blob: 140d3d45b3aea07d6270caaeefee0b0ef65f577e [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/spaces-inl.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
using SpacesTest = TestWithIsolate;
TEST_F(SpacesTest, CompactionSpaceMerge) {
Heap* heap = i_isolate()->heap();
OldSpace* old_space = heap->old_space();
EXPECT_TRUE(old_space != nullptr);
CompactionSpace* compaction_space =
new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
EXPECT_TRUE(compaction_space != nullptr);
for (Page* p : *old_space) {
// Unlink free lists from the main space to avoid reusing the memory for
// compaction spaces.
old_space->UnlinkFreeListCategories(p);
}
// Cannot loop until "Available()" since we initially have 0 bytes available
// and would thus neither grow, nor be able to allocate an object.
const int kNumObjects = 10;
const int kNumObjectsPerPage =
compaction_space->AreaSize() / kMaxRegularHeapObjectSize;
const int kExpectedPages =
(kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
for (int i = 0; i < kNumObjects; i++) {
HeapObject object =
compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
.ToObjectChecked();
heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize,
ClearRecordedSlots::kNo);
}
int pages_in_old_space = old_space->CountTotalPages();
int pages_in_compaction_space = compaction_space->CountTotalPages();
EXPECT_EQ(kExpectedPages, pages_in_compaction_space);
old_space->MergeCompactionSpace(compaction_space);
EXPECT_EQ(pages_in_old_space + pages_in_compaction_space,
old_space->CountTotalPages());
delete compaction_space;
}
TEST_F(SpacesTest, WriteBarrierFromHeapObject) {
constexpr Address address1 = Page::kPageSize;
HeapObject object1 = HeapObject::unchecked_cast(Object(address1));
MemoryChunk* chunk1 = MemoryChunk::FromHeapObject(object1);
heap_internals::MemoryChunk* slim_chunk1 =
heap_internals::MemoryChunk::FromHeapObject(object1);
EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1));
constexpr Address address2 = 2 * Page::kPageSize - 1;
HeapObject object2 = HeapObject::unchecked_cast(Object(address2));
MemoryChunk* chunk2 = MemoryChunk::FromHeapObject(object2);
heap_internals::MemoryChunk* slim_chunk2 =
heap_internals::MemoryChunk::FromHeapObject(object2);
EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2));
}
TEST_F(SpacesTest, WriteBarrierIsMarking) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_FALSE(slim_chunk->IsMarking());
chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING);
EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_TRUE(slim_chunk->IsMarking());
chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
EXPECT_FALSE(slim_chunk->IsMarking());
}
TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
chunk->SetFlag(MemoryChunk::TO_PAGE);
EXPECT_TRUE(chunk->InYoungGeneration());
EXPECT_TRUE(slim_chunk->InYoungGeneration());
chunk->ClearFlag(MemoryChunk::TO_PAGE);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
}
TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) {
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
char memory[kSizeOfMemoryChunk];
memset(&memory, 0, kSizeOfMemoryChunk);
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
heap_internals::MemoryChunk* slim_chunk =
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
chunk->SetFlag(MemoryChunk::FROM_PAGE);
EXPECT_TRUE(chunk->InYoungGeneration());
EXPECT_TRUE(slim_chunk->InYoungGeneration());
chunk->ClearFlag(MemoryChunk::FROM_PAGE);
EXPECT_FALSE(chunk->InYoungGeneration());
EXPECT_FALSE(slim_chunk->InYoungGeneration());
}
TEST_F(SpacesTest, CodeRangeAddressReuse) {
CodeRangeAddressHint hint;
// Create code ranges.
Address code_range1 = hint.GetAddressHint(100);
Address code_range2 = hint.GetAddressHint(200);
Address code_range3 = hint.GetAddressHint(100);
// Since the addresses are random, we cannot check that they are different.
// Free two code ranges.
hint.NotifyFreedCodeRange(code_range1, 100);
hint.NotifyFreedCodeRange(code_range2, 200);
// The next two code ranges should reuse the freed addresses.
Address code_range4 = hint.GetAddressHint(100);
EXPECT_EQ(code_range4, code_range1);
Address code_range5 = hint.GetAddressHint(200);
EXPECT_EQ(code_range5, code_range2);
// Free the third code range and check address reuse.
hint.NotifyFreedCodeRange(code_range3, 100);
Address code_range6 = hint.GetAddressHint(100);
EXPECT_EQ(code_range6, code_range3);
}
} // namespace internal
} // namespace v8