| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "AArch64ErrataFix.h" |
| #include "CallGraphSort.h" |
| #include "Config.h" |
| #include "Filesystem.h" |
| #include "LinkerScript.h" |
| #include "MapFile.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "lld/Common/Threads.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include <climits> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| Writer() : Buffer(errorHandler().OutputBuffer) {} |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::Ehdr Elf_Ehdr; |
| typedef typename ELFT::Phdr Elf_Phdr; |
| |
| void run(); |
| |
| private: |
| void copyLocalSymbols(); |
| void addSectionSymbols(); |
| void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn); |
| void sortSections(); |
| void resolveShfLinkOrder(); |
| void sortInputSections(); |
| void finalizeSections(); |
| void setReservedSymbolSections(); |
| |
| std::vector<PhdrEntry *> createPhdrs(); |
| void removeEmptyPTLoad(); |
| void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); |
| void assignFileOffsets(); |
| void assignFileOffsetsBinary(); |
| void setPhdrs(); |
| void checkSections(); |
| void fixSectionAlignments(); |
| void openFile(); |
| void writeTrapInstr(); |
| void writeHeader(); |
| void writeSections(); |
| void writeSectionsBinary(); |
| void writeBuildId(); |
| |
| std::unique_ptr<FileOutputBuffer> &Buffer; |
| |
| void addRelIpltSymbols(); |
| void addStartEndSymbols(); |
| void addStartStopSymbols(OutputSection *Sec); |
| uint64_t getEntryAddr(); |
| |
| std::vector<PhdrEntry *> Phdrs; |
| |
| uint64_t FileSize; |
| uint64_t SectionHeaderOff; |
| }; |
| } // anonymous namespace |
| |
| static bool isSectionPrefix(StringRef Prefix, StringRef Name) { |
| return Name.startswith(Prefix) || Name == Prefix.drop_back(); |
| } |
| |
| StringRef elf::getOutputSectionName(const InputSectionBase *S) { |
| if (Config->Relocatable) |
| return S->Name; |
| |
| // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want |
| // to emit .rela.text.foo as .rela.text.bar for consistency (this is not |
| // technically required, but not doing it is odd). This code guarantees that. |
| if (auto *IS = dyn_cast<InputSection>(S)) { |
| if (InputSectionBase *Rel = IS->getRelocatedSection()) { |
| OutputSection *Out = Rel->getOutputSection(); |
| if (S->Type == SHT_RELA) |
| return Saver.save(".rela" + Out->Name); |
| return Saver.save(".rel" + Out->Name); |
| } |
| } |
| |
| // This check is for -z keep-text-section-prefix. This option separates text |
| // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or |
| // ".text.exit". |
| // When enabled, this allows identifying the hot code region (.text.hot) in |
| // the final binary which can be selectively mapped to huge pages or mlocked, |
| // for instance. |
| if (Config->ZKeepTextSectionPrefix) |
| for (StringRef V : |
| {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) { |
| if (isSectionPrefix(V, S->Name)) |
| return V.drop_back(); |
| } |
| |
| for (StringRef V : |
| {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", |
| ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", |
| ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { |
| if (isSectionPrefix(V, S->Name)) |
| return V.drop_back(); |
| } |
| |
| // CommonSection is identified as "COMMON" in linker scripts. |
| // By default, it should go to .bss section. |
| if (S->Name == "COMMON") |
| return ".bss"; |
| |
| return S->Name; |
| } |
| |
| static bool needsInterpSection() { |
| return !SharedFiles.empty() && !Config->DynamicLinker.empty() && |
| Script->needsInterpSection(); |
| } |
| |
| template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } |
| |
| template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { |
| llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { |
| if (P->p_type != PT_LOAD) |
| return false; |
| if (!P->FirstSec) |
| return true; |
| uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; |
| return Size == 0; |
| }); |
| } |
| |
| template <class ELFT> static void combineEhFrameSections() { |
| for (InputSectionBase *&S : InputSections) { |
| EhInputSection *ES = dyn_cast<EhInputSection>(S); |
| if (!ES || !ES->Live) |
| continue; |
| |
| InX::EhFrame->addSection<ELFT>(ES); |
| S = nullptr; |
| } |
| |
| std::vector<InputSectionBase *> &V = InputSections; |
| V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); |
| } |
| |
| static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, |
| uint64_t Val, uint8_t StOther = STV_HIDDEN, |
| uint8_t Binding = STB_GLOBAL) { |
| Symbol *S = Symtab->find(Name); |
| if (!S || S->isDefined()) |
| return nullptr; |
| Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val, |
| /*Size=*/0, Binding, Sec, |
| /*File=*/nullptr); |
| return cast<Defined>(Sym); |
| } |
| |
| // The linker is expected to define some symbols depending on |
| // the linking result. This function defines such symbols. |
| void elf::addReservedSymbols() { |
| if (Config->EMachine == EM_MIPS) { |
| // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
| // so that it points to an absolute address which by default is relative |
| // to GOT. Default offset is 0x7ff0. |
| // See "Global Data Symbols" in Chapter 6 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL); |
| |
| // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
| // start of function and 'gp' pointer into GOT. |
| if (Symtab->find("_gp_disp")) |
| ElfSym::MipsGpDisp = |
| Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL); |
| |
| // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
| // pointer. This symbol is used in the code generated by .cpload pseudo-op |
| // in case of using -mno-shared option. |
| // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
| if (Symtab->find("__gnu_local_gp")) |
| ElfSym::MipsLocalGp = |
| Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL); |
| } |
| |
| // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which |
| // combines the typical ELF GOT with the small data sections. It commonly |
| // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both |
| // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to |
| // represent the TOC base which is offset by 0x8000 bytes from the start of |
| // the .got section. |
| ElfSym::GlobalOffsetTable = addOptionalRegular( |
| (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_", |
| Out::ElfHeader, Target->GotBaseSymOff); |
| |
| // __ehdr_start is the location of ELF file headers. Note that we define |
| // this symbol unconditionally even when using a linker script, which |
| // differs from the behavior implemented by GNU linker which only define |
| // this symbol if ELF headers are in the memory mapped segment. |
| addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); |
| |
| // __executable_start is not documented, but the expectation of at |
| // least the Android libc is that it points to the ELF header. |
| addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); |
| |
| // __dso_handle symbol is passed to cxa_finalize as a marker to identify |
| // each DSO. The address of the symbol doesn't matter as long as they are |
| // different in different DSOs, so we chose the start address of the DSO. |
| addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); |
| |
| // If linker script do layout we do not need to create any standart symbols. |
| if (Script->HasSectionsCommand) |
| return; |
| |
| auto Add = [](StringRef S, int64_t Pos) { |
| return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); |
| }; |
| |
| ElfSym::Bss = Add("__bss_start", 0); |
| ElfSym::End1 = Add("end", -1); |
| ElfSym::End2 = Add("_end", -1); |
| ElfSym::Etext1 = Add("etext", -1); |
| ElfSym::Etext2 = Add("_etext", -1); |
| ElfSym::Edata1 = Add("edata", -1); |
| ElfSym::Edata2 = Add("_edata", -1); |
| } |
| |
| static OutputSection *findSection(StringRef Name) { |
| for (BaseCommand *Base : Script->SectionCommands) |
| if (auto *Sec = dyn_cast<OutputSection>(Base)) |
| if (Sec->Name == Name) |
| return Sec; |
| return nullptr; |
| } |
| |
| // Initialize Out members. |
| template <class ELFT> static void createSyntheticSections() { |
| // Initialize all pointers with NULL. This is needed because |
| // you can call lld::elf::main more than once as a library. |
| memset(&Out::First, 0, sizeof(Out)); |
| |
| auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; |
| |
| InX::DynStrTab = make<StringTableSection>(".dynstr", true); |
| InX::Dynamic = make<DynamicSection<ELFT>>(); |
| if (Config->AndroidPackDynRelocs) { |
| InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( |
| Config->IsRela ? ".rela.dyn" : ".rel.dyn"); |
| } else { |
| InX::RelaDyn = make<RelocationSection<ELFT>>( |
| Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); |
| } |
| InX::ShStrTab = make<StringTableSection>(".shstrtab", false); |
| |
| Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); |
| Out::ProgramHeaders->Alignment = Config->Wordsize; |
| |
| if (needsInterpSection()) { |
| InX::Interp = createInterpSection(); |
| Add(InX::Interp); |
| } else { |
| InX::Interp = nullptr; |
| } |
| |
| if (Config->Strip != StripPolicy::All) { |
| InX::StrTab = make<StringTableSection>(".strtab", false); |
| InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); |
| InX::SymTabShndx = make<SymtabShndxSection>(); |
| } |
| |
| if (Config->BuildId != BuildIdKind::None) { |
| InX::BuildId = make<BuildIdSection>(); |
| Add(InX::BuildId); |
| } |
| |
| InX::Bss = make<BssSection>(".bss", 0, 1); |
| Add(InX::Bss); |
| |
| // If there is a SECTIONS command and a .data.rel.ro section name use name |
| // .data.rel.ro.bss so that we match in the .data.rel.ro output section. |
| // This makes sure our relro is contiguous. |
| bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); |
| InX::BssRelRo = |
| make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); |
| Add(InX::BssRelRo); |
| |
| // Add MIPS-specific sections. |
| if (Config->EMachine == EM_MIPS) { |
| if (!Config->Shared && Config->HasDynSymTab) { |
| InX::MipsRldMap = make<MipsRldMapSection>(); |
| Add(InX::MipsRldMap); |
| } |
| if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) |
| Add(Sec); |
| if (auto *Sec = MipsOptionsSection<ELFT>::create()) |
| Add(Sec); |
| if (auto *Sec = MipsReginfoSection<ELFT>::create()) |
| Add(Sec); |
| } |
| |
| if (Config->HasDynSymTab) { |
| InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); |
| Add(InX::DynSymTab); |
| |
| In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); |
| Add(In<ELFT>::VerSym); |
| |
| if (!Config->VersionDefinitions.empty()) { |
| In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); |
| Add(In<ELFT>::VerDef); |
| } |
| |
| In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); |
| Add(In<ELFT>::VerNeed); |
| |
| if (Config->GnuHash) { |
| InX::GnuHashTab = make<GnuHashTableSection>(); |
