blob: c46883aa52bf9651ffb5373ecadfb9b59ecf1eb0 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_arm_MacroAssembler_arm_h
#define jit_arm_MacroAssembler_arm_h
#include "mozilla/DebugOnly.h"
#include "jit/arm/Assembler-arm.h"
#include "jit/IonCaches.h"
#include "jit/IonFrames.h"
#include "jit/MoveResolver.h"
#include "jsopcode.h"
using mozilla::DebugOnly;
namespace js {
namespace jit {
static Register CallReg = ip;
static const int defaultShift = 3;
JS_STATIC_ASSERT(1 << defaultShift == sizeof(jsval));
// MacroAssemblerARM is inheriting form Assembler defined in Assembler-arm.{h,cpp}
class MacroAssemblerARM : public Assembler
{
protected:
// On ARM, some instructions require a second scratch register. This register
// defaults to lr, since it's non-allocatable (as it can be clobbered by some
// instructions). Allow the baseline compiler to override this though, since
// baseline IC stubs rely on lr holding the return address.
Register secondScratchReg_;
public:
MacroAssemblerARM()
: secondScratchReg_(lr)
{ }
void setSecondScratchReg(Register reg) {
JS_ASSERT(reg != ScratchRegister);
secondScratchReg_ = reg;
}
void convertInt32ToDouble(const Register &src, const FloatRegister &dest);
void convertInt32ToDouble(const Address &src, FloatRegister dest);
void convertUInt32ToDouble(const Register &src, const FloatRegister &dest);
void convertDoubleToFloat(const FloatRegister &src, const FloatRegister &dest);
void branchTruncateDouble(const FloatRegister &src, const Register &dest, Label *fail);
void convertDoubleToInt32(const FloatRegister &src, const Register &dest, Label *fail,
bool negativeZeroCheck = true);
void addDouble(FloatRegister src, FloatRegister dest);
void subDouble(FloatRegister src, FloatRegister dest);
void mulDouble(FloatRegister src, FloatRegister dest);
void divDouble(FloatRegister src, FloatRegister dest);
void negateDouble(FloatRegister reg);
void inc64(AbsoluteAddress dest);
// somewhat direct wrappers for the low-level assembler funcitons
// bitops
// attempt to encode a virtual alu instruction using
// two real instructions.
private:
bool alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op,
SetCond_ sc, Condition c);
public:
void ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_alu(Register src1, Imm32 imm, Register dest,
ALUOp op,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_alu(Register src1, Operand op2, Register dest, ALUOp op,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_nop();
void ma_movPatchable(Imm32 imm, Register dest, Assembler::Condition c,
RelocStyle rs, Instruction *i = NULL);
// These should likely be wrapped up as a set of macros
// or something like that. I cannot think of a good reason
// to explicitly have all of this code.
// ALU based ops
// mov
void ma_mov(Register src, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_mov(Imm32 imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_mov(ImmWord imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_mov(const ImmGCPtr &ptr, Register dest);
// Shifts (just a move with a shifting op2)
void ma_lsl(Imm32 shift, Register src, Register dst);
void ma_lsr(Imm32 shift, Register src, Register dst);
void ma_asr(Imm32 shift, Register src, Register dst);
void ma_ror(Imm32 shift, Register src, Register dst);
void ma_rol(Imm32 shift, Register src, Register dst);
// Shifts (just a move with a shifting op2)
void ma_lsl(Register shift, Register src, Register dst);
void ma_lsr(Register shift, Register src, Register dst);
void ma_asr(Register shift, Register src, Register dst);
void ma_ror(Register shift, Register src, Register dst);
void ma_rol(Register shift, Register src, Register dst);
// Move not (dest <- ~src)
void ma_mvn(Imm32 imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_mvn(Register src1, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
// Negate (dest <- -src) implemented as rsb dest, src, 0
void ma_neg(Register src, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
// and
void ma_and(Register src, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_and(Register src1, Register src2, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_and(Imm32 imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_and(Imm32 imm, Register src1, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
// bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2)
void ma_bic(Imm32 imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
// exclusive or
void ma_eor(Register src, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_eor(Register src1, Register src2, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_eor(Imm32 imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_eor(Imm32 imm, Register src1, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
// or
void ma_orr(Register src, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_orr(Register src1, Register src2, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_orr(Imm32 imm, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
void ma_orr(Imm32 imm, Register src1, Register dest,
SetCond_ sc = NoSetCond, Condition c = Always);
// arithmetic based ops
// add with carry
void ma_adc(Imm32 imm, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_adc(Register src, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_adc(Register src1, Register src2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
// add
void ma_add(Imm32 imm, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_add(Register src1, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_add(Register src1, Register src2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_add(Register src1, Operand op, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_add(Register src1, Imm32 op, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
// subtract with carry
void ma_sbc(Imm32 imm, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_sbc(Register src1, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_sbc(Register src1, Register src2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
// subtract
void ma_sub(Imm32 imm, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_sub(Register src1, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_sub(Register src1, Register src2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_sub(Register src1, Operand op, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_sub(Register src1, Imm32 op, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
// reverse subtract
void ma_rsb(Imm32 imm, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_rsb(Register src1, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_rsb(Register src1, Register src2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_rsb(Register src1, Imm32 op2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
// reverse subtract with carry
void ma_rsc(Imm32 imm, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_rsc(Register src1, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
void ma_rsc(Register src1, Register src2, Register dest, SetCond_ sc = NoSetCond, Condition c = Always);
// compares/tests
// compare negative (sets condition codes as src1 + src2 would)
void ma_cmn(Register src1, Imm32 imm, Condition c = Always);
void ma_cmn(Register src1, Register src2, Condition c = Always);
void ma_cmn(Register src1, Operand op, Condition c = Always);
// compare (src - src2)
void ma_cmp(Register src1, Imm32 imm, Condition c = Always);
void ma_cmp(Register src1, ImmWord ptr, Condition c = Always);
void ma_cmp(Register src1, ImmGCPtr ptr, Condition c = Always);
void ma_cmp(Register src1, Operand op, Condition c = Always);
void ma_cmp(Register src1, Register src2, Condition c = Always);
// test for equality, (src1^src2)
void ma_teq(Register src1, Imm32 imm, Condition c = Always);
void ma_teq(Register src1, Register src2, Condition c = Always);
void ma_teq(Register src1, Operand op, Condition c = Always);
// test (src1 & src2)
void ma_tst(Register src1, Imm32 imm, Condition c = Always);
void ma_tst(Register src1, Register src2, Condition c = Always);
void ma_tst(Register src1, Operand op, Condition c = Always);
// multiplies. For now, there are only two that we care about.
void ma_mul(Register src1, Register src2, Register dest);
void ma_mul(Register src1, Imm32 imm, Register dest);
Condition ma_check_mul(Register src1, Register src2, Register dest, Condition cond);
Condition ma_check_mul(Register src1, Imm32 imm, Register dest, Condition cond);
// fast mod, uses scratch registers, and thus needs to be in the assembler
// implicitly assumes that we can overwrite dest at the beginning of the sequence
void ma_mod_mask(Register src, Register dest, Register hold, int32_t shift);
// memory
// shortcut for when we know we're transferring 32 bits of data
void ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt,
Index mode = Offset, Condition cc = Always);
void ma_dtr(LoadStore ls, Register rn, Register rm, Register rt,
Index mode = Offset, Condition cc = Always);
void ma_str(Register rt, DTRAddr addr, Index mode = Offset, Condition cc = Always);
void ma_str(Register rt, const Operand &addr, Index mode = Offset, Condition cc = Always);
void ma_dtr(LoadStore ls, Register rt, const Operand &addr, Index mode, Condition cc);
void ma_ldr(DTRAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldr(const Operand &addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrb(DTRAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrh(EDtrAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrsh(EDtrAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrsb(EDtrAddr addr, Register rt, Index mode = Offset, Condition cc = Always);
void ma_ldrd(EDtrAddr addr, Register rt, DebugOnly<Register> rt2, Index mode = Offset, Condition cc = Always);
void ma_strb(Register rt, DTRAddr addr, Index mode = Offset, Condition cc = Always);
void ma_strh(Register rt, EDtrAddr addr, Index mode = Offset, Condition cc = Always);
void ma_strd(Register rt, DebugOnly<Register> rt2, EDtrAddr addr, Index mode = Offset, Condition cc = Always);
// specialty for moving N bits of data, where n == 8,16,32,64
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Register rm, Register rt,
Index mode = Offset, Condition cc = Always, unsigned scale = TimesOne);
BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
Register rn, Imm32 offset, Register rt,
Index mode = Offset, Condition cc = Always);
void ma_pop(Register r);
void ma_push(Register r);
void ma_vpop(VFPRegister r);
void ma_vpush(VFPRegister r);
// branches when done from within arm-specific code
void ma_b(Label *dest, Condition c = Always, bool isPatchable = false);
void ma_bx(Register dest, Condition c = Always);
void ma_b(void *target, Relocation::Kind reloc, Condition c = Always);
// this is almost NEVER necessary, we'll basically never be calling a label
// except, possibly in the crazy bailout-table case.
void ma_bl(Label *dest, Condition c = Always);
void ma_blx(Register dest, Condition c = Always);
//VFP/ALU
void ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst);
void ma_vneg(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vmov(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vabs(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vimm(double value, FloatRegister dest, Condition cc = Always);
void ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc = Always);
void ma_vcmpz(FloatRegister src1, Condition cc = Always);
// source is F64, dest is I32
void ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest, Condition cc = Always);
// source is I32, dest is F64
void ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest, Condition cc = Always);
void ma_vxfer(FloatRegister src, Register dest, Condition cc = Always);
void ma_vxfer(FloatRegister src, Register dest1, Register dest2, Condition cc = Always);
void ma_vxfer(VFPRegister src, Register dest, Condition cc = Always);
void ma_vxfer(VFPRegister src, Register dest1, Register dest2, Condition cc = Always);
void ma_vxfer(Register src1, Register src2, FloatRegister dest, Condition cc = Always);
BufferOffset ma_vdtr(LoadStore ls, const Operand &addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(const Operand &addr, VFPRegister dest, Condition cc = Always);
BufferOffset ma_vldr(VFPRegister src, Register base, Register index, int32_t shift = defaultShift, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, VFPAddr addr, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, const Operand &addr, Condition cc = Always);
BufferOffset ma_vstr(VFPRegister src, Register base, Register index, int32_t shift = defaultShift, Condition cc = Always);
// calls an Ion function, assumes that the stack is untouched (8 byte alinged)
void ma_callIon(const Register reg);
// callso an Ion function, assuming that sp has already been decremented
void ma_callIonNoPush(const Register reg);
// calls an ion function, assuming that the stack is currently not 8 byte aligned
void ma_callIonHalfPush(const Register reg);
void ma_call(void *dest);
// Float registers can only be loaded/stored in continuous runs
// when using vstm/vldm.
// This function breaks set into continuous runs and loads/stores
// them at [rm]. rm will be modified and left in a state logically
// suitable for the next load/store.
// Returns the offset from [dm] for the logical next load/store.
int32_t transferMultipleByRuns(FloatRegisterSet set, LoadStore ls,
Register rm, DTMMode mode)
{
if (mode == IA) {
return transferMultipleByRunsImpl
<FloatRegisterForwardIterator>(set, ls, rm, mode, 1);
}
if (mode == DB) {
return transferMultipleByRunsImpl
<FloatRegisterIterator>(set, ls, rm, mode, -1);
}
JS_NOT_REACHED("Invalid data transfer addressing mode");
}
private:
// Implementation for transferMultipleByRuns so we can use different
// iterators for forward/backward traversals.
// The sign argument should be 1 if we traverse forwards, -1 if we
// traverse backwards.
template<typename RegisterIterator> int32_t
transferMultipleByRunsImpl(FloatRegisterSet set, LoadStore ls,
Register rm, DTMMode mode, int32_t sign)
{
JS_ASSERT(sign == 1 || sign == -1);
int32_t delta = sign * sizeof(double);
int32_t offset = 0;
RegisterIterator iter(set);
while (iter.more()) {
startFloatTransferM(ls, rm, mode, WriteBack);
int32_t reg = (*iter).code_;
do {
offset += delta;
transferFloatReg(*iter);
} while ((++iter).more() && (*iter).code_ == (reg += sign));
finishFloatTransfer();
}
JS_ASSERT(offset == static_cast<int32_t>(set.size() * sizeof(double)) * sign);
return offset;
}
};
class MacroAssemblerARMCompat : public MacroAssemblerARM
{
// Number of bytes the stack is adjusted inside a call to C. Calls to C may
// not be nested.
bool inCall_;
uint32_t args_;
// The actual number of arguments that were passed, used to assert that
// the initial number of arguments declared was correct.
uint32_t passedArgs_;
#ifdef JS_CPU_ARM_HARDFP
uint32_t usedIntSlots_;
uint32_t usedFloatSlots_;
uint32_t padding_;
#else
// ARM treats arguments as a vector in registers/memory, that looks like:
// { r0, r1, r2, r3, [sp], [sp,+4], [sp,+8] ... }
// usedSlots_ keeps track of how many of these have been used.
// It bears a passing resemblance to passedArgs_, but a single argument
// can effectively use between one and three slots depending on its size and
// alignment requirements
uint32_t usedSlots_;
#endif
bool dynamicAlignment_;
bool enoughMemory_;
VFPRegister floatArgsInGPR[2];
// Compute space needed for the function call and set the properties of the
// callee. It returns the space which has to be allocated for calling the
// function.
//
// arg Number of arguments of the function.
void setupABICall(uint32_t arg);
protected:
MoveResolver moveResolver_;
// Extra bytes currently pushed onto the frame beyond frameDepth_. This is
// needed to compute offsets to stack slots while temporary space has been
// reserved for unexpected spills or C++ function calls. It is maintained
// by functions which track stack alignment, which for clear distinction
// use StudlyCaps (for example, Push, Pop).
uint32_t framePushed_;
void adjustFrame(int value) {
setFramePushed(framePushed_ + value);
}
public:
typedef MoveResolver::MoveOperand MoveOperand;
typedef MoveResolver::Move Move;
enum Result {
GENERAL,
DOUBLE
};
MacroAssemblerARMCompat()
: inCall_(false),
enoughMemory_(true),
framePushed_(0)
{ }
bool oom() const {
return Assembler::oom() || !enoughMemory_;
}
public:
using MacroAssemblerARM::call;
// jumps + other functions that should be called from
// non-arm specific code...
// basically, an x86 front end on top of the ARM code.
void j(Condition code , Label *dest)
{
as_b(dest, code);
}
void j(Label *dest)
{
as_b(dest, Always);
}
void mov(Register src, Register dest) {
ma_mov(src, dest);
}
void mov(Imm32 imm, Register dest) {
ma_mov(imm, dest);
}
void mov(ImmWord imm, Register dest) {
ma_mov(Imm32(imm.value), dest);
}
void mov(Register src, Address dest) {
JS_NOT_REACHED("NYI-IC");
}
void mov(Address src, Register dest) {
JS_NOT_REACHED("NYI-IC");
}
void call(const Register reg) {
as_blx(reg);
}
void call(Label *label) {
// for now, assume that it'll be nearby?
as_bl(label, Always);
}
void call(ImmWord word) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, (void*)word.value, Relocation::HARDCODED);
ma_call((void *) word.value);
}
void call(IonCode *c) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, c->raw(), Relocation::IONCODE);
RelocStyle rs;
if (hasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
ma_movPatchable(Imm32((int) c->raw()), ScratchRegister, Always, rs);
ma_callIonHalfPush(ScratchRegister);
}
void branch(IonCode *c) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, c->raw(), Relocation::IONCODE);
RelocStyle rs;
if (hasMOVWT())
rs = L_MOVWT;
else
rs = L_LDR;
ma_movPatchable(Imm32((int) c->raw()), ScratchRegister, Always, rs);
ma_bx(ScratchRegister);
}
void branch(const Register reg) {
ma_bx(reg);
}
void nop() {
ma_nop();
}
void ret() {
ma_pop(pc);
m_buffer.markGuard();
}
void retn(Imm32 n) {
// pc <- [sp]; sp += n
ma_dtr(IsLoad, sp, n, pc, PostIndex);
m_buffer.markGuard();
}
void push(Imm32 imm) {
ma_mov(imm, ScratchRegister);
ma_push(ScratchRegister);
}
void push(ImmWord imm) {
push(Imm32(imm.value));
}
void push(ImmGCPtr imm) {
ma_mov(imm, ScratchRegister);
ma_push(ScratchRegister);
}
void push(const Register &reg) {
ma_push(reg);
}
void pushWithPadding(const Register &reg, const Imm32 extraSpace) {
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_dtr(IsStore, sp, totSpace, reg, PreIndex);
}
void pushWithPadding(const Imm32 &imm, const Imm32 extraSpace) {
Imm32 totSpace = Imm32(extraSpace.value + 4);
// ma_dtr may need the scratch register to adjust the stack, so use the
// second scratch register.
