | si_int __ffsdi2(di_int a);  // find least significant 1 bit | 
 | si_int __ffsti2(ti_int a);  // find least significant 1 bit | 
 |  | 
 | si_int __paritysi2(si_int a);  // bit parity | 
 | si_int __paritydi2(di_int a);  // bit parity | 
 | si_int __parityti2(ti_int a);  // bit parity | 
 |  | 
 | si_int __popcountsi2(si_int a);  // bit population | 
 | si_int __popcountdi2(di_int a);  // bit population | 
 | si_int __popcountti2(ti_int a);  // bit population | 
 |  | 
 | uint32_t __bswapsi2(uint32_t a);   // a byteswapped | 
 | uint64_t __bswapdi2(uint64_t a);   // a byteswapped | 
 |  | 
 | // Integral arithmetic | 
 |  | 
 | di_int __negdi2    (di_int a);                         // -a | 
 | ti_int __negti2    (ti_int a);                         // -a | 
 | di_int __muldi3    (di_int a, di_int b);               // a * b | 
 | ti_int __multi3    (ti_int a, ti_int b);               // a * b | 
 | si_int __divsi3    (si_int a, si_int b);               // a / b   signed | 
 | di_int __divdi3    (di_int a, di_int b);               // a / b   signed | 
 | ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed | 
 | su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned | 
 | du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned | 
 | tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned | 
 | si_int __modsi3    (si_int a, si_int b);               // a % b   signed | 
 | di_int __moddi3    (di_int a, di_int b);               // a % b   signed | 
 | ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed | 
 | su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned | 
 | du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned | 
 | tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned | 
 | du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned | 
 | tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned | 
 | su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned | 
 | si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed | 
 |  | 
 |  | 
 |  | 
 | //  Integral arithmetic with trapping overflow | 
 |  | 
 | si_int __absvsi2(si_int a);           // abs(a) | 
 | di_int __absvdi2(di_int a);           // abs(a) | 
 | ti_int __absvti2(ti_int a);           // abs(a) | 
 |  | 
 | si_int __negvsi2(si_int a);           // -a | 
 | di_int __negvdi2(di_int a);           // -a | 
 | ti_int __negvti2(ti_int a);           // -a | 
 |  | 
 | si_int __addvsi3(si_int a, si_int b);  // a + b | 
 | di_int __addvdi3(di_int a, di_int b);  // a + b | 
 | ti_int __addvti3(ti_int a, ti_int b);  // a + b | 
 |  | 
 | si_int __subvsi3(si_int a, si_int b);  // a - b | 
 | di_int __subvdi3(di_int a, di_int b);  // a - b | 
 | ti_int __subvti3(ti_int a, ti_int b);  // a - b | 
 |  | 
 | si_int __mulvsi3(si_int a, si_int b);  // a * b | 
 | di_int __mulvdi3(di_int a, di_int b);  // a * b | 
 | ti_int __mulvti3(ti_int a, ti_int b);  // a * b | 
 |  | 
 |  | 
 | // Integral arithmetic which returns if overflow | 
 |  | 
 | si_int __mulosi4(si_int a, si_int b, int* overflow);  // a * b, overflow set to one if result not in signed range | 
 | di_int __mulodi4(di_int a, di_int b, int* overflow);  // a * b, overflow set to one if result not in signed range | 
 | ti_int __muloti4(ti_int a, ti_int b, int* overflow);  // a * b, overflow set to | 
 |  one if result not in signed range | 
 |  | 
 |  | 
 | //  Integral comparison: a  < b -> 0 | 
 | //                       a == b -> 1 | 
 | //                       a  > b -> 2 | 
 |  | 
 | si_int __cmpdi2 (di_int a, di_int b); | 
 | si_int __cmpti2 (ti_int a, ti_int b); | 
 | si_int __ucmpdi2(du_int a, du_int b); | 
 | si_int __ucmpti2(tu_int a, tu_int b); | 
 |  | 
 | //  Integral / floating point conversion | 
 |  | 
 | di_int __fixsfdi(      float a); | 
 | di_int __fixdfdi(     double a); | 
 | di_int __fixxfdi(long double a); | 
 |  | 
 | ti_int __fixsfti(      float a); | 
 | ti_int __fixdfti(     double a); | 
 | ti_int __fixxfti(long double a); | 
 | uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation | 
 |  | 
 | su_int __fixunssfsi(      float a); | 
 | su_int __fixunsdfsi(     double a); | 
 | su_int __fixunsxfsi(long double a); | 
 |  | 
 | du_int __fixunssfdi(      float a); | 
 | du_int __fixunsdfdi(     double a); | 
 | du_int __fixunsxfdi(long double a); | 
 |  | 
 | tu_int __fixunssfti(      float a); | 
 | tu_int __fixunsdfti(     double a); | 
 | tu_int __fixunsxfti(long double a); | 
 | uint64_t __fixunstfdi(long double input);  // ppc only | 
 |  | 
 | float       __floatdisf(di_int a); | 
 | double      __floatdidf(di_int a); | 
 | long double __floatdixf(di_int a); | 
 | long double __floatditf(int64_t a);        // ppc only | 
 |  | 
 | float       __floattisf(ti_int a); | 
 | double      __floattidf(ti_int a); | 
 | long double __floattixf(ti_int a); | 
 |  | 
 | float       __floatundisf(du_int a); | 
 | double      __floatundidf(du_int a); | 