| Add(InX::GnuHashTab); |
| } |
| |
| if (Config->SysvHash) { |
| InX::HashTab = make<HashTableSection>(); |
| Add(InX::HashTab); |
| } |
| |
| Add(InX::Dynamic); |
| Add(InX::DynStrTab); |
| Add(InX::RelaDyn); |
| } |
| |
| if (Config->RelrPackDynRelocs) { |
| InX::RelrDyn = make<RelrSection<ELFT>>(); |
| Add(InX::RelrDyn); |
| } |
| |
| // Add .got. MIPS' .got is so different from the other archs, |
| // it has its own class. |
| if (Config->EMachine == EM_MIPS) { |
| InX::MipsGot = make<MipsGotSection>(); |
| Add(InX::MipsGot); |
| } else { |
| InX::Got = make<GotSection>(); |
| Add(InX::Got); |
| } |
| |
| InX::GotPlt = make<GotPltSection>(); |
| Add(InX::GotPlt); |
| InX::IgotPlt = make<IgotPltSection>(); |
| Add(InX::IgotPlt); |
| |
| if (Config->GdbIndex) { |
| InX::GdbIndex = GdbIndexSection::create<ELFT>(); |
| Add(InX::GdbIndex); |
| } |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even for static linking it can contain R_[*]_IRELATIVE relocations. |
| InX::RelaPlt = make<RelocationSection<ELFT>>( |
| Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); |
| Add(InX::RelaPlt); |
| |
| // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure |
| // that the IRelative relocations are processed last by the dynamic loader. |
| // We cannot place the iplt section in .rel.dyn when Android relocation |
| // packing is enabled because that would cause a section type mismatch. |
| // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, |
| // we can get the desired behaviour by placing the iplt section in .rel.plt. |
| InX::RelaIplt = make<RelocationSection<ELFT>>( |
| (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) |
| ? ".rel.dyn" |
| : InX::RelaPlt->Name, |
| false /*Sort*/); |
| Add(InX::RelaIplt); |
| |
| InX::Plt = make<PltSection>(false); |
| Add(InX::Plt); |
| InX::Iplt = make<PltSection>(true); |
| Add(InX::Iplt); |
| |
| if (!Config->Relocatable) { |
| if (Config->EhFrameHdr) { |
| InX::EhFrameHdr = make<EhFrameHeader>(); |
| Add(InX::EhFrameHdr); |
| } |
| InX::EhFrame = make<EhFrameSection>(); |
| Add(InX::EhFrame); |
| } |
| |
| if (InX::SymTab) |
| Add(InX::SymTab); |
| if (InX::SymTabShndx) |
| Add(InX::SymTabShndx); |
| Add(InX::ShStrTab); |
| if (InX::StrTab) |
| Add(InX::StrTab); |
| |
| if (Config->EMachine == EM_ARM && !Config->Relocatable) |
| // Add a sentinel to terminate .ARM.exidx. It helps an unwinder |
| // to find the exact address range of the last entry. |
| Add(make<ARMExidxSentinelSection>()); |
| } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| // Create linker-synthesized sections such as .got or .plt. |
| // Such sections are of type input section. |
| createSyntheticSections<ELFT>(); |
| |
| if (!Config->Relocatable) |
| combineEhFrameSections<ELFT>(); |
| |
| // We want to process linker script commands. When SECTIONS command |
| // is given we let it create sections. |
| Script->processSectionCommands(); |
| |
| // Linker scripts controls how input sections are assigned to output sections. |
| // Input sections that were not handled by scripts are called "orphans", and |
| // they are assigned to output sections by the default rule. Process that. |
| Script->addOrphanSections(); |
| |
| if (Config->Discard != DiscardPolicy::All) |
| copyLocalSymbols(); |
| |
| if (Config->CopyRelocs) |
| addSectionSymbols(); |
| |
| // Now that we have a complete set of output sections. This function |
| // completes section contents. For example, we need to add strings |
| // to the string table, and add entries to .got and .plt. |
| // finalizeSections does that. |
| finalizeSections(); |
| if (errorCount()) |
| return; |
| |
| Script->assignAddresses(); |
| |
| // If -compressed-debug-sections is specified, we need to compress |
| // .debug_* sections. Do it right now because it changes the size of |
| // output sections. |
| for (OutputSection *Sec : OutputSections) |
| Sec->maybeCompress<ELFT>(); |
| |
| Script->allocateHeaders(Phdrs); |
| |
| // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a |
| // 0 sized region. This has to be done late since only after assignAddresses |
| // we know the size of the sections. |
| removeEmptyPTLoad(); |
| |
| if (!Config->OFormatBinary) |
| assignFileOffsets(); |
| else |
| assignFileOffsetsBinary(); |
| |
| setPhdrs(); |
| |
| if (Config->Relocatable) { |
| for (OutputSection *Sec : OutputSections) |
| Sec->Addr = 0; |
| } |
| |
| if (Config->CheckSections) |
| checkSections(); |
| |
| // It does not make sense try to open the file if we have error already. |
| if (errorCount()) |
| return; |
| // Write the result down to a file. |
| openFile(); |
| if (errorCount()) |
| return; |
| |
| if (!Config->OFormatBinary) { |
| writeTrapInstr(); |
| writeHeader(); |
| writeSections(); |
| } else { |
| writeSectionsBinary(); |
| } |
| |
| // Backfill .note.gnu.build-id section content. This is done at last |
| // because the content is usually a hash value of the entire output file. |
| writeBuildId(); |
| if (errorCount()) |
| return; |
| |
| // Handle -Map and -cref options. |
| writeMapFile(); |
| writeCrossReferenceTable(); |
| if (errorCount()) |
| return; |
| |
| if (auto E = Buffer->commit()) |
| error("failed to write to the output file: " + toString(std::move(E))); |
| } |
| |
| static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, |
| const Symbol &B) { |
| if (B.isSection()) |
| return false; |
| |
| if (Config->Discard == DiscardPolicy::None) |
| return true; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| if (!SymName.startswith(".L") && !SymName.empty()) |
| return true; |
| |
| if (Config->Discard == DiscardPolicy::Locals) |
| return false; |
| |
| return !Sec || !(Sec->Flags & SHF_MERGE); |
| } |
| |
| static bool includeInSymtab(const Symbol &B) { |
| if (!B.isLocal() && !B.IsUsedInRegularObj) |
| return false; |
| |
| if (auto *D = dyn_cast<Defined>(&B)) { |
| // Always include absolute symbols. |
| SectionBase *Sec = D->Section; |
| if (!Sec) |
| return true; |
| Sec = Sec->Repl; |
| // Exclude symbols pointing to garbage-collected sections. |
| if (isa<InputSectionBase>(Sec) && !Sec->Live) |
| return false; |
| if (auto *S = dyn_cast<MergeInputSection>(Sec)) |
| if (!S->getSectionPiece(D->Value)->Live) |
| return false; |
| return true; |
| } |
| return B.Used; |
| } |
| |
| // Local symbols are not in the linker's symbol table. This function scans |
| // each object file's symbol table to copy local symbols to the output. |
| template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { |
| if (!InX::SymTab) |
| return; |
| for (InputFile *File : ObjectFiles) { |
| ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); |
| for (Symbol *B : F->getLocalSymbols()) { |
| if (!B->isLocal()) |
| fatal(toString(F) + |
| ": broken object: getLocalSymbols returns a non-local symbol"); |
| auto *DR = dyn_cast<Defined>(B); |
| |
| // No reason to keep local undefined symbol in symtab. |
| if (!DR) |
| continue; |
| if (!includeInSymtab(*B)) |
| continue; |
| |
| SectionBase *Sec = DR->Section; |
| if (!shouldKeepInSymtab(Sec, B->getName(), *B)) |
| continue; |
| InX::SymTab->addSymbol(B); |
| } |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::addSectionSymbols() { |
| // Create a section symbol for each output section so that we can represent |
| // relocations that point to the section. If we know that no relocation is |
| // referring to a section (that happens if the section is a synthetic one), we |
| // don't create a section symbol for that section. |
| for (BaseCommand *Base : Script->SectionCommands) { |
| auto *Sec = dyn_cast<OutputSection>(Base); |
| if (!Sec) |
| continue; |
| auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) |
| return !ISD->Sections.empty(); |
| return false; |
| }); |
| if (I == Sec->SectionCommands.end()) |
| continue; |
| InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; |
| |
| // Relocations are not using REL[A] section symbols. |
| if (IS->Type == SHT_REL || IS->Type == SHT_RELA) |
| continue; |
| |
| // Unlike other synthetic sections, mergeable output sections contain data |
| // copied from input sections, and there may be a relocation pointing to its |
| // contents if -r or -emit-reloc are given. |
| if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) |
| continue; |
| |
| auto *Sym = |
| make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, |
| /*Value=*/0, /*Size=*/0, IS); |
| InX::SymTab->addSymbol(Sym); |
| } |
| } |
| |
| // Today's loaders have a feature to make segments read-only after |
| // processing dynamic relocations to enhance security. PT_GNU_RELRO |
| // is defined for that. |
| // |
| // This function returns true if a section needs to be put into a |
| // PT_GNU_RELRO segment. |
| static bool isRelroSection(const OutputSection *Sec) { |
| if (!Config->ZRelro) |
| return false; |
| |
| uint64_t Flags = Sec->Flags; |
| |
| // Non-allocatable or non-writable sections don't need RELRO because |
| // they are not writable or not even mapped to memory in the first place. |
| // RELRO is for sections that are essentially read-only but need to |
| // be writable only at process startup to allow dynamic linker to |
| // apply relocations. |
| if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) |
| return false; |
| |
| // Once initialized, TLS data segments are used as data templates |
| // for a thread-local storage. For each new thread, runtime |
| // allocates memory for a TLS and copy templates there. No thread |
| // are supposed to use templates directly. Thus, it can be in RELRO. |
| if (Flags & SHF_TLS) |
| return true; |
| |
| // .init_array, .preinit_array and .fini_array contain pointers to |
| // functions that are executed on process startup or exit. These |
| // pointers are set by the static linker, and they are not expected |
| // to change at runtime. But if you are an attacker, you could do |
| // interesting things by manipulating pointers in .fini_array, for |
| // example. So they are put into RELRO. |
| uint32_t Type = Sec->Type; |
| if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || |
| Type == SHT_PREINIT_ARRAY) |
| return true; |
| |
| // .got contains pointers to external symbols. They are resolved by |
| // the dynamic linker when a module is loaded into memory, and after |
| // that they are not expected to change. So, it can be in RELRO. |
| if (InX::Got && Sec == InX::Got->getParent()) |
| return true; |
| |
| if (Sec->Name.equals(".toc")) |
| return true; |
| |
| // .got.plt contains pointers to external function symbols. They are |
| // by default resolved lazily, so we usually cannot put it into RELRO. |
| // However, if "-z now" is given, the lazy symbol resolution is |
| // disabled, which enables us to put it into RELRO. |
| if (Sec == InX::GotPlt->getParent()) |
| return Config->ZNow; |
| |
