| // Copyright 2017 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/execution/isolate.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/heap/heap-write-barrier-inl.h" |
| #include "src/heap/spaces-inl.h" |
| #include "test/unittests/test-utils.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| using SpacesTest = TestWithIsolate; |
| |
| TEST_F(SpacesTest, CompactionSpaceMerge) { |
| Heap* heap = i_isolate()->heap(); |
| OldSpace* old_space = heap->old_space(); |
| EXPECT_TRUE(old_space != nullptr); |
| |
| CompactionSpace* compaction_space = |
| new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE); |
| EXPECT_TRUE(compaction_space != nullptr); |
| |
| for (Page* p : *old_space) { |
| // Unlink free lists from the main space to avoid reusing the memory for |
| // compaction spaces. |
| old_space->UnlinkFreeListCategories(p); |
| } |
| |
| // Cannot loop until "Available()" since we initially have 0 bytes available |
| // and would thus neither grow, nor be able to allocate an object. |
| const int kNumObjects = 10; |
| const int kNumObjectsPerPage = |
| compaction_space->AreaSize() / kMaxRegularHeapObjectSize; |
| const int kExpectedPages = |
| (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage; |
| for (int i = 0; i < kNumObjects; i++) { |
| HeapObject object = |
| compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize) |
| .ToObjectChecked(); |
| heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize, |
| ClearRecordedSlots::kNo); |
| } |
| int pages_in_old_space = old_space->CountTotalPages(); |
| int pages_in_compaction_space = compaction_space->CountTotalPages(); |
| EXPECT_EQ(kExpectedPages, pages_in_compaction_space); |
| old_space->MergeCompactionSpace(compaction_space); |
| EXPECT_EQ(pages_in_old_space + pages_in_compaction_space, |
| old_space->CountTotalPages()); |
| |
| delete compaction_space; |
| } |
| |
| TEST_F(SpacesTest, WriteBarrierFromHeapObject) { |
| constexpr Address address1 = Page::kPageSize; |
| HeapObject object1 = HeapObject::unchecked_cast(Object(address1)); |
| MemoryChunk* chunk1 = MemoryChunk::FromHeapObject(object1); |
| heap_internals::MemoryChunk* slim_chunk1 = |
| heap_internals::MemoryChunk::FromHeapObject(object1); |
| EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1)); |
| constexpr Address address2 = 2 * Page::kPageSize - 1; |
| HeapObject object2 = HeapObject::unchecked_cast(Object(address2)); |
| MemoryChunk* chunk2 = MemoryChunk::FromHeapObject(object2); |
| heap_internals::MemoryChunk* slim_chunk2 = |
| heap_internals::MemoryChunk::FromHeapObject(object2); |
| EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2)); |
| } |
| |
| TEST_F(SpacesTest, WriteBarrierIsMarking) { |
| const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk); |
| char memory[kSizeOfMemoryChunk]; |
| memset(&memory, 0, kSizeOfMemoryChunk); |
| MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory); |
| heap_internals::MemoryChunk* slim_chunk = |
| reinterpret_cast<heap_internals::MemoryChunk*>(&memory); |
| EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING)); |
| EXPECT_FALSE(slim_chunk->IsMarking()); |
| chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING); |
| EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING)); |
| EXPECT_TRUE(slim_chunk->IsMarking()); |
| chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING); |
| EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING)); |
| EXPECT_FALSE(slim_chunk->IsMarking()); |
| } |
| |
| TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) { |
| const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk); |
| char memory[kSizeOfMemoryChunk]; |
| memset(&memory, 0, kSizeOfMemoryChunk); |
| MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory); |
| heap_internals::MemoryChunk* slim_chunk = |
| reinterpret_cast<heap_internals::MemoryChunk*>(&memory); |
| EXPECT_FALSE(chunk->InYoungGeneration()); |
| EXPECT_FALSE(slim_chunk->InYoungGeneration()); |
| chunk->SetFlag(MemoryChunk::TO_PAGE); |
| EXPECT_TRUE(chunk->InYoungGeneration()); |
| EXPECT_TRUE(slim_chunk->InYoungGeneration()); |
| chunk->ClearFlag(MemoryChunk::TO_PAGE); |
| EXPECT_FALSE(chunk->InYoungGeneration()); |
| EXPECT_FALSE(slim_chunk->InYoungGeneration()); |
| } |
| |
| TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) { |
| const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk); |
| char memory[kSizeOfMemoryChunk]; |
| memset(&memory, 0, kSizeOfMemoryChunk); |
| MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory); |
| heap_internals::MemoryChunk* slim_chunk = |
| reinterpret_cast<heap_internals::MemoryChunk*>(&memory); |
| EXPECT_FALSE(chunk->InYoungGeneration()); |
| EXPECT_FALSE(slim_chunk->InYoungGeneration()); |
| chunk->SetFlag(MemoryChunk::FROM_PAGE); |
| EXPECT_TRUE(chunk->InYoungGeneration()); |
| EXPECT_TRUE(slim_chunk->InYoungGeneration()); |
| chunk->ClearFlag(MemoryChunk::FROM_PAGE); |
| EXPECT_FALSE(chunk->InYoungGeneration()); |
| EXPECT_FALSE(slim_chunk->InYoungGeneration()); |
| } |
| |
| TEST_F(SpacesTest, CodeRangeAddressReuse) { |
| CodeRangeAddressHint hint; |
| // Create code ranges. |
| Address code_range1 = hint.GetAddressHint(100); |
| Address code_range2 = hint.GetAddressHint(200); |
| Address code_range3 = hint.GetAddressHint(100); |
| |
| // Since the addresses are random, we cannot check that they are different. |
| |
| // Free two code ranges. |
| hint.NotifyFreedCodeRange(code_range1, 100); |
| hint.NotifyFreedCodeRange(code_range2, 200); |
| |
| // The next two code ranges should reuse the freed addresses. |
| Address code_range4 = hint.GetAddressHint(100); |
| EXPECT_EQ(code_range4, code_range1); |
| Address code_range5 = hint.GetAddressHint(200); |
| EXPECT_EQ(code_range5, code_range2); |
| |
| // Free the third code range and check address reuse. |
| hint.NotifyFreedCodeRange(code_range3, 100); |
| Address code_range6 = hint.GetAddressHint(100); |
| EXPECT_EQ(code_range6, code_range3); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |