|  | //===- LTO.cpp ------------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "LTO.h" | 
|  | #include "Config.h" | 
|  | #include "InputFiles.h" | 
|  | #include "Symbols.h" | 
|  | #include "lld/Common/ErrorHandler.h" | 
|  | #include "lld/Common/Strings.h" | 
|  | #include "lld/Common/TargetOptionsCommandFlags.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/IR/DiagnosticPrinter.h" | 
|  | #include "llvm/LTO/Caching.h" | 
|  | #include "llvm/LTO/Config.h" | 
|  | #include "llvm/LTO/LTO.h" | 
|  | #include "llvm/Object/SymbolicFile.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/Error.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/MemoryBuffer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstddef> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <system_error> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::coff; | 
|  |  | 
|  | static std::unique_ptr<lto::LTO> createLTO() { | 
|  | lto::Config C; | 
|  | C.Options = InitTargetOptionsFromCodeGenFlags(); | 
|  |  | 
|  | // Always emit a section per function/datum with LTO. LLVM LTO should get most | 
|  | // of the benefit of linker GC, but there are still opportunities for ICF. | 
|  | C.Options.FunctionSections = true; | 
|  | C.Options.DataSections = true; | 
|  |  | 
|  | // Use static reloc model on 32-bit x86 because it usually results in more | 
|  | // compact code, and because there are also known code generation bugs when | 
|  | // using the PIC model (see PR34306). | 
|  | if (Config->Machine == COFF::IMAGE_FILE_MACHINE_I386) | 
|  | C.RelocModel = Reloc::Static; | 
|  | else | 
|  | C.RelocModel = Reloc::PIC_; | 
|  | C.DisableVerify = true; | 
|  | C.DiagHandler = diagnosticHandler; | 
|  | C.OptLevel = Config->LTOO; | 
|  | if (Config->SaveTemps) | 
|  | checkError(C.addSaveTemps(std::string(Config->OutputFile) + ".", | 
|  | /*UseInputModulePath*/ true)); | 
|  | lto::ThinBackend Backend; | 
|  | if (Config->ThinLTOJobs != 0) | 
|  | Backend = lto::createInProcessThinBackend(Config->ThinLTOJobs); | 
|  | return llvm::make_unique<lto::LTO>(std::move(C), Backend, | 
|  | Config->LTOPartitions); | 
|  | } | 
|  |  | 
|  | BitcodeCompiler::BitcodeCompiler() : LTOObj(createLTO()) {} | 
|  |  | 
|  | BitcodeCompiler::~BitcodeCompiler() = default; | 
|  |  | 
|  | static void undefine(Symbol *S) { replaceSymbol<Undefined>(S, S->getName()); } | 
|  |  | 
|  | void BitcodeCompiler::add(BitcodeFile &F) { | 
|  | lto::InputFile &Obj = *F.Obj; | 
|  | unsigned SymNum = 0; | 
|  | std::vector<Symbol *> SymBodies = F.getSymbols(); | 
|  | std::vector<lto::SymbolResolution> Resols(SymBodies.size()); | 
|  |  | 
|  | // Provide a resolution to the LTO API for each symbol. | 
|  | for (const lto::InputFile::Symbol &ObjSym : Obj.symbols()) { | 
|  | Symbol *Sym = SymBodies[SymNum]; | 
|  | lto::SymbolResolution &R = Resols[SymNum]; | 
|  | ++SymNum; | 
|  |  | 
|  | // Ideally we shouldn't check for SF_Undefined but currently IRObjectFile | 
|  | // reports two symbols for module ASM defined. Without this check, lld | 
|  | // flags an undefined in IR with a definition in ASM as prevailing. | 
|  | // Once IRObjectFile is fixed to report only one symbol this hack can | 
|  | // be removed. | 
|  | R.Prevailing = !ObjSym.isUndefined() && Sym->getFile() == &F; | 
|  | R.VisibleToRegularObj = Sym->IsUsedInRegularObj; | 
|  | if (R.Prevailing) | 
|  | undefine(Sym); | 
|  | } | 
|  | checkError(LTOObj->add(std::move(F.Obj), Resols)); | 
|  | } | 
|  |  | 
|  | // Merge all the bitcode files we have seen, codegen the result | 
|  | // and return the resulting objects. | 
|  | std::vector<StringRef> BitcodeCompiler::compile() { | 
|  | unsigned MaxTasks = LTOObj->getMaxTasks(); | 
|  | Buf.resize(MaxTasks); | 
|  | Files.resize(MaxTasks); | 
|  |  | 
|  | // The /lldltocache option specifies the path to a directory in which to cache | 
|  | // native object files for ThinLTO incremental builds. If a path was | 
|  | // specified, configure LTO to use it as the cache directory. | 
|  | lto::NativeObjectCache Cache; | 
|  | if (!Config->LTOCache.empty()) | 
|  | Cache = check(lto::localCache( | 
|  | Config->LTOCache, [&](size_t Task, std::unique_ptr<MemoryBuffer> MB) { | 
|  | Files[Task] = std::move(MB); | 
|  | })); | 
|  |  | 
|  | checkError(LTOObj->run( | 
|  | [&](size_t Task) { | 
|  | return llvm::make_unique<lto::NativeObjectStream>( | 
|  | llvm::make_unique<raw_svector_ostream>(Buf[Task])); | 
|  | }, | 
|  | Cache)); | 
|  |  | 
|  | if (!Config->LTOCache.empty()) | 
|  | pruneCache(Config->LTOCache, Config->LTOCachePolicy); | 
|  |  | 
|  | std::vector<StringRef> Ret; | 
|  | for (unsigned I = 0; I != MaxTasks; ++I) { | 
|  | if (Buf[I].empty()) | 
|  | continue; | 
|  | if (Config->SaveTemps) { | 
|  | if (I == 0) | 
|  | saveBuffer(Buf[I], Config->OutputFile + ".lto.obj"); | 
|  | else | 
|  | saveBuffer(Buf[I], Config->OutputFile + Twine(I) + ".lto.obj"); | 
|  | } | 
|  | Ret.emplace_back(Buf[I].data(), Buf[I].size()); | 
|  | } | 
|  |  | 
|  | for (std::unique_ptr<MemoryBuffer> &File : Files) | 
|  | if (File) | 
|  | Ret.push_back(File->getBuffer()); | 
|  |  | 
|  | return Ret; | 
|  | } |