| // .dynamic section contains data for the dynamic linker, and |
| // there's no need to write to it at runtime, so it's better to put |
| // it into RELRO. |
| if (Sec == InX::Dynamic->getParent()) |
| return true; |
| |
| // Sections with some special names are put into RELRO. This is a |
| // bit unfortunate because section names shouldn't be significant in |
| // ELF in spirit. But in reality many linker features depend on |
| // magic section names. |
| StringRef S = Sec->Name; |
| return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || |
| S == ".dtors" || S == ".jcr" || S == ".eh_frame" || |
| S == ".openbsd.randomdata"; |
| } |
| |
| // We compute a rank for each section. The rank indicates where the |
| // section should be placed in the file. Instead of using simple |
| // numbers (0,1,2...), we use a series of flags. One for each decision |
| // point when placing the section. |
| // Using flags has two key properties: |
| // * It is easy to check if a give branch was taken. |
| // * It is easy two see how similar two ranks are (see getRankProximity). |
| enum RankFlags { |
| RF_NOT_ADDR_SET = 1 << 18, |
| RF_NOT_INTERP = 1 << 17, |
| RF_NOT_ALLOC = 1 << 16, |
| RF_WRITE = 1 << 15, |
| RF_EXEC_WRITE = 1 << 14, |
| RF_EXEC = 1 << 13, |
| RF_RODATA = 1 << 12, |
| RF_NON_TLS_BSS = 1 << 11, |
| RF_NON_TLS_BSS_RO = 1 << 10, |
| RF_NOT_TLS = 1 << 9, |
| RF_BSS = 1 << 8, |
| RF_NOTE = 1 << 7, |
| RF_PPC_NOT_TOCBSS = 1 << 6, |
| RF_PPC_TOCL = 1 << 5, |
| RF_PPC_TOC = 1 << 4, |
| RF_PPC_GOT = 1 << 3, |
| RF_PPC_BRANCH_LT = 1 << 2, |
| RF_MIPS_GPREL = 1 << 1, |
| RF_MIPS_NOT_GOT = 1 << 0 |
| }; |
| |
| static unsigned getSectionRank(const OutputSection *Sec) { |
| unsigned Rank = 0; |
| |
| // We want to put section specified by -T option first, so we |
| // can start assigning VA starting from them later. |
| if (Config->SectionStartMap.count(Sec->Name)) |
| return Rank; |
| Rank |= RF_NOT_ADDR_SET; |
| |
| // Put .interp first because some loaders want to see that section |
| // on the first page of the executable file when loaded into memory. |
| if (Sec->Name == ".interp") |
| return Rank; |
| Rank |= RF_NOT_INTERP; |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| if (!(Sec->Flags & SHF_ALLOC)) |
| return Rank | RF_NOT_ALLOC; |
| |
| // Sort sections based on their access permission in the following |
| // order: R, RX, RWX, RW. This order is based on the following |
| // considerations: |
| // * Read-only sections come first such that they go in the |
| // PT_LOAD covering the program headers at the start of the file. |
| // * Read-only, executable sections come next. |
| // * Writable, executable sections follow such that .plt on |
| // architectures where it needs to be writable will be placed |
| // between .text and .data. |
| // * Writable sections come last, such that .bss lands at the very |
| // end of the last PT_LOAD. |
| bool IsExec = Sec->Flags & SHF_EXECINSTR; |
| bool IsWrite = Sec->Flags & SHF_WRITE; |
| |
| if (IsExec) { |
| if (IsWrite) |
| Rank |= RF_EXEC_WRITE; |
| else |
| Rank |= RF_EXEC; |
| } else if (IsWrite) { |
| Rank |= RF_WRITE; |
| } else if (Sec->Type == SHT_PROGBITS) { |
| // Make non-executable and non-writable PROGBITS sections (e.g .rodata |
| // .eh_frame) closer to .text. They likely contain PC or GOT relative |
| // relocations and there could be relocation overflow if other huge sections |
| // (.dynstr .dynsym) were placed in between. |
| Rank |= RF_RODATA; |
| } |
| |
| // If we got here we know that both A and B are in the same PT_LOAD. |
| |
| bool IsTls = Sec->Flags & SHF_TLS; |
| bool IsNoBits = Sec->Type == SHT_NOBITS; |
| |
| // The first requirement we have is to put (non-TLS) nobits sections last. The |
| // reason is that the only thing the dynamic linker will see about them is a |
| // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the |
| // PT_LOAD, so that has to correspond to the nobits sections. |
| bool IsNonTlsNoBits = IsNoBits && !IsTls; |
| if (IsNonTlsNoBits) |
| Rank |= RF_NON_TLS_BSS; |
| |
| // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo |
| // sections after r/w ones, so that the RelRo sections are contiguous. |
| bool IsRelRo = isRelroSection(Sec); |
| if (IsNonTlsNoBits && !IsRelRo) |
| Rank |= RF_NON_TLS_BSS_RO; |
| if (!IsNonTlsNoBits && IsRelRo) |
| Rank |= RF_NON_TLS_BSS_RO; |
| |
| // The TLS initialization block needs to be a single contiguous block in a R/W |
| // PT_LOAD, so stick TLS sections directly before the other RelRo R/W |
| // sections. The TLS NOBITS sections are placed here as they don't take up |
| // virtual address space in the PT_LOAD. |
| if (!IsTls) |
| Rank |= RF_NOT_TLS; |
| |
| // Within the TLS initialization block, the non-nobits sections need to appear |
| // first. |
| if (IsNoBits) |
| Rank |= RF_BSS; |
| |
| // We create a NOTE segment for contiguous .note sections, so make |
| // them contigous if there are more than one .note section with the |
| // same attributes. |
| if (Sec->Type == SHT_NOTE) |
| Rank |= RF_NOTE; |
| |
| // Some architectures have additional ordering restrictions for sections |
| // within the same PT_LOAD. |
| if (Config->EMachine == EM_PPC64) { |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections |
| // that we would like to make sure appear is a specific order to maximize |
| // their coverage by a single signed 16-bit offset from the TOC base |
| // pointer. Conversely, the special .tocbss section should be first among |
| // all SHT_NOBITS sections. This will put it next to the loaded special |
| // PPC64 sections (and, thus, within reach of the TOC base pointer). |
| StringRef Name = Sec->Name; |
| if (Name != ".tocbss") |
| Rank |= RF_PPC_NOT_TOCBSS; |
| |
| if (Name == ".toc1") |
| Rank |= RF_PPC_TOCL; |
| |
| if (Name == ".toc") |
| Rank |= RF_PPC_TOC; |
| |
| if (Name == ".got") |
| Rank |= RF_PPC_GOT; |
| |
| if (Name == ".branch_lt") |
| Rank |= RF_PPC_BRANCH_LT; |
| } |
| |
| if (Config->EMachine == EM_MIPS) { |
| // All sections with SHF_MIPS_GPREL flag should be grouped together |
| // because data in these sections is addressable with a gp relative address. |
| if (Sec->Flags & SHF_MIPS_GPREL) |
| Rank |= RF_MIPS_GPREL; |
| |
| if (Sec->Name != ".got") |
| Rank |= RF_MIPS_NOT_GOT; |
| } |
| |
| return Rank; |
| } |
| |
| static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { |
| const OutputSection *A = cast<OutputSection>(ACmd); |
| const OutputSection *B = cast<OutputSection>(BCmd); |
| if (A->SortRank != B->SortRank) |
| return A->SortRank < B->SortRank; |
| if (!(A->SortRank & RF_NOT_ADDR_SET)) |
| return Config->SectionStartMap.lookup(A->Name) < |
| Config->SectionStartMap.lookup(B->Name); |
| return false; |
| } |
| |
| void PhdrEntry::add(OutputSection *Sec) { |
| LastSec = Sec; |
| if (!FirstSec) |
| FirstSec = Sec; |
| p_align = std::max(p_align, Sec->Alignment); |
| if (p_type == PT_LOAD) |
| Sec->PtLoad = this; |
| } |
| |
| // The beginning and the ending of .rel[a].plt section are marked |
| // with __rel[a]_iplt_{start,end} symbols if it is a statically linked |
| // executable. The runtime needs these symbols in order to resolve |
| // all IRELATIVE relocs on startup. For dynamic executables, we don't |
| // need these symbols, since IRELATIVE relocs are resolved through GOT |
| // and PLT. For details, see http://www.airs.com/blog/archives/403. |
| template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
| if (Config->Relocatable || needsInterpSection()) |
| return; |
| StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; |
| addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); |
| |
| S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; |
| ElfSym::RelaIpltEnd = |
| addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::forEachRelSec( |
| llvm::function_ref<void(InputSectionBase &)> Fn) { |
| // Scan all relocations. Each relocation goes through a series |
| // of tests to determine if it needs special treatment, such as |
| // creating GOT, PLT, copy relocations, etc. |
| // Note that relocations for non-alloc sections are directly |
| // processed by InputSection::relocateNonAlloc. |
| for (InputSectionBase *IS : InputSections) |
| if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) |
| Fn(*IS); |
| for (EhInputSection *ES : InX::EhFrame->Sections) |
| Fn(*ES); |
| } |
| |
| // This function generates assignments for predefined symbols (e.g. _end or |
| // _etext) and inserts them into the commands sequence to be processed at the |
| // appropriate time. This ensures that the value is going to be correct by the |
| // time any references to these symbols are processed and is equivalent to |
| // defining these symbols explicitly in the linker script. |
| template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { |
| if (ElfSym::GlobalOffsetTable) { |
| // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually |
| // to the start of the .got or .got.plt section. |
| InputSection *GotSection = InX::GotPlt; |
| if (!Target->GotBaseSymInGotPlt) |
| GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) |
| : cast<InputSection>(InX::Got); |
| ElfSym::GlobalOffsetTable->Section = GotSection; |
| } |
| |
| if (ElfSym::RelaIpltEnd) |
| ElfSym::RelaIpltEnd->Value = InX::RelaIplt->getSize(); |
| |
| PhdrEntry *Last = nullptr; |
| PhdrEntry *LastRO = nullptr; |
| |
| for (PhdrEntry *P : Phdrs) { |
| if (P->p_type != PT_LOAD) |
| continue; |
| Last = P; |
| if (!(P->p_flags & PF_W)) |
| LastRO = P; |
| } |
| |
| if (LastRO) { |
| // _etext is the first location after the last read-only loadable segment. |
| if (ElfSym::Etext1) |
| ElfSym::Etext1->Section = LastRO->LastSec; |
| if (ElfSym::Etext2) |
| ElfSym::Etext2->Section = LastRO->LastSec; |
| } |
| |
| if (Last) { |
| // _edata points to the end of the last mapped initialized section. |
| OutputSection *Edata = nullptr; |
| for (OutputSection *OS : OutputSections) { |
| if (OS->Type != SHT_NOBITS) |
| Edata = OS; |
| if (OS == Last->LastSec) |
| break; |
| } |
| |
| if (ElfSym::Edata1) |
| ElfSym::Edata1->Section = Edata; |
| if (ElfSym::Edata2) |
| ElfSym::Edata2->Section = Edata; |
| |
| // _end is the first location after the uninitialized data region. |
| if (ElfSym::End1) |
| ElfSym::End1->Section = Last->LastSec; |
| if (ElfSym::End2) |
| ElfSym::End2->Section = Last->LastSec; |
| } |
| |
| if (ElfSym::Bss) |
| ElfSym::Bss->Section = findSection(".bss"); |
| |
| // Setup MIPS _gp_disp/__gnu_local_gp symbols which should |
| // be equal to the _gp symbol's value. |
| if (ElfSym::MipsGp) { |
| // Find GP-relative section with the lowest address |
| // and use this address to calculate default _gp value. |
| for (OutputSection *OS : OutputSections) { |
| if (OS->Flags & SHF_MIPS_GPREL) { |
| ElfSym::MipsGp->Section = OS; |
| ElfSym::MipsGp->Value = 0x7ff0; |
| break; |
| } |
| } |
| } |