ma_mov(imm, secondScratchReg_);
ma_dtr(IsStore, sp, totSpace, secondScratchReg_, PreIndex);
}
void pop(const Register &reg) {
ma_pop(reg);
}
void popN(const Register &reg, Imm32 extraSpace) {
Imm32 totSpace = Imm32(extraSpace.value + 4);
ma_dtr(IsLoad, sp, totSpace, reg, PostIndex);
}
CodeOffsetLabel toggledJump(Label *label);
// Emit a BLX or NOP instruction. ToggleCall can be used to patch
// this instruction.
CodeOffsetLabel toggledCall(IonCode *target, bool enabled);
static size_t ToggledCallSize() {
if (hasMOVWT())
// Size of a movw, movt, nop/blx instruction.
return 12;
// Size of a ldr, nop/blx instruction
return 8;
}
CodeOffsetLabel pushWithPatch(ImmWord imm) {
CodeOffsetLabel label = movWithPatch(imm, ScratchRegister);
ma_push(ScratchRegister);
return label;
}
CodeOffsetLabel movWithPatch(ImmWord imm, Register dest) {
CodeOffsetLabel label = currentOffset();
ma_movPatchable(Imm32(imm.value), dest, Always, hasMOVWT() ? L_MOVWT : L_LDR);
return label;
}
void jump(Label *label) {
as_b(label);
}
void jump(Register reg) {
ma_bx(reg);
}
void neg32(Register reg) {
ma_neg(reg, reg, SetCond);
}
void negl(Register reg) {
ma_neg(reg, reg, SetCond);
}
void test32(Register lhs, Register rhs) {
ma_tst(lhs, rhs);
}
void test32(const Address &address, Imm32 imm) {
ma_ldr(Operand(address.base, address.offset), ScratchRegister);
ma_tst(ScratchRegister, imm);
}
void testPtr(Register lhs, Register rhs) {
test32(lhs, rhs);
}
// Returns the register containing the type tag.
Register splitTagForTest(const ValueOperand &value) {
return value.typeReg();
}
// higher level tag testing code
Condition testInt32(Condition cond, const ValueOperand &value);
Condition testBoolean(Condition cond, const ValueOperand &value);
Condition testDouble(Condition cond, const ValueOperand &value);
Condition testNull(Condition cond, const ValueOperand &value);
Condition testUndefined(Condition cond, const ValueOperand &value);
Condition testString(Condition cond, const ValueOperand &value);
Condition testObject(Condition cond, const ValueOperand &value);
Condition testNumber(Condition cond, const ValueOperand &value);
Condition testMagic(Condition cond, const ValueOperand &value);
Condition testPrimitive(Condition cond, const ValueOperand &value);
// register-based tests
Condition testInt32(Condition cond, const Register &tag);
Condition testBoolean(Condition cond, const Register &tag);
Condition testNull(Condition cond, const Register &tag);
Condition testUndefined(Condition cond, const Register &tag);
Condition testString(Condition cond, const Register &tag);
Condition testObject(Condition cond, const Register &tag);
Condition testDouble(Condition cond, const Register &tag);
Condition testNumber(Condition cond, const Register &tag);
Condition testMagic(Condition cond, const Register &tag);
Condition testPrimitive(Condition cond, const Register &tag);
Condition testGCThing(Condition cond, const Address &address);
Condition testMagic(Condition cond, const Address &address);
Condition testInt32(Condition cond, const Address &address);
Condition testDouble(Condition cond, const Address &address);
Condition testUndefined(Condition cond, const BaseIndex &src);
Condition testNull(Condition cond, const BaseIndex &src);
Condition testBoolean(Condition cond, const BaseIndex &src);
Condition testString(Condition cond, const BaseIndex &src);
Condition testInt32(Condition cond, const BaseIndex &src);
Condition testObject(Condition cond, const BaseIndex &src);
Condition testDouble(Condition cond, const BaseIndex &src);
Condition testMagic(Condition cond, const BaseIndex &src);
Condition testGCThing(Condition cond, const BaseIndex &src);
template <typename T>
void branchTestGCThing(Condition cond, const T &t, Label *label) {
Condition c = testGCThing(cond, t);
ma_b(label, c);
}
template <typename T>
void branchTestPrimitive(Condition cond, const T &t, Label *label) {