 | long double __floatundixf(du_int a); | 
 | long double __floatunditf(uint64_t a);     // ppc only | 
 |  | 
 | float       __floatuntisf(tu_int a); | 
 | double      __floatuntidf(tu_int a); | 
 | long double __floatuntixf(tu_int a); | 
 |  | 
 | //  Floating point raised to integer power | 
 |  | 
 | float       __powisf2(      float a, si_int b);  // a ^ b | 
 | double      __powidf2(     double a, si_int b);  // a ^ b | 
 | long double __powixf2(long double a, si_int b);  // a ^ b | 
 | long double __powitf2(long double a, si_int b);  // ppc only, a ^ b | 
 |  | 
 | //  Complex arithmetic | 
 |  | 
 | //  (a + ib) * (c + id) | 
 |  | 
 |       float _Complex __mulsc3( float a,  float b,  float c,  float d); | 
 |      double _Complex __muldc3(double a, double b, double c, double d); | 
 | long double _Complex __mulxc3(long double a, long double b, | 
 |                               long double c, long double d); | 
 | long double _Complex __multc3(long double a, long double b, | 
 |                               long double c, long double d); // ppc only | 
 |  | 
 | //  (a + ib) / (c + id) | 
 |  | 
 |       float _Complex __divsc3( float a,  float b,  float c,  float d); | 
 |      double _Complex __divdc3(double a, double b, double c, double d); | 
 | long double _Complex __divxc3(long double a, long double b, | 
 |                               long double c, long double d); | 
 | long double _Complex __divtc3(long double a, long double b, | 
 |                               long double c, long double d);  // ppc only | 
 |  | 
 |  | 
 | //         Runtime support | 
 |  | 
 | // __clear_cache() is used to tell process that new instructions have been | 
 | // written to an address range.  Necessary on processors that do not have | 
 | // a unified instruction and data cache. | 
 | void __clear_cache(void* start, void* end); | 
 |  | 
 | // __enable_execute_stack() is used with nested functions when a trampoline | 
 | // function is written onto the stack and that page range needs to be made | 
 | // executable. | 
 | void __enable_execute_stack(void* addr); | 
 |  | 
 | // __gcc_personality_v0() is normally only called by the system unwinder. | 
 | // C code (as opposed to C++) normally does not need a personality function | 
 | // because there are no catch clauses or destructors to be run.  But there | 
 | // is a C language extension __attribute__((cleanup(func))) which marks local | 
 | // variables as needing the cleanup function "func" to be run when the | 
 | // variable goes out of scope.  That includes when an exception is thrown, | 
 | // so a personality handler is needed.   | 
 | _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions, | 
 |          uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject, | 
 |          _Unwind_Context_t context); | 
 |  | 
 | // for use with some implementations of assert() in <assert.h> | 
 | void __eprintf(const char* format, const char* assertion_expression, | 
 | 				const char* line, const char* file); | 
 |  | 
 | // for systems with emulated thread local storage | 
 | void* __emutls_get_address(struct __emutls_control*); | 
 |  | 
 |  | 
 | //   Power PC specific functions | 
 |  | 
 | // There is no C interface to the saveFP/restFP functions.  They are helper | 
 | // functions called by the prolog and epilog of functions that need to save | 
 | // a number of non-volatile float point registers.   | 
 | saveFP | 
 | restFP | 
 |  | 
 | // PowerPC has a standard template for trampoline functions.  This function | 
 | // generates a custom trampoline function with the specific realFunc | 
 | // and localsPtr values. | 
 | void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,  | 
 |                                 const void* realFunc, void* localsPtr); | 
 |  | 
 | // adds two 128-bit double-double precision values ( x + y ) | 
 | long double __gcc_qadd(long double x, long double y);   | 
 |  | 
 | // subtracts two 128-bit double-double precision values ( x - y ) | 
 | long double __gcc_qsub(long double x, long double y);  | 
 |  | 
 | // multiples two 128-bit double-double precision values ( x * y ) | 
 | long double __gcc_qmul(long double x, long double y);   | 
 |  | 
 | // divides two 128-bit double-double precision values ( x / y ) | 
 | long double __gcc_qdiv(long double a, long double b);   | 
 |  | 
 |  | 
 | //    ARM specific functions | 
 |  | 
 | // There is no C interface to the switch* functions.  These helper functions | 
 | // are only needed by Thumb1 code for efficient switch table generation. | 
 | switch16 | 
 | switch32 | 
 | switch8 | 
 | switchu8 | 
 |  | 
 | // There is no C interface to the *_vfp_d8_d15_regs functions.  There are | 
 | // called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use | 
 | // SJLJ for exceptions, each function with a catch clause or destuctors needs | 
 | // to save and restore all registers in it prolog and epliog.  But there is  | 