| } |
| |
| // We want to find how similar two ranks are. |
| // The more branches in getSectionRank that match, the more similar they are. |
| // Since each branch corresponds to a bit flag, we can just use |
| // countLeadingZeros. |
| static int getRankProximityAux(OutputSection *A, OutputSection *B) { |
| return countLeadingZeros(A->SortRank ^ B->SortRank); |
| } |
| |
| static int getRankProximity(OutputSection *A, BaseCommand *B) { |
| if (auto *Sec = dyn_cast<OutputSection>(B)) |
| return getRankProximityAux(A, Sec); |
| return -1; |
| } |
| |
| // When placing orphan sections, we want to place them after symbol assignments |
| // so that an orphan after |
| // begin_foo = .; |
| // foo : { *(foo) } |
| // end_foo = .; |
| // doesn't break the intended meaning of the begin/end symbols. |
| // We don't want to go over sections since findOrphanPos is the |
| // one in charge of deciding the order of the sections. |
| // We don't want to go over changes to '.', since doing so in |
| // rx_sec : { *(rx_sec) } |
| // . = ALIGN(0x1000); |
| // /* The RW PT_LOAD starts here*/ |
| // rw_sec : { *(rw_sec) } |
| // would mean that the RW PT_LOAD would become unaligned. |
| static bool shouldSkip(BaseCommand *Cmd) { |
| if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) |
| return Assign->Name != "."; |
| return false; |
| } |
| |
| // We want to place orphan sections so that they share as much |
| // characteristics with their neighbors as possible. For example, if |
| // both are rw, or both are tls. |
| template <typename ELFT> |
| static std::vector<BaseCommand *>::iterator |
| findOrphanPos(std::vector<BaseCommand *>::iterator B, |
| std::vector<BaseCommand *>::iterator E) { |
| OutputSection *Sec = cast<OutputSection>(*E); |
| |
| // Find the first element that has as close a rank as possible. |
| auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { |
| return getRankProximity(Sec, A) < getRankProximity(Sec, B); |
| }); |
| if (I == E) |
| return E; |
| |
| // Consider all existing sections with the same proximity. |
| int Proximity = getRankProximity(Sec, *I); |
| for (; I != E; ++I) { |
| auto *CurSec = dyn_cast<OutputSection>(*I); |
| if (!CurSec) |
| continue; |
| if (getRankProximity(Sec, CurSec) != Proximity || |
| Sec->SortRank < CurSec->SortRank) |
| break; |
| } |
| |
| auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; |
| auto J = std::find_if(llvm::make_reverse_iterator(I), |
| llvm::make_reverse_iterator(B), IsOutputSec); |
| I = J.base(); |
| |
| // As a special case, if the orphan section is the last section, put |
| // it at the very end, past any other commands. |
| // This matches bfd's behavior and is convenient when the linker script fully |
| // specifies the start of the file, but doesn't care about the end (the non |
| // alloc sections for example). |
| auto NextSec = std::find_if(I, E, IsOutputSec); |
| if (NextSec == E) |
| return E; |
| |
| while (I != E && shouldSkip(*I)) |
| ++I; |
| return I; |
| } |
| |
| // Builds section order for handling --symbol-ordering-file. |
| static DenseMap<const InputSectionBase *, int> buildSectionOrder() { |
| DenseMap<const InputSectionBase *, int> SectionOrder; |
| // Use the rarely used option -call-graph-ordering-file to sort sections. |
| if (!Config->CallGraphProfile.empty()) |
| return computeCallGraphProfileOrder(); |
| |
| if (Config->SymbolOrderingFile.empty()) |
| return SectionOrder; |
| |
| struct SymbolOrderEntry { |
| int Priority; |
| bool Present; |
| }; |
| |
| // Build a map from symbols to their priorities. Symbols that didn't |
| // appear in the symbol ordering file have the lowest priority 0. |
| // All explicitly mentioned symbols have negative (higher) priorities. |
| DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; |
| int Priority = -Config->SymbolOrderingFile.size(); |
| for (StringRef S : Config->SymbolOrderingFile) |
| SymbolOrder.insert({S, {Priority++, false}}); |
| |
| // Build a map from sections to their priorities. |
| auto AddSym = [&](Symbol &Sym) { |
| auto It = SymbolOrder.find(Sym.getName()); |
| if (It == SymbolOrder.end()) |
| return; |
| SymbolOrderEntry &Ent = It->second; |
| Ent.Present = true; |
| |
| warnUnorderableSymbol(&Sym); |
| |
| if (auto *D = dyn_cast<Defined>(&Sym)) { |
| if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { |
| int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; |
| Priority = std::min(Priority, Ent.Priority); |
| } |
| } |
| }; |
| // We want both global and local symbols. We get the global ones from the |
| // symbol table and iterate the object files for the local ones. |
| for (Symbol *Sym : Symtab->getSymbols()) |
| if (!Sym->isLazy()) |
| AddSym(*Sym); |
| for (InputFile *File : ObjectFiles) |
| for (Symbol *Sym : File->getSymbols()) |
| if (Sym->isLocal()) |
| AddSym(*Sym); |
| |
| if (Config->WarnSymbolOrdering) |
| for (auto OrderEntry : SymbolOrder) |
| if (!OrderEntry.second.Present) |
| warn("symbol ordering file: no such symbol: " + OrderEntry.first); |
| |
| return SectionOrder; |
| } |
| |
| // Sorts the sections in ISD according to the provided section order. |
| static void |
| sortISDBySectionOrder(InputSectionDescription *ISD, |
| const DenseMap<const InputSectionBase *, int> &Order) { |
| std::vector<InputSection *> UnorderedSections; |
| std::vector<std::pair<InputSection *, int>> OrderedSections; |
| uint64_t UnorderedSize = 0; |
| |
| for (InputSection *IS : ISD->Sections) { |
| auto I = Order.find(IS); |
| if (I == Order.end()) { |
| UnorderedSections.push_back(IS); |
| UnorderedSize += IS->getSize(); |
| continue; |
| } |
| OrderedSections.push_back({IS, I->second}); |
| } |
| llvm::sort( |
| OrderedSections.begin(), OrderedSections.end(), |
| [&](std::pair<InputSection *, int> A, std::pair<InputSection *, int> B) { |
| return A.second < B.second; |
| }); |
| |
| // Find an insertion point for the ordered section list in the unordered |
| // section list. On targets with limited-range branches, this is the mid-point |
| // of the unordered section list. This decreases the likelihood that a range |
| // extension thunk will be needed to enter or exit the ordered region. If the |
| // ordered section list is a list of hot functions, we can generally expect |
| // the ordered functions to be called more often than the unordered functions, |
| // making it more likely that any particular call will be within range, and |
| // therefore reducing the number of thunks required. |
| // |
| // For example, imagine that you have 8MB of hot code and 32MB of cold code. |
| // If the layout is: |
| // |
| // 8MB hot |
| // 32MB cold |
| // |
| // only the first 8-16MB of the cold code (depending on which hot function it |
| // is actually calling) can call the hot code without a range extension thunk. |
| // However, if we use this layout: |
| // |
| // 16MB cold |
| // 8MB hot |
| // 16MB cold |
| // |
| // both the last 8-16MB of the first block of cold code and the first 8-16MB |
| // of the second block of cold code can call the hot code without a thunk. So |
| // we effectively double the amount of code that could potentially call into |
| // the hot code without a thunk. |
| size_t InsPt = 0; |
| if (Target->ThunkSectionSpacing && !OrderedSections.empty()) { |
| uint64_t UnorderedPos = 0; |
| for (; InsPt != UnorderedSections.size(); ++InsPt) { |
| UnorderedPos += UnorderedSections[InsPt]->getSize(); |
| if (UnorderedPos > UnorderedSize / 2) |
| break; |
| } |
| } |
| |
| ISD->Sections.clear(); |
| for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) |
| ISD->Sections.push_back(IS); |
| for (std::pair<InputSection *, int> P : OrderedSections) |
| ISD->Sections.push_back(P.first); |
| for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) |
| ISD->Sections.push_back(IS); |
| } |
| |
| static void sortSection(OutputSection *Sec, |
| const DenseMap<const InputSectionBase *, int> &Order) { |
| StringRef Name = Sec->Name; |
| |
| // Sort input sections by section name suffixes for |
| // __attribute__((init_priority(N))). |
| if (Name == ".init_array" || Name == ".fini_array") { |
| if (!Script->HasSectionsCommand) |
| Sec->sortInitFini(); |
| return; |
| } |
| |
| // Sort input sections by the special rule for .ctors and .dtors. |
| if (Name == ".ctors" || Name == ".dtors") { |
| if (!Script->HasSectionsCommand) |
| Sec->sortCtorsDtors(); |
| return; |
| } |
| |
| // Never sort these. |
| if (Name == ".init" || Name == ".fini") |
| return; |
| |
| // Sort input sections by priority using the list provided |
| // by --symbol-ordering-file. |
| if (!Order.empty()) |
| for (BaseCommand *B : Sec->SectionCommands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(B)) |
| sortISDBySectionOrder(ISD, Order); |
| } |
| |
| // If no layout was provided by linker script, we want to apply default |
| // sorting for special input sections. This also handles --symbol-ordering-file. |
| template <class ELFT> void Writer<ELFT>::sortInputSections() { |
| // Build the order once since it is expensive. |
| DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); |
| for (BaseCommand *Base : Script->SectionCommands) |
| if (auto *Sec = dyn_cast<OutputSection>(Base)) |
| sortSection(Sec, Order); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::sortSections() { |
| Script->adjustSectionsBeforeSorting(); |
| |
| // Don't sort if using -r. It is not necessary and we want to preserve the |
| // relative order for SHF_LINK_ORDER sections. |
| if (Config->Relocatable) |
| return; |
| |
| sortInputSections(); |
| |
| for (BaseCommand *Base : Script->SectionCommands) { |
| auto *OS = dyn_cast<OutputSection>(Base); |
| if (!OS) |
| continue; |
| OS->SortRank = getSectionRank(OS); |
| |
| // We want to assign rude approximation values to OutSecOff fields |
| // to know the relative order of the input sections. We use it for |
| // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). |
| uint64_t I = 0; |
| for (InputSection *Sec : getInputSections(OS)) |
| Sec->OutSecOff = I++; |
| } |
| |
| if (!Script->HasSectionsCommand) { |
| // We know that all the OutputSections are contiguous in this case. |
| auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; |
| std::stable_sort( |
| llvm::find_if(Script->SectionCommands, IsSection), |
| llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), |
| compareSections); |
| return; |
| } |
| |
| // Orphan sections are sections present in the input files which are |
| // not explicitly placed into the output file by the linker script. |
| // |
| // The sections in the linker script are already in the correct |
| // order. We have to figuere out where to insert the orphan |
| // sections. |
| // |
| // The order of the sections in the script is arbitrary and may not agree with |
| // compareSections. This means that we cannot easily define a strict weak |