Condition c = testPrimitive(cond, t);
ma_b(label, c);
}
void branchTestValue(Condition cond, const ValueOperand &value, const Value &v, Label *label);
void branchTestValue(Condition cond, const Address &valaddr, const ValueOperand &value,
Label *label);
// unboxing code
void unboxInt32(const ValueOperand &operand, const Register &dest);
void unboxInt32(const Address &src, const Register &dest);
void unboxBoolean(const ValueOperand &operand, const Register &dest);
void unboxBoolean(const Address &src, const Register &dest);
void unboxDouble(const ValueOperand &operand, const FloatRegister &dest);
void unboxDouble(const Address &src, const FloatRegister &dest);
void unboxValue(const ValueOperand &src, AnyRegister dest);
void unboxPrivate(const ValueOperand &src, Register dest);
void notBoolean(const ValueOperand &val) {
ma_eor(Imm32(1), val.payloadReg());
}
// boxing code
void boxDouble(const FloatRegister &src, const ValueOperand &dest);
void boxNonDouble(JSValueType type, const Register &src, const ValueOperand &dest);
// Extended unboxing API. If the payload is already in a register, returns
// that register. Otherwise, provides a move to the given scratch register,
// and returns that.
Register extractObject(const Address &address, Register scratch);
Register extractObject(const ValueOperand &value, Register scratch) {
return value.payloadReg();
}
Register extractInt32(const ValueOperand &value, Register scratch) {
return value.payloadReg();
}
Register extractBoolean(const ValueOperand &value, Register scratch) {
return value.payloadReg();
}
Register extractTag(const Address &address, Register scratch);
Register extractTag(const BaseIndex &address, Register scratch);
Register extractTag(const ValueOperand &value, Register scratch) {
return value.typeReg();
}
void boolValueToDouble(const ValueOperand &operand, const FloatRegister &dest);
void int32ValueToDouble(const ValueOperand &operand, const FloatRegister &dest);
void loadInt32OrDouble(const Operand &src, const FloatRegister &dest);
void loadInt32OrDouble(Register base, Register index,
const FloatRegister &dest, int32_t shift = defaultShift);
void loadStaticDouble(const double *dp, const FloatRegister &dest);
void loadConstantDouble(double dp, const FloatRegister &dest);
// treat the value as a boolean, and set condition codes accordingly
Condition testInt32Truthy(bool truthy, const ValueOperand &operand);
Condition testBooleanTruthy(bool truthy, const ValueOperand &operand);
Condition testDoubleTruthy(bool truthy, const FloatRegister &reg);
Condition testStringTruthy(bool truthy, const ValueOperand &value);
template<typename T>
void branchTestInt32(Condition cond, const T & t, Label *label) {
Condition c = testInt32(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestBoolean(Condition cond, const T & t, Label *label) {
Condition c = testBoolean(cond, t);
ma_b(label, c);
}
void branch32(Condition cond, Register lhs, Register rhs, Label *label) {
ma_cmp(lhs, rhs);
ma_b(label, cond);
}
void branch32(Condition cond, Register lhs, Imm32 imm, Label *label) {
ma_cmp(lhs, imm);
ma_b(label, cond);
}
void branch32(Condition cond, const Operand &lhs, Register rhs, Label *label) {
if (lhs.getTag() == Operand::OP2) {
branch32(cond, lhs.toReg(), rhs, label);
} else {
ma_ldr(lhs, ScratchRegister);
branch32(cond, ScratchRegister, rhs, label);
}
}
void branch32(Condition cond, const Operand &lhs, Imm32 rhs, Label *label) {
if (lhs.getTag() == Operand::OP2) {
branch32(cond, lhs.toReg(), rhs, label);
} else {
// branch32 will use ScratchRegister.
ma_ldr(lhs, secondScratchReg_);
branch32(cond, secondScratchReg_, rhs, label);
}
}
void branch32(Condition cond, const Address &lhs, Register rhs, Label *label) {
load32(lhs, ScratchRegister);
branch32(cond, ScratchRegister, rhs, label);
}
void branch32(Condition cond, const Address &lhs, Imm32 rhs, Label *label) {
// branch32 will use ScratchRegister.
