| /* ===-- divxc3.c - Implement __divxc3 -------------------------------------=== |
| * |
| * The LLVM Compiler Infrastructure |
| * |
| * This file is dual licensed under the MIT and the University of Illinois Open |
| * Source Licenses. See LICENSE.TXT for details. |
| * |
| * ===----------------------------------------------------------------------=== |
| * |
| * This file implements __divxc3 for the compiler_rt library. |
| * |
| */ |
| |
| #if !_ARCH_PPC |
| |
| #include "int_lib.h" |
| #include "int_math.h" |
| |
| /* Returns: the quotient of (a + ib) / (c + id) */ |
| |
| COMPILER_RT_ABI Lcomplex |
| __divxc3(long double __a, long double __b, long double __c, long double __d) |
| { |
| int __ilogbw = 0; |
| long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d))); |
| if (crt_isfinite(__logbw)) |
| { |
| __ilogbw = (int)__logbw; |
| __c = crt_scalbnl(__c, -__ilogbw); |
| __d = crt_scalbnl(__d, -__ilogbw); |
| } |
| long double __denom = __c * __c + __d * __d; |
| Lcomplex z; |
| COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw); |
| COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw); |
| if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) |
| { |
| if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) |
| { |
| COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a; |
| COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b; |
| } |
| else if ((crt_isinf(__a) || crt_isinf(__b)) && |
| crt_isfinite(__c) && crt_isfinite(__d)) |
| { |
| __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a); |
| __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b); |
| COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); |
| COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); |
| } |
| else if (crt_isinf(__logbw) && __logbw > 0 && |
| crt_isfinite(__a) && crt_isfinite(__b)) |
| { |
| __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c); |
| __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d); |
| COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d); |
| COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d); |
| } |
| } |
| return z; |
| } |
| |
| #endif |