| // ordering. To see why, consider a comparison of a section in the script and |
| // one not in the script. We have a two simple options: |
| // * Make them equivalent (a is not less than b, and b is not less than a). |
| // The problem is then that equivalence has to be transitive and we can |
| // have sections a, b and c with only b in a script and a less than c |
| // which breaks this property. |
| // * Use compareSectionsNonScript. Given that the script order doesn't have |
| // to match, we can end up with sections a, b, c, d where b and c are in the |
| // script and c is compareSectionsNonScript less than b. In which case d |
| // can be equivalent to c, a to b and d < a. As a concrete example: |
| // .a (rx) # not in script |
| // .b (rx) # in script |
| // .c (ro) # in script |
| // .d (ro) # not in script |
| // |
| // The way we define an order then is: |
| // * Sort only the orphan sections. They are in the end right now. |
| // * Move each orphan section to its preferred position. We try |
| // to put each section in the last position where it can share |
| // a PT_LOAD. |
| // |
| // There is some ambiguity as to where exactly a new entry should be |
| // inserted, because Commands contains not only output section |
| // commands but also other types of commands such as symbol assignment |
| // expressions. There's no correct answer here due to the lack of the |
| // formal specification of the linker script. We use heuristics to |
| // determine whether a new output command should be added before or |
| // after another commands. For the details, look at shouldSkip |
| // function. |
| |
| auto I = Script->SectionCommands.begin(); |
| auto E = Script->SectionCommands.end(); |
| auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { |
| if (auto *Sec = dyn_cast<OutputSection>(Base)) |
| return Sec->SectionIndex == UINT32_MAX; |
| return false; |
| }); |
| |
| // Sort the orphan sections. |
| std::stable_sort(NonScriptI, E, compareSections); |
| |
| // As a horrible special case, skip the first . assignment if it is before any |
| // section. We do this because it is common to set a load address by starting |
| // the script with ". = 0xabcd" and the expectation is that every section is |
| // after that. |
| auto FirstSectionOrDotAssignment = |
| std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); |
| if (FirstSectionOrDotAssignment != E && |
| isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) |
| ++FirstSectionOrDotAssignment; |
| I = FirstSectionOrDotAssignment; |
| |
| while (NonScriptI != E) { |
| auto Pos = findOrphanPos<ELFT>(I, NonScriptI); |
| OutputSection *Orphan = cast<OutputSection>(*NonScriptI); |
| |
| // As an optimization, find all sections with the same sort rank |
| // and insert them with one rotate. |
| unsigned Rank = Orphan->SortRank; |
| auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { |
| return cast<OutputSection>(Cmd)->SortRank != Rank; |
| }); |
| std::rotate(Pos, NonScriptI, End); |
| NonScriptI = End; |
| } |
| |
| Script->adjustSectionsAfterSorting(); |
| } |
| |
| static bool compareByFilePosition(InputSection *A, InputSection *B) { |
| // Synthetic, i. e. a sentinel section, should go last. |
| if (A->kind() == InputSectionBase::Synthetic || |
| B->kind() == InputSectionBase::Synthetic) |
| return A->kind() != InputSectionBase::Synthetic; |
| InputSection *LA = A->getLinkOrderDep(); |
| InputSection *LB = B->getLinkOrderDep(); |
| OutputSection *AOut = LA->getParent(); |
| OutputSection *BOut = LB->getParent(); |
| if (AOut != BOut) |
| return AOut->SectionIndex < BOut->SectionIndex; |
| return LA->OutSecOff < LB->OutSecOff; |
| } |
| |
| // This function is used by the --merge-exidx-entries to detect duplicate |
| // .ARM.exidx sections. It is Arm only. |
| // |
| // The .ARM.exidx section is of the form: |
| // | PREL31 offset to function | Unwind instructions for function | |
| // where the unwind instructions are either a small number of unwind |
| // instructions inlined into the table entry, the special CANT_UNWIND value of |
| // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind |
| // instructions. |
| // |
| // We return true if all the unwind instructions in the .ARM.exidx entries of |
| // Cur can be merged into the last entry of Prev. |
| static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { |
| |
| // References to .ARM.Extab Sections have bit 31 clear and are not the |
| // special EXIDX_CANTUNWIND bit-pattern. |
| auto IsExtabRef = [](uint32_t Unwind) { |
| return (Unwind & 0x80000000) == 0 && Unwind != 0x1; |
| }; |
| |
| struct ExidxEntry { |
| ulittle32_t Fn; |
| ulittle32_t Unwind; |
| }; |
| |
| // Get the last table Entry from the previous .ARM.exidx section. |
| const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back(); |
| if (IsExtabRef(PrevEntry.Unwind)) |
| return false; |
| |
| // We consider the unwind instructions of an .ARM.exidx table entry |
| // a duplicate if the previous unwind instructions if: |
| // - Both are the special EXIDX_CANTUNWIND. |
| // - Both are the same inline unwind instructions. |
| // We do not attempt to follow and check links into .ARM.extab tables as |
| // consecutive identical entries are rare and the effort to check that they |
| // are identical is high. |
| |
| for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>()) |
| if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) |
| return false; |
| // All table entries in this .ARM.exidx Section can be merged into the |
| // previous Section. |
| return true; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { |
| for (OutputSection *Sec : OutputSections) { |
| if (!(Sec->Flags & SHF_LINK_ORDER)) |
| continue; |
| |
| // Link order may be distributed across several InputSectionDescriptions |
| // but sort must consider them all at once. |
| std::vector<InputSection **> ScriptSections; |
| std::vector<InputSection *> Sections; |
| for (BaseCommand *Base : Sec->SectionCommands) { |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { |
| for (InputSection *&IS : ISD->Sections) { |
| ScriptSections.push_back(&IS); |
| Sections.push_back(IS); |
| } |
| } |
| } |
| std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); |
| |
| if (!Config->Relocatable && Config->EMachine == EM_ARM && |
| Sec->Type == SHT_ARM_EXIDX) { |
| |
| if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) { |
| assert(Sections.size() >= 2 && |
| "We should create a sentinel section only if there are " |
| "alive regular exidx sections."); |
| // The last executable section is required to fill the sentinel. |
| // Remember it here so that we don't have to find it again. |
| Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); |
| } |
| |
| if (Config->MergeArmExidx) { |
| // The EHABI for the Arm Architecture permits consecutive identical |
| // table entries to be merged. We use a simple implementation that |
| // removes a .ARM.exidx Input Section if it can be merged into the |
| // previous one. This does not require any rewriting of InputSection |
| // contents but misses opportunities for fine grained deduplication |
| // where only a subset of the InputSection contents can be merged. |
| size_t Prev = 0; |
| // The last one is a sentinel entry which should not be removed. |
| for (size_t I = 1; I < Sections.size() - 1; ++I) { |
| if (isDuplicateArmExidxSec(Sections[Prev], Sections[I])) |
| Sections[I] = nullptr; |
| else |
| Prev = I; |
| } |
| } |
| } |
| |
| for (int I = 0, N = Sections.size(); I < N; ++I) |
| *ScriptSections[I] = Sections[I]; |
| |
| // Remove the Sections we marked as duplicate earlier. |
| for (BaseCommand *Base : Sec->SectionCommands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) |
| llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); |
| } |
| } |
| |
| static void applySynthetic(const std::vector<SyntheticSection *> &Sections, |
| llvm::function_ref<void(SyntheticSection *)> Fn) { |
| for (SyntheticSection *SS : Sections) |
| if (SS && SS->getParent() && !SS->empty()) |
| Fn(SS); |
| } |
| |
| // In order to allow users to manipulate linker-synthesized sections, |
| // we had to add synthetic sections to the input section list early, |
| // even before we make decisions whether they are needed. This allows |
| // users to write scripts like this: ".mygot : { .got }". |
| // |
| // Doing it has an unintended side effects. If it turns out that we |
| // don't need a .got (for example) at all because there's no |
| // relocation that needs a .got, we don't want to emit .got. |
| // |
| // To deal with the above problem, this function is called after |
| // scanRelocations is called to remove synthetic sections that turn |
| // out to be empty. |
| static void removeUnusedSyntheticSections() { |
| // All input synthetic sections that can be empty are placed after |
| // all regular ones. We iterate over them all and exit at first |
| // non-synthetic. |
| for (InputSectionBase *S : llvm::reverse(InputSections)) { |
| SyntheticSection *SS = dyn_cast<SyntheticSection>(S); |
| if (!SS) |
| return; |
| OutputSection *OS = SS->getParent(); |
| if (!OS || !SS->empty()) |
| continue; |
| |
| // If we reach here, then SS is an unused synthetic section and we want to |
| // remove it from corresponding input section description of output section. |
| for (BaseCommand *B : OS->SectionCommands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(B)) |
| llvm::erase_if(ISD->Sections, |
| [=](InputSection *IS) { return IS == SS; }); |
| } |
| } |
| |
| // Returns true if a symbol can be replaced at load-time by a symbol |
| // with the same name defined in other ELF executable or DSO. |
| static bool computeIsPreemptible(const Symbol &B) { |
| assert(!B.isLocal()); |
| // Only symbols that appear in dynsym can be preempted. |
| if (!B.includeInDynsym()) |
| return false; |
| |
| // Only default visibility symbols can be preempted. |
| if (B.Visibility != STV_DEFAULT) |
| return false; |
| |
| // At this point copy relocations have not been created yet, so any |
| // symbol that is not defined locally is preemptible. |
| if (!B.isDefined()) |
| return true; |
| |
| // If we have a dynamic list it specifies which local symbols are preemptible. |
| if (Config->HasDynamicList) |
| return false; |
| |
| if (!Config->Shared) |
| return false; |
| |
| // -Bsymbolic means that definitions are not preempted. |
| if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) |
| return false; |
| return true; |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::finalizeSections() { |
| Out::DebugInfo = findSection(".debug_info"); |
| Out::PreinitArray = findSection(".preinit_array"); |
| Out::InitArray = findSection(".init_array"); |
| Out::FiniArray = findSection(".fini_array"); |
| |
| // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
