| //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/MustExecute.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/Passes.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/AssemblyAnnotationWriter.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/InstIterator.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/FormattedStream.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | /// Computes loop safety information, checks loop body & header | 
 | /// for the possibility of may throw exception. | 
 | /// | 
 | void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { | 
 |   assert(CurLoop != nullptr && "CurLoop can't be null"); | 
 |   BasicBlock *Header = CurLoop->getHeader(); | 
 |   // Setting default safety values. | 
 |   SafetyInfo->MayThrow = false; | 
 |   SafetyInfo->HeaderMayThrow = false; | 
 |   // Iterate over header and compute safety info. | 
 |   SafetyInfo->HeaderMayThrow = | 
 |     !isGuaranteedToTransferExecutionToSuccessor(Header); | 
 |  | 
 |   SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow; | 
 |   // Iterate over loop instructions and compute safety info. | 
 |   // Skip header as it has been computed and stored in HeaderMayThrow. | 
 |   // The first block in loopinfo.Blocks is guaranteed to be the header. | 
 |   assert(Header == *CurLoop->getBlocks().begin() && | 
 |          "First block must be header"); | 
 |   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), | 
 |                             BBE = CurLoop->block_end(); | 
 |        (BB != BBE) && !SafetyInfo->MayThrow; ++BB) | 
 |     SafetyInfo->MayThrow |= | 
 |       !isGuaranteedToTransferExecutionToSuccessor(*BB); | 
 |  | 
 |   // Compute funclet colors if we might sink/hoist in a function with a funclet | 
 |   // personality routine. | 
 |   Function *Fn = CurLoop->getHeader()->getParent(); | 
 |   if (Fn->hasPersonalityFn()) | 
 |     if (Constant *PersonalityFn = Fn->getPersonalityFn()) | 
 |       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) | 
 |         SafetyInfo->BlockColors = colorEHFunclets(*Fn); | 
 | } | 
 |  | 
 | /// Return true if we can prove that the given ExitBlock is not reached on the | 
 | /// first iteration of the given loop.  That is, the backedge of the loop must | 
 | /// be executed before the ExitBlock is executed in any dynamic execution trace. | 
 | static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, | 
 |                                            const DominatorTree *DT, | 
 |                                            const Loop *CurLoop) { | 
 |   auto *CondExitBlock = ExitBlock->getSinglePredecessor(); | 
 |   if (!CondExitBlock) | 
 |     // expect unique exits | 
 |     return false; | 
 |   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); | 
 |   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); | 
 |   if (!BI || !BI->isConditional()) | 
 |     return false; | 
 |   // If condition is constant and false leads to ExitBlock then we always | 
 |   // execute the true branch. | 
 |   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) | 
 |     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; | 
 |   auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); | 
 |   if (!Cond) | 
 |     return false; | 
 |   // todo: this would be a lot more powerful if we used scev, but all the | 
 |   // plumbing is currently missing to pass a pointer in from the pass | 
 |   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known | 
 |   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); | 
 |   auto *RHS = Cond->getOperand(1); | 
 |   if (!LHS || LHS->getParent() != CurLoop->getHeader()) | 
 |     return false; | 
 |   auto DL = ExitBlock->getModule()->getDataLayout(); | 
 |   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); | 
 |   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), | 
 |                                           IVStart, RHS, | 
 |                                           {DL, /*TLI*/ nullptr, | 
 |                                               DT, /*AC*/ nullptr, BI}); | 
 |   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); | 
 |   if (!SimpleCst) | 
 |     return false; | 
 |   if (ExitBlock == BI->getSuccessor(0)) | 
 |     return SimpleCst->isZeroValue(); | 
 |   assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); | 
 |   return SimpleCst->isAllOnesValue(); | 
 | } | 
 |  | 
 | /// Returns true if the instruction in a loop is guaranteed to execute at least | 
 | /// once. | 
 | bool llvm::isGuaranteedToExecute(const Instruction &Inst, | 
 |                                  const DominatorTree *DT, const Loop *CurLoop, | 
 |                                  const LoopSafetyInfo *SafetyInfo) { | 
 |   // We have to check to make sure that the instruction dominates all | 
 |   // of the exit blocks.  If it doesn't, then there is a path out of the loop | 
 |   // which does not execute this instruction, so we can't hoist it. | 
 |  | 
 |   // If the instruction is in the header block for the loop (which is very | 
 |   // common), it is always guaranteed to dominate the exit blocks.  Since this | 
 |   // is a common case, and can save some work, check it now. | 
 |   if (Inst.getParent() == CurLoop->getHeader()) | 
 |     // If there's a throw in the header block, we can't guarantee we'll reach | 
 |     // Inst unless we can prove that Inst comes before the potential implicit | 
 |     // exit.  At the moment, we use a (cheap) hack for the common case where | 
 |     // the instruction of interest is the first one in the block. | 
 |     return !SafetyInfo->HeaderMayThrow || | 
 |       Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; | 
