| // Copyright 2018 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Flags: --allow-natives-syntax --opt |
| |
| // Test that NumberAbs correctly deals with PositiveInteger \/ MinusZero |
| // and turns the -0 into a 0. |
| (function() { |
| function foo(x) { |
| x = Math.floor(x); |
| x = Math.max(x, -0); |
| return 1 / Math.abs(x); |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(Infinity, foo(-0)); |
| assertEquals(Infinity, foo(-0)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(Infinity, foo(-0)); |
| })(); |
| |
| // Test that NumberAbs properly passes the kIdentifyZeros truncation |
| // for Signed32 \/ MinusZero inputs. |
| (function() { |
| function foo(x) { |
| return Math.abs(x * -2); |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(2, foo(-1)); |
| assertEquals(4, foo(-2)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(2, foo(-1)); |
| assertEquals(4, foo(-2)); |
| assertOptimized(foo); |
| // Now `foo` should stay optimized even if `x * -2` would produce `-0`. |
| assertEquals(0, foo(0)); |
| assertOptimized(foo); |
| })(); |
| |
| // Test that NumberAbs properly passes the kIdentifyZeros truncation |
| // for Unsigned32 \/ MinusZero inputs. |
| (function() { |
| function foo(x) { |
| x = x | 0; |
| return Math.abs(Math.max(x * -2, 0)); |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(2, foo(-1)); |
| assertEquals(4, foo(-2)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(2, foo(-1)); |
| assertEquals(4, foo(-2)); |
| assertOptimized(foo); |
| // Now `foo` should stay optimized even if `x * -2` would produce `-0`. |
| assertEquals(0, foo(0)); |
| assertOptimized(foo); |
| })(); |
| |
| // Test that NumberAbs properly passes the kIdentifyZeros truncation |
| // for OrderedNumber inputs. |
| (function() { |
| function foo(x) { |
| x = x | 0; |
| return Math.abs(Math.min(x * -2, 2 ** 32)); |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(2, foo(-1)); |
| assertEquals(4, foo(-2)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(2, foo(-1)); |
| assertEquals(4, foo(-2)); |
| assertOptimized(foo); |
| // Now `foo` should stay optimized even if `x * -2` would produce `-0`. |
| assertEquals(0, foo(0)); |
| assertOptimized(foo); |
| })(); |