| // symbols for sections, so that the runtime can get the start and end |
| // addresses of each section by section name. Add such symbols. |
| if (!Config->Relocatable) { |
| addStartEndSymbols(); |
| for (BaseCommand *Base : Script->SectionCommands) |
| if (auto *Sec = dyn_cast<OutputSection>(Base)) |
| addStartStopSymbols(Sec); |
| } |
| |
| // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
| // It should be okay as no one seems to care about the type. |
| // Even the author of gold doesn't remember why gold behaves that way. |
| // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
| if (InX::DynSymTab) |
| Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, |
| /*Size=*/0, STB_WEAK, InX::Dynamic, |
| /*File=*/nullptr); |
| |
| // Define __rel[a]_iplt_{start,end} symbols if needed. |
| addRelIpltSymbols(); |
| |
| // This responsible for splitting up .eh_frame section into |
| // pieces. The relocation scan uses those pieces, so this has to be |
| // earlier. |
| applySynthetic({InX::EhFrame}, |
| [](SyntheticSection *SS) { SS->finalizeContents(); }); |
| |
| for (Symbol *S : Symtab->getSymbols()) |
| S->IsPreemptible |= computeIsPreemptible(*S); |
| |
| // Scan relocations. This must be done after every symbol is declared so that |
| // we can correctly decide if a dynamic relocation is needed. |
| if (!Config->Relocatable) |
| forEachRelSec(scanRelocations<ELFT>); |
| |
| if (InX::Plt && !InX::Plt->empty()) |
| InX::Plt->addSymbols(); |
| if (InX::Iplt && !InX::Iplt->empty()) |
| InX::Iplt->addSymbols(); |
| |
| // Now that we have defined all possible global symbols including linker- |
| // synthesized ones. Visit all symbols to give the finishing touches. |
| for (Symbol *Sym : Symtab->getSymbols()) { |
| if (!includeInSymtab(*Sym)) |
| continue; |
| if (InX::SymTab) |
| InX::SymTab->addSymbol(Sym); |
| |
| if (InX::DynSymTab && Sym->includeInDynsym()) { |
| InX::DynSymTab->addSymbol(Sym); |
| if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File)) |
| if (File->IsNeeded && !Sym->isUndefined()) |
| In<ELFT>::VerNeed->addSymbol(Sym); |
| } |
| } |
| |
| // Do not proceed if there was an undefined symbol. |
| if (errorCount()) |
| return; |
| |
| if (InX::MipsGot) |
| InX::MipsGot->build<ELFT>(); |
| |
| removeUnusedSyntheticSections(); |
| |
| sortSections(); |
| |
| // Now that we have the final list, create a list of all the |
| // OutputSections for convenience. |
| for (BaseCommand *Base : Script->SectionCommands) |
| if (auto *Sec = dyn_cast<OutputSection>(Base)) |
| OutputSections.push_back(Sec); |
| |
| // Ensure data sections are not mixed with executable sections when |
| // -execute-only is used. |
| if (Config->ExecuteOnly) |
| for (OutputSection *OS : OutputSections) |
| if (OS->Flags & SHF_EXECINSTR) |
| for (InputSection *IS : getInputSections(OS)) |
| if (!(IS->Flags & SHF_EXECINSTR)) |
| error("-execute-only does not support intermingling data and code"); |
| |
| // Prefer command line supplied address over other constraints. |
| for (OutputSection *Sec : OutputSections) { |
| auto I = Config->SectionStartMap.find(Sec->Name); |
| if (I != Config->SectionStartMap.end()) |
| Sec->AddrExpr = [=] { return I->second; }; |
| } |
| |
| // This is a bit of a hack. A value of 0 means undef, so we set it |
| // to 1 to make __ehdr_start defined. The section number is not |
| // particularly relevant. |
| Out::ElfHeader->SectionIndex = 1; |
| |
| unsigned I = 1; |
| for (OutputSection *Sec : OutputSections) { |
| Sec->SectionIndex = I++; |
| Sec->ShName = InX::ShStrTab->addString(Sec->Name); |
| } |
| |
| // Binary and relocatable output does not have PHDRS. |
| // The headers have to be created before finalize as that can influence the |
| // image base and the dynamic section on mips includes the image base. |
| if (!Config->Relocatable && !Config->OFormatBinary) { |
| Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); |
| addPtArmExid(Phdrs); |
| Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); |
| } |
| |
| // Some symbols are defined in term of program headers. Now that we |
| // have the headers, we can find out which sections they point to. |
| setReservedSymbolSections(); |
| |
| // Dynamic section must be the last one in this list and dynamic |
| // symbol table section (DynSymTab) must be the first one. |
| applySynthetic( |
| {InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, |
| InX::HashTab, InX::SymTab, InX::SymTabShndx, InX::ShStrTab, |
| InX::StrTab, In<ELFT>::VerDef, InX::DynStrTab, InX::Got, |
| InX::MipsGot, InX::IgotPlt, InX::GotPlt, InX::RelaDyn, |
| InX::RelrDyn, InX::RelaIplt, InX::RelaPlt, InX::Plt, |
| InX::Iplt, InX::EhFrameHdr, In<ELFT>::VerSym, In<ELFT>::VerNeed, |
| InX::Dynamic}, |
| [](SyntheticSection *SS) { SS->finalizeContents(); }); |
| |
| if (!Script->HasSectionsCommand && !Config->Relocatable) |
| fixSectionAlignments(); |
| |
| // After link order processing .ARM.exidx sections can be deduplicated, which |
| // needs to be resolved before any other address dependent operation. |
| resolveShfLinkOrder(); |
| |
| // Some architectures need to generate content that depends on the address |
| // of InputSections. For example some architectures use small displacements |
| // for jump instructions that is the linker's responsibility for creating |
| // range extension thunks for. As the generation of the content may also |
| // alter InputSection addresses we must converge to a fixed point. |
| if (Target->NeedsThunks || Config->AndroidPackDynRelocs || |
| Config->RelrPackDynRelocs) { |
| ThunkCreator TC; |
| AArch64Err843419Patcher A64P; |
| bool Changed; |
| do { |
| Script->assignAddresses(); |
| Changed = false; |
| if (Target->NeedsThunks) |
| Changed |= TC.createThunks(OutputSections); |
| if (Config->FixCortexA53Errata843419) { |
| if (Changed) |
| Script->assignAddresses(); |
| Changed |= A64P.createFixes(); |
| } |
| if (InX::MipsGot) |
| InX::MipsGot->updateAllocSize(); |
| Changed |= InX::RelaDyn->updateAllocSize(); |
| if (InX::RelrDyn) |
| Changed |= InX::RelrDyn->updateAllocSize(); |
| } while (Changed); |
| } |
| |
| // createThunks may have added local symbols to the static symbol table |
| applySynthetic({InX::SymTab}, |
| [](SyntheticSection *SS) { SS->postThunkContents(); }); |
| |
| // Fill other section headers. The dynamic table is finalized |
| // at the end because some tags like RELSZ depend on result |
| // of finalizing other sections. |
| for (OutputSection *Sec : OutputSections) |
| Sec->finalize<ELFT>(); |
| } |
| |
| // The linker is expected to define SECNAME_start and SECNAME_end |
| // symbols for a few sections. This function defines them. |
| template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
| // If a section does not exist, there's ambiguity as to how we |
| // define _start and _end symbols for an init/fini section. Since |
| // the loader assume that the symbols are always defined, we need to |
| // always define them. But what value? The loader iterates over all |
| // pointers between _start and _end to run global ctors/dtors, so if |
| // the section is empty, their symbol values don't actually matter |
| // as long as _start and _end point to the same location. |
| // |
| // That said, we don't want to set the symbols to 0 (which is |
| // probably the simplest value) because that could cause some |
| // program to fail to link due to relocation overflow, if their |
| // program text is above 2 GiB. We use the address of the .text |
| // section instead to prevent that failure. |
| OutputSection *Default = findSection(".text"); |
| if (!Default) |
| Default = Out::ElfHeader; |
| auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { |
| if (OS) { |
| addOptionalRegular(Start, OS, 0); |
| addOptionalRegular(End, OS, -1); |
| } else { |
| addOptionalRegular(Start, Default, 0); |
| addOptionalRegular(End, Default, 0); |
| } |
| }; |
| |
| Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); |
| Define("__init_array_start", "__init_array_end", Out::InitArray); |
| Define("__fini_array_start", "__fini_array_end", Out::FiniArray); |
| |
| if (OutputSection *Sec = findSection(".ARM.exidx")) |
| Define("__exidx_start", "__exidx_end", Sec); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { |
| StringRef S = Sec->Name; |
| if (!isValidCIdentifier(S)) |
| return; |
| addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); |
| addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); |
| } |
| |
| static bool needsPtLoad(OutputSection *Sec) { |
| if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) |
| return false; |
| |
| // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
| // responsible for allocating space for them, not the PT_LOAD that |
| // contains the TLS initialization image. |
| if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) |
| return false; |
| return true; |
| } |
| |
| // Linker scripts are responsible for aligning addresses. Unfortunately, most |
| // linker scripts are designed for creating two PT_LOADs only, one RX and one |
| // RW. This means that there is no alignment in the RO to RX transition and we |
| // cannot create a PT_LOAD there. |
| static uint64_t computeFlags(uint64_t Flags) { |
| if (Config->Omagic) |
| return PF_R | PF_W | PF_X; |
| if (Config->ExecuteOnly && (Flags & PF_X)) |
| return Flags & ~PF_R; |
| if (Config->SingleRoRx && !(Flags & PF_W)) |
| return Flags | PF_X; |
| return Flags; |
| } |
| |
| // Decide which program headers to create and which sections to include in each |
| // one. |
| template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { |
| std::vector<PhdrEntry *> Ret; |
| auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { |
| Ret.push_back(make<PhdrEntry>(Type, Flags)); |
| return Ret.back(); |
| }; |
| |
| // The first phdr entry is PT_PHDR which describes the program header itself. |
| AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); |
| |
| // PT_INTERP must be the second entry if exists. |
| if (OutputSection *Cmd = findSection(".interp")) |
| AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| uint64_t Flags = computeFlags(PF_R); |
| PhdrEntry *Load = AddHdr(PT_LOAD, Flags); |
| |
| // Add the headers. We will remove them if they don't fit. |
| Load->add(Out::ElfHeader); |
| Load->add(Out::ProgramHeaders); |
| |
| for (OutputSection *Sec : OutputSections) { |
| if (!(Sec->Flags & SHF_ALLOC)) |
| break; |
| if (!needsPtLoad(Sec)) |
| continue; |
| |
| // Segments are contiguous memory regions that has the same attributes |
| // (e.g. executable or writable). There is one phdr for each segment. |
| // Therefore, we need to create a new phdr when the next section has |
| // different flags or is loaded at a discontiguous address or memory |
| // region using AT or AT> linker script command, respectively. At the same |