 |  | 
 |   // Somewhere in this loop there is an instruction which may throw and make us | 
 |   // exit the loop. | 
 |   if (SafetyInfo->MayThrow) | 
 |     return false; | 
 |  | 
 |   // Note: There are two styles of reasoning intermixed below for | 
 |   // implementation efficiency reasons.  They are: | 
 |   // 1) If we can prove that the instruction dominates all exit blocks, then we | 
 |   // know the instruction must have executed on *some* iteration before we | 
 |   // exit.  We do not prove *which* iteration the instruction must execute on. | 
 |   // 2) If we can prove that the instruction dominates the latch and all exits | 
 |   // which might be taken on the first iteration, we know the instruction must | 
 |   // execute on the first iteration.  This second style allows a conditional | 
 |   // exit before the instruction of interest which is provably not taken on the | 
 |   // first iteration.  This is a quite common case for range check like | 
 |   // patterns.  TODO: support loops with multiple latches. | 
 |  | 
 |   const bool InstDominatesLatch = | 
 |     CurLoop->getLoopLatch() != nullptr && | 
 |     DT->dominates(Inst.getParent(), CurLoop->getLoopLatch()); | 
 |  | 
 |   // Get the exit blocks for the current loop. | 
 |   SmallVector<BasicBlock *, 8> ExitBlocks; | 
 |   CurLoop->getExitBlocks(ExitBlocks); | 
 |  | 
 |   // Verify that the block dominates each of the exit blocks of the loop. | 
 |   for (BasicBlock *ExitBlock : ExitBlocks) | 
 |     if (!DT->dominates(Inst.getParent(), ExitBlock)) | 
 |       if (!InstDominatesLatch || | 
 |           !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop)) | 
 |         return false; | 
 |  | 
 |   // As a degenerate case, if the loop is statically infinite then we haven't | 
 |   // proven anything since there are no exit blocks. | 
 |   if (ExitBlocks.empty()) | 
 |     return false; | 
 |  | 
 |   // FIXME: In general, we have to prove that the loop isn't an infinite loop. | 
 |   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is | 
 |   // just a special case of this.) | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | namespace { | 
 |   struct MustExecutePrinter : public FunctionPass { | 
 |  | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |     MustExecutePrinter() : FunctionPass(ID) { | 
 |       initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.setPreservesAll(); | 
 |       AU.addRequired<DominatorTreeWrapperPass>(); | 
 |       AU.addRequired<LoopInfoWrapperPass>(); | 
 |     } | 
 |     bool runOnFunction(Function &F) override; | 
 |   }; | 
 | } | 
 |  | 
 | char MustExecutePrinter::ID = 0; | 
 | INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", | 
 |                       "Instructions which execute on loop entry", false, true) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
 | INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", | 
 |                     "Instructions which execute on loop entry", false, true) | 
 |  | 
 | FunctionPass *llvm::createMustExecutePrinter() { | 
 |   return new MustExecutePrinter(); | 
 | } | 
 |  | 
 | static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { | 
 |   // TODO: merge these two routines.  For the moment, we display the best | 
 |   // result obtained by *either* implementation.  This is a bit unfair since no | 
 |   // caller actually gets the full power at the moment. | 
 |   LoopSafetyInfo LSI; | 
 |   computeLoopSafetyInfo(&LSI, L); | 
 |   return isGuaranteedToExecute(I, DT, L, &LSI) || | 
 |     isGuaranteedToExecuteForEveryIteration(&I, L); | 
 | } | 
 |  | 
 | namespace { | 
 | /// An assembly annotator class to print must execute information in | 
 | /// comments. | 
 | class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { | 
 |   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; | 
 |  | 
 | public: | 
 |   MustExecuteAnnotatedWriter(const Function &F, | 
 |                              DominatorTree &DT, LoopInfo &LI) { | 
 |     for (auto &I: instructions(F)) { | 
 |       Loop *L = LI.getLoopFor(I.getParent()); | 
 |       while (L) { | 
 |         if (isMustExecuteIn(I, L, &DT)) { | 
 |           MustExec[&I].push_back(L); | 
 |         } | 
 |         L = L->getParentLoop(); | 
 |       }; | 
 |     } | 
 |   } | 
 |   MustExecuteAnnotatedWriter(const Module &M, | 
 |                              DominatorTree &DT, LoopInfo &LI) { | 
 |     for (auto &F : M) | 
 |     for (auto &I: instructions(F)) { | 
 |       Loop *L = LI.getLoopFor(I.getParent()); | 
 |       while (L) { | 
 |         if (isMustExecuteIn(I, L, &DT)) { | 
 |           MustExec[&I].push_back(L); | 
 |         } | 
 |         L = L->getParentLoop(); | 
 |       }; | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { | 
 |     if (!MustExec.count(&V)) | 
 |       return; | 
 |  | 
 |     const auto &Loops = MustExec.lookup(&V); | 
 |     const auto NumLoops = Loops.size(); | 
 |     if (NumLoops > 1) | 
 |       OS << " ; (mustexec in " << NumLoops << " loops: "; | 
 |     else | 
 |       OS << " ; (mustexec in: "; | 
 |  | 
 |     bool first = true; | 
 |     for (const Loop *L : Loops) { | 
 |       if (!first) | 
 |         OS << ", "; | 
 |       first = false; | 
 |       OS << L->getHeader()->getName(); | 
 |     } | 
 |     OS << ")"; | 
 |   } | 
 | }; | 
 | } // namespace | 
 |  | 
 | bool MustExecutePrinter::runOnFunction(Function &F) { | 
 |   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
 |   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
 |  | 
 |   MustExecuteAnnotatedWriter Writer(F, DT, LI); | 
 |   F.print(dbgs(), &Writer); | 
 |  | 
 |   return false; | 
 | } |