 | // no way to access vector and high float registers from thumb1 code, so the  | 
 | // compiler must add call outs to these helper functions in the prolog and  | 
 | // epilog. | 
 | restore_vfp_d8_d15_regs | 
 | save_vfp_d8_d15_regs | 
 |  | 
 |  | 
 | // Note: long ago ARM processors did not have floating point hardware support. | 
 | // Floating point was done in software and floating point parameters were  | 
 | // passed in integer registers.  When hardware support was added for floating | 
 | // point, new *vfp functions were added to do the same operations but with  | 
 | // floating point parameters in floating point registers. | 
 |  | 
 | // Undocumented functions | 
 |  | 
 | float  __addsf3vfp(float a, float b);   // Appears to return a + b | 
 | double __adddf3vfp(double a, double b); // Appears to return a + b | 
 | float  __divsf3vfp(float a, float b);   // Appears to return a / b | 
 | double __divdf3vfp(double a, double b); // Appears to return a / b | 
 | int    __eqsf2vfp(float a, float b);    // Appears to return  one | 
 |                                         //     iff a == b and neither is NaN. | 
 | int    __eqdf2vfp(double a, double b);  // Appears to return  one | 
 |                                         //     iff a == b and neither is NaN. | 
 | double __extendsfdf2vfp(float a);       // Appears to convert from | 
 |                                         //     float to double. | 
 | int    __fixdfsivfp(double a);          // Appears to convert from | 
 |                                         //     double to int. | 
 | int    __fixsfsivfp(float a);           // Appears to convert from | 
 |                                         //     float to int. | 
 | unsigned int __fixunssfsivfp(float a);  // Appears to convert from | 
 |                                         //     float to unsigned int. | 
 | unsigned int __fixunsdfsivfp(double a); // Appears to convert from | 
 |                                         //     double to unsigned int. | 
 | double __floatsidfvfp(int a);           // Appears to convert from | 
 |                                         //     int to double. | 
 | float __floatsisfvfp(int a);            // Appears to convert from | 
 |                                         //     int to float. | 
 | double __floatunssidfvfp(unsigned int a); // Appears to convert from | 
 |                                         //     unisgned int to double. | 
 | float __floatunssisfvfp(unsigned int a); // Appears to convert from | 
 |                                         //     unisgned int to float. | 
 | int __gedf2vfp(double a, double b);     // Appears to return __gedf2 | 
 |                                         //     (a >= b) | 
 | int __gesf2vfp(float a, float b);       // Appears to return __gesf2 | 
 |                                         //     (a >= b) | 
 | int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2 | 
 |                                         //     (a > b) | 
 | int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2 | 
 |                                         //     (a > b) | 
 | int __ledf2vfp(double a, double b);     // Appears to return __ledf2 | 
 |                                         //     (a <= b) | 
 | int __lesf2vfp(float a, float b);       // Appears to return __lesf2 | 
 |                                         //     (a <= b) | 
 | int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2 | 
 |                                         //     (a < b) | 
 | int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2 | 
 |                                         //     (a < b) | 
 | double __muldf3vfp(double a, double b); // Appears to return a * b | 
 | float __mulsf3vfp(float a, float b);    // Appears to return a * b | 
 | int __nedf2vfp(double a, double b);     // Appears to return __nedf2 | 
 |                                         //     (a != b) | 
 | double __negdf2vfp(double a);           // Appears to return -a | 
 | float __negsf2vfp(float a);             // Appears to return -a | 
 | float __negsf2vfp(float a);             // Appears to return -a | 
 | double __subdf3vfp(double a, double b); // Appears to return a - b | 
 | float __subsf3vfp(float a, float b);    // Appears to return a - b | 
 | float __truncdfsf2vfp(double a);        // Appears to convert from | 
 |                                         //     double to float. | 
 | int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2 | 
 | int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2 | 
 |  | 
 |  | 
 | Preconditions are listed for each function at the definition when there are any. | 
 | Any preconditions reflect the specification at | 
 | http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc. | 
 |  | 
 | Assumptions are listed in "int_lib.h", and in individual files.  Where possible | 
 | assumptions are checked at compile time. |