| // time, we don't want to create a separate load segment for the headers, |
| // even if the first output section has an AT or AT> attribute. |
| uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); |
| if (((Sec->LMAExpr || |
| (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && |
| Load->LastSec != Out::ProgramHeaders) || |
| Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { |
| |
| Load = AddHdr(PT_LOAD, NewFlags); |
| Flags = NewFlags; |
| } |
| |
| Load->add(Sec); |
| } |
| |
| // Add a TLS segment if any. |
| PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); |
| for (OutputSection *Sec : OutputSections) |
| if (Sec->Flags & SHF_TLS) |
| TlsHdr->add(Sec); |
| if (TlsHdr->FirstSec) |
| Ret.push_back(TlsHdr); |
| |
| // Add an entry for .dynamic. |
| if (InX::DynSymTab) |
| AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) |
| ->add(InX::Dynamic->getParent()); |
| |
| // PT_GNU_RELRO includes all sections that should be marked as |
| // read-only by dynamic linker after proccessing relocations. |
| // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give |
| // an error message if more than one PT_GNU_RELRO PHDR is required. |
| PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); |
| bool InRelroPhdr = false; |
| bool IsRelroFinished = false; |
| for (OutputSection *Sec : OutputSections) { |
| if (!needsPtLoad(Sec)) |
| continue; |
| if (isRelroSection(Sec)) { |
| InRelroPhdr = true; |
| if (!IsRelroFinished) |
| RelRo->add(Sec); |
| else |
| error("section: " + Sec->Name + " is not contiguous with other relro" + |
| " sections"); |
| } else if (InRelroPhdr) { |
| InRelroPhdr = false; |
| IsRelroFinished = true; |
| } |
| } |
| if (RelRo->FirstSec) |
| Ret.push_back(RelRo); |
| |
| // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
| if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() && |
| InX::EhFrameHdr->getParent()) |
| AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags()) |
| ->add(InX::EhFrameHdr->getParent()); |
| |
| // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes |
| // the dynamic linker fill the segment with random data. |
| if (OutputSection *Cmd = findSection(".openbsd.randomdata")) |
| AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); |
| |
| // PT_GNU_STACK is a special section to tell the loader to make the |
| // pages for the stack non-executable. If you really want an executable |
| // stack, you can pass -z execstack, but that's not recommended for |
| // security reasons. |
| unsigned Perm = PF_R | PF_W; |
| if (Config->ZExecstack) |
| Perm |= PF_X; |
| AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; |
| |
| // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable |
| // is expected to perform W^X violations, such as calling mprotect(2) or |
| // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on |
| // OpenBSD. |
| if (Config->ZWxneeded) |
| AddHdr(PT_OPENBSD_WXNEEDED, PF_X); |
| |
| // Create one PT_NOTE per a group of contiguous .note sections. |
| PhdrEntry *Note = nullptr; |
| for (OutputSection *Sec : OutputSections) { |
| if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { |
| if (!Note || Sec->LMAExpr) |
| Note = AddHdr(PT_NOTE, PF_R); |
| Note->add(Sec); |
| } else { |
| Note = nullptr; |
| } |
| } |
| return Ret; |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { |
| if (Config->EMachine != EM_ARM) |
| return; |
| auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { |
| return Cmd->Type == SHT_ARM_EXIDX; |
| }); |
| if (I == OutputSections.end()) |
| return; |
| |
| // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME |
| PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); |
| ARMExidx->add(*I); |
| Phdrs.push_back(ARMExidx); |
| } |
| |
| // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the |
| // first section after PT_GNU_RELRO have to be page aligned so that the dynamic |
| // linker can set the permissions. |
| template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
| auto PageAlign = [](OutputSection *Cmd) { |
| if (Cmd && !Cmd->AddrExpr) |
| Cmd->AddrExpr = [=] { |
| return alignTo(Script->getDot(), Config->MaxPageSize); |
| }; |
| }; |
| |
| for (const PhdrEntry *P : Phdrs) |
| if (P->p_type == PT_LOAD && P->FirstSec) |
| PageAlign(P->FirstSec); |
| |
| for (const PhdrEntry *P : Phdrs) { |
| if (P->p_type != PT_GNU_RELRO) |
| continue; |
| if (P->FirstSec) |
| PageAlign(P->FirstSec); |
| // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we |
| // have to align it to a page. |
| auto End = OutputSections.end(); |
| auto I = std::find(OutputSections.begin(), End, P->LastSec); |
| if (I == End || (I + 1) == End) |
| continue; |
| OutputSection *Cmd = (*(I + 1)); |
| if (needsPtLoad(Cmd)) |
| PageAlign(Cmd); |
| } |
| } |
| |
| // Adjusts the file alignment for a given output section and returns |
| // its new file offset. The file offset must be the same with its |
| // virtual address (modulo the page size) so that the loader can load |
| // executables without any address adjustment. |
| static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { |
| OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr; |
| // The first section in a PT_LOAD has to have congruent offset and address |
| // module the page size. |
| if (Cmd == First) |
| return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), |
| Cmd->Addr); |
| |
| // For SHT_NOBITS we don't want the alignment of the section to impact the |
| // offset of the sections that follow. Since nothing seems to care about the |
| // sh_offset of the SHT_NOBITS section itself, just ignore it. |
| if (Cmd->Type == SHT_NOBITS) |
| return Off; |
| |
| // If the section is not in a PT_LOAD, we just have to align it. |
| if (!Cmd->PtLoad) |
| return alignTo(Off, Cmd->Alignment); |
| |
| // If two sections share the same PT_LOAD the file offset is calculated |
| // using this formula: Off2 = Off1 + (VA2 - VA1). |
| return First->Offset + Cmd->Addr - First->Addr; |
| } |
| |
| static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { |
| Off = getFileAlignment(Off, Cmd); |
| Cmd->Offset = Off; |
| |
| // For SHT_NOBITS we should not count the size. |
| if (Cmd->Type == SHT_NOBITS) |
| return Off; |
| |
| return Off + Cmd->Size; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { |
| uint64_t Off = 0; |
| for (OutputSection *Sec : OutputSections) |
| if (Sec->Flags & SHF_ALLOC) |
| Off = setOffset(Sec, Off); |
| FileSize = alignTo(Off, Config->Wordsize); |
| } |
| |
| static std::string rangeToString(uint64_t Addr, uint64_t Len) { |
| if (Len == 0) |
| return "<empty range at 0x" + utohexstr(Addr) + ">"; |
| return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; |
| } |
| |
| // Assign file offsets to output sections. |
| template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
| uint64_t Off = 0; |
| Off = setOffset(Out::ElfHeader, Off); |
| Off = setOffset(Out::ProgramHeaders, Off); |
| |
| PhdrEntry *LastRX = nullptr; |
| for (PhdrEntry *P : Phdrs) |
| if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) |
| LastRX = P; |
| |
| for (OutputSection *Sec : OutputSections) { |
| Off = setOffset(Sec, Off); |
| if (Script->HasSectionsCommand) |
| continue; |
| // If this is a last section of the last executable segment and that |
| // segment is the last loadable segment, align the offset of the |
| // following section to avoid loading non-segments parts of the file. |
| if (LastRX && LastRX->LastSec == Sec) |
| Off = alignTo(Off, Target->PageSize); |
| } |
| |
| SectionHeaderOff = alignTo(Off, Config->Wordsize); |
| FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); |
| |
| // Our logic assumes that sections have rising VA within the same segment. |
| // With use of linker scripts it is possible to violate this rule and get file |
| // offset overlaps or overflows. That should never happen with a valid script |
| // which does not move the location counter backwards and usually scripts do |
| // not do that. Unfortunately, there are apps in the wild, for example, Linux |
| // kernel, which control segment distribution explicitly and move the counter |
| // backwards, so we have to allow doing that to support linking them. We |
| // perform non-critical checks for overlaps in checkSectionOverlap(), but here |
| // we want to prevent file size overflows because it would crash the linker. |
| for (OutputSection *Sec : OutputSections) { |
| if (Sec->Type == SHT_NOBITS) |
| continue; |
| if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) |
| error("unable to place section " + Sec->Name + " at file offset " + |
| rangeToString(Sec->Offset, Sec->Offset + Sec->Size) + |
| "; check your linker script for overflows"); |
| } |
| } |
| |
| // Finalize the program headers. We call this function after we assign |
| // file offsets and VAs to all sections. |
| template <class ELFT> void Writer<ELFT>::setPhdrs() { |
| for (PhdrEntry *P : Phdrs) { |
| OutputSection *First = P->FirstSec; |
| OutputSection *Last = P->LastSec; |
| if (First) { |
| P->p_filesz = Last->Offset - First->Offset; |
| if (Last->Type != SHT_NOBITS) |
| P->p_filesz += Last->Size; |
| P->p_memsz = Last->Addr + Last->Size - First->Addr; |
| P->p_offset = First->Offset; |
| P->p_vaddr = First->Addr; |
| if (!P->HasLMA) |
| P->p_paddr = First->getLMA(); |
| } |
| if (P->p_type == PT_LOAD) |
| P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); |
| else if (P->p_type == PT_GNU_RELRO) { |
| P->p_align = 1; |
| // The glibc dynamic loader rounds the size down, so we need to round up |
| // to protect the last page. This is a no-op on FreeBSD which always |
| // rounds up. |
| P->p_memsz = alignTo(P->p_memsz, Target->PageSize); |
| } |
| |
| // The TLS pointer goes after PT_TLS. At least glibc will align it, |
| // so round up the size to make sure the offsets are correct. |
| if (P->p_type == PT_TLS) { |
| Out::TlsPhdr = P; |
| if (P->p_memsz) |
| P->p_memsz = alignTo(P->p_memsz, P->p_align); |
| } |
| } |
| } |
| |
| // A helper struct for checkSectionOverlap. |
| namespace { |
| struct SectionOffset { |
| OutputSection *Sec; |
| uint64_t Offset; |
| }; |
| } // namespace |
| |
| // Check whether sections overlap for a specific address range (file offsets, |
| // load and virtual adresses). |
| static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections, |
| bool IsVirtualAddr) { |
| llvm::sort(Sections.begin(), Sections.end(), |
| [=](const SectionOffset &A, const SectionOffset &B) { |
| return A.Offset < B.Offset; |
| }); |
| |
| // Finding overlap is easy given a vector is sorted by start position. |
| // If an element starts before the end of the previous element, they overlap. |
| for (size_t I = 1, End = Sections.size(); I < End; ++I) { |
| SectionOffset A = Sections[I - 1]; |
| SectionOffset B = Sections[I]; |
| if (B.Offset >= A.Offset + A.Sec->Size) |
| continue; |
| |
| // If both sections are in OVERLAY we allow the overlapping of virtual |
| // addresses, because it is what OVERLAY was designed for. |
| if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) |
| continue; |
| |
| errorOrWarn("section " + A.Sec->Name + " " + Name + |
| " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + |
| " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + |
| B.Sec->Name + " range is " + |
| rangeToString(B.Offset, B.Sec->Size)); |
| } |
| } |
| |
| // Check for overlapping sections and address overflows. |
| // |
| // In this function we check that none of the output sections have overlapping |
| // file offsets. For SHF_ALLOC sections we also check that the load address |
| // ranges and the virtual address ranges don't overlap |
| template <class ELFT> void Writer<ELFT>::checkSections() { |
| // First, check that section's VAs fit in available address space for target. |
| for (OutputSection *OS : OutputSections) |
| if ((OS->Addr + OS->Size < OS->Addr) || |
| (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) |
| errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + |
| " of size 0x" + utohexstr(OS->Size) + |
| " exceeds available address space"); |
| |
| // Check for overlapping file offsets. In this case we need to skip any |
| // section marked as SHT_NOBITS. These sections don't actually occupy space in |
| // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat |
| // binary is specified only add SHF_ALLOC sections are added to the output |
| // file so we skip any non-allocated sections in that case. |
| std::vector<SectionOffset> FileOffs; |
| for (OutputSection *Sec : OutputSections) |
| if (0 < Sec->Size && Sec->Type != SHT_NOBITS && |
| (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) |
| FileOffs.push_back({Sec, Sec->Offset}); |
| checkOverlap("file", FileOffs, false); |
| |
| // When linking with -r there is no need to check for overlapping virtual/load |
| // addresses since those addresses will only be assigned when the final |
| // executable/shared object is created. |
| if (Config->Relocatable) |
| return; |
| |
| // Checking for overlapping virtual and load addresses only needs to take |
| // into account SHF_ALLOC sections since others will not be loaded. |
| // Furthermore, we also need to skip SHF_TLS sections since these will be |
| // mapped to other addresses at runtime and can therefore have overlapping |
| // ranges in the file. |
| std::vector<SectionOffset> VMAs; |
| for (OutputSection *Sec : OutputSections) |
| if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) |
| VMAs.push_back({Sec, Sec->Addr}); |
| checkOverlap("virtual address", VMAs, true); |
| |
| // Finally, check that the load addresses don't overlap. This will usually be |
| // the same as the virtual addresses but can be different when using a linker |
| // script with AT(). |
| std::vector<SectionOffset> LMAs; |
| for (OutputSection *Sec : OutputSections) |
| if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) |
| LMAs.push_back({Sec, Sec->getLMA()}); |
| checkOverlap("load address", LMAs, false); |
| } |
| |
| // The entry point address is chosen in the following ways. |
| // |
| // 1. the '-e' entry command-line option; |
| // 2. the ENTRY(symbol) command in a linker control script; |
| // 3. the value of the symbol _start, if present; |
| // 4. the number represented by the entry symbol, if it is a number; |
| // 5. the address of the first byte of the .text section, if present; |
| // 6. the address 0. |
| template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { |
| // Case 1, 2 or 3 |
| if (Symbol *B = Symtab->find(Config->Entry)) |
| return B->getVA(); |
| |
| // Case 4 |
| uint64_t Addr; |
| if (to_integer(Config->Entry, Addr)) |
| return Addr; |
| |
| // Case 5 |
| if (OutputSection *Sec = findSection(".text")) { |
| if (Config->WarnMissingEntry) |
| warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + |
| utohexstr(Sec->Addr)); |
| return Sec->Addr; |
| } |
| |
| // Case 6 |
| if (Config->WarnMissingEntry) |
| warn("cannot find entry symbol " + Config->Entry + |
| "; not setting start address"); |
| return 0; |
| } |
| |
| static uint16_t getELFType() { |
| if (Config->Pic) |
| return ET_DYN; |
| if (Config->Relocatable) |
| return ET_REL; |
| return ET_EXEC; |
| } |
| |
| static uint8_t getAbiVersion() { |
| // MIPS non-PIC executable gets ABI version 1. |
| if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC && |
| (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) |
| return 1; |
| return 0; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeHeader() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| // For executable segments, the trap instructions are written before writing |
| // the header. Setting Elf header bytes to zero ensures that any unused bytes |
| // in header are zero-cleared, instead of having trap instructions. |
| memset(Buf, 0, sizeof(Elf_Ehdr)); |
| memcpy(Buf, "\177ELF", 4); |
| |
| // Write the ELF header. |
| auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); |
| EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; |
| EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; |
| EHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| EHdr->e_ident[EI_OSABI] = Config->OSABI; |
| EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); |
| EHdr->e_type = getELFType(); |
| EHdr->e_machine = Config->EMachine; |
| EHdr->e_version = EV_CURRENT; |
| EHdr->e_entry = getEntryAddr(); |
| EHdr->e_shoff = SectionHeaderOff; |
| EHdr->e_flags = Config->EFlags; |
| EHdr->e_ehsize = sizeof(Elf_Ehdr); |
| EHdr->e_phnum = Phdrs.size(); |
| EHdr->e_shentsize = sizeof(Elf_Shdr); |
| |
| if (!Config->Relocatable) { |
| EHdr->e_phoff = sizeof(Elf_Ehdr); |
| EHdr->e_phentsize = sizeof(Elf_Phdr); |
| } |
| |
| // Write the program header table. |
| auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); |
| for (PhdrEntry *P : Phdrs) { |
| HBuf->p_type = P->p_type; |
| HBuf->p_flags = P->p_flags; |
| HBuf->p_offset = P->p_offset; |
| HBuf->p_vaddr = P->p_vaddr; |
| HBuf->p_paddr = P->p_paddr; |
| HBuf->p_filesz = P->p_filesz; |
| HBuf->p_memsz = P->p_memsz; |
| HBuf->p_align = P->p_align; |
| ++HBuf; |
| } |
| |
| // Write the section header table. |
| // |
| // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum |
| // and e_shstrndx fields. When the value of one of these fields exceeds |
| // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and |
| // use fields in the section header at index 0 to store |
| // the value. The sentinel values and fields are: |
| // e_shnum = 0, SHdrs[0].sh_size = number of sections. |
| // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. |
| auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); |
| size_t Num = OutputSections.size() + 1; |
| if (Num >= SHN_LORESERVE) |
| SHdrs->sh_size = Num; |
| else |
| EHdr->e_shnum = Num; |
| |
| uint32_t StrTabIndex = InX::ShStrTab->getParent()->SectionIndex; |
| if (StrTabIndex >= SHN_LORESERVE) { |
| SHdrs->sh_link = StrTabIndex; |
| EHdr->e_shstrndx = SHN_XINDEX; |
| } else { |
| EHdr->e_shstrndx = StrTabIndex; |
| } |
| |
| for (OutputSection *Sec : OutputSections) |
| Sec->writeHeaderTo<ELFT>(++SHdrs); |
| } |
| |
| // Open a result file. |
| template <class ELFT> void Writer<ELFT>::openFile() { |
| if (!Config->Is64 && FileSize > UINT32_MAX) { |
| error("output file too large: " + Twine(FileSize) + " bytes"); |
| return; |
| } |
| |
| unlinkAsync(Config->OutputFile); |
| unsigned Flags = 0; |
| if (!Config->Relocatable) |
| Flags = FileOutputBuffer::F_executable; |
| Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = |
| FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); |
| |
| if (!BufferOrErr) |
| error("failed to open " + Config->OutputFile + ": " + |
| llvm::toString(BufferOrErr.takeError())); |
| else |
| Buffer = std::move(*BufferOrErr); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| for (OutputSection *Sec : OutputSections) |
| if (Sec->Flags & SHF_ALLOC) |
| Sec->writeTo<ELFT>(Buf + Sec->Offset); |
| } |
| |
| static void fillTrap(uint8_t *I, uint8_t *End) { |
| for (; I + 4 <= End; I += 4) |
| memcpy(I, &Target->TrapInstr, 4); |
| } |
| |
| // Fill the last page of executable segments with trap instructions |
| // instead of leaving them as zero. Even though it is not required by any |
| // standard, it is in general a good thing to do for security reasons. |
| // |
| // We'll leave other pages in segments as-is because the rest will be |
| // overwritten by output sections. |
| template <class ELFT> void Writer<ELFT>::writeTrapInstr() { |
| if (Script->HasSectionsCommand) |
| return; |
| |
| // Fill the last page. |
| uint8_t *Buf = Buffer->getBufferStart(); |
| for (PhdrEntry *P : Phdrs) |
| if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) |
| fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), |
| Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); |
| |
| // Round up the file size of the last segment to the page boundary iff it is |
| // an executable segment to ensure that other tools don't accidentally |
| // trim the instruction padding (e.g. when stripping the file). |
| PhdrEntry *Last = nullptr; |
| for (PhdrEntry *P : Phdrs) |
| if (P->p_type == PT_LOAD) |
| Last = P; |
| |
| if (Last && (Last->p_flags & PF_X)) |
| Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); |
| } |
| |
| // Write section contents to a mmap'ed file. |
| template <class ELFT> void Writer<ELFT>::writeSections() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| |
| OutputSection *EhFrameHdr = nullptr; |
| if (InX::EhFrameHdr && !InX::EhFrameHdr->empty()) |
| EhFrameHdr = InX::EhFrameHdr->getParent(); |
| |
| // In -r or -emit-relocs mode, write the relocation sections first as in |
| // ELf_Rel targets we might find out that we need to modify the relocated |
| // section while doing it. |
| for (OutputSection *Sec : OutputSections) |
| if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) |
| Sec->writeTo<ELFT>(Buf + Sec->Offset); |
| |
| for (OutputSection *Sec : OutputSections) |
| if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA) |
| Sec->writeTo<ELFT>(Buf + Sec->Offset); |
| |
| // The .eh_frame_hdr depends on .eh_frame section contents, therefore |
| // it should be written after .eh_frame is written. |
| if (EhFrameHdr) |
| EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeBuildId() { |
| if (!InX::BuildId || !InX::BuildId->getParent()) |
| return; |
| |
| // Compute a hash of all sections of the output file. |
| uint8_t *Start = Buffer->getBufferStart(); |
| uint8_t *End = Start + FileSize; |
| InX::BuildId->writeBuildId({Start, End}); |
| } |
| |
| template void elf::writeResult<ELF32LE>(); |
| template void elf::writeResult<ELF32BE>(); |
| template void elf::writeResult<ELF64LE>(); |
| template void elf::writeResult<ELF64BE>(); |