load32(lhs, secondScratchReg_);
branch32(cond, secondScratchReg_, rhs, label);
}
void branchPtr(Condition cond, const Address &lhs, Register rhs, Label *label) {
branch32(cond, lhs, rhs, label);
}
void branchPrivatePtr(Condition cond, const Address &lhs, ImmWord ptr, Label *label) {
branchPtr(cond, lhs, ptr, label);
}
void branchPrivatePtr(Condition cond, const Address &lhs, Register ptr, Label *label) {
branchPtr(cond, lhs, ptr, label);
}
void branchPrivatePtr(Condition cond, Register lhs, ImmWord ptr, Label *label) {
branchPtr(cond, lhs, ptr, label);
}
template<typename T>
void branchTestDouble(Condition cond, const T & t, Label *label) {
Condition c = testDouble(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestNull(Condition cond, const T & t, Label *label) {
Condition c = testNull(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestObject(Condition cond, const T & t, Label *label) {
Condition c = testObject(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestString(Condition cond, const T & t, Label *label) {
Condition c = testString(cond, t);
ma_b(label, c);
}
template<typename T>
void branchTestUndefined(Condition cond, const T & t, Label *label) {
Condition c = testUndefined(cond, t);
ma_b(label, c);
}
template <typename T>
void branchTestNumber(Condition cond, const T &t, Label *label) {
cond = testNumber(cond, t);
ma_b(label, cond);
}
template <typename T>
void branchTestMagic(Condition cond, const T &t, Label *label) {
cond = testMagic(cond, t);
ma_b(label, cond);
}
void branchTestMagicValue(Condition cond, const ValueOperand &val, JSWhyMagic why,
Label *label) {
JS_ASSERT(cond == Equal || cond == NotEqual);
// Test for magic
Label notmagic;
Condition testCond = testMagic(cond, val);
ma_b(&notmagic, InvertCondition(testCond));
// Test magic value
branch32(cond, val.payloadReg(), Imm32(static_cast<int32_t>(why)), label);
bind(&notmagic);
}
template<typename T>
void branchTestBooleanTruthy(bool b, const T & t, Label *label) {
Condition c = testBooleanTruthy(b, t);
ma_b(label, c);
}
void branchTest32(Condition cond, const Register &lhs, const Register &rhs, Label *label) {
// x86 likes test foo, foo rather than cmp foo, #0.
// Convert the former into the latter.
if (lhs == rhs && (cond == Zero || cond == NonZero))
ma_cmp(lhs, Imm32(0));
else
ma_tst(lhs, rhs);
ma_b(label, cond);
}
void branchTest32(Condition cond, const Register &lhs, Imm32 imm, Label *label) {
ma_tst(lhs, imm);
ma_b(label, cond);
}
void branchTest32(Condition cond, const Address &address, Imm32 imm, Label *label) {
// branchTest32 will use ScratchRegister.
load32(address, secondScratchReg_);
branchTest32(cond, secondScratchReg_, imm, label);
}
void branchTestPtr(Condition cond, const Register &lhs, const Register &rhs, Label *label) {
branchTest32(cond, lhs, rhs, label);
}
void branchTestPtr(Condition cond, const Register &lhs, const Imm32 rhs, Label *label) {
branchTest32(cond, lhs, rhs, label);
}
void branchTestPtr(Condition cond, const Address &lhs, Imm32 imm, Label *label) {
branchTest32(cond, lhs, imm, label);
}
void branchPtr(Condition cond, Register lhs, Register rhs, Label *label) {
branch32(cond, lhs, rhs, label);
}
void branchPtr(Condition cond, Register lhs, ImmGCPtr ptr, Label *label) {
movePtr(ptr, ScratchRegister);
branchPtr(cond, lhs, ScratchRegister, label);
}
void branchPtr(Condition cond, Register lhs, ImmWord imm, Label *label) {
branch32(cond, lhs, Imm32(imm.value), label);
}
void decBranchPtr(Condition cond, const Register &lhs, Imm32 imm, Label *label) {
subPtr(imm, lhs);
branch32(cond, lhs, Imm32(0), label);
}
void moveValue(const Value &val, Register type, Register data);
CodeOffsetJump jumpWithPatch(RepatchLabel *label, Condition cond = Always);
template <typename T>
CodeOffsetJump branchPtrWithPatch(Condition cond, Register reg, T ptr, RepatchLabel *label) {
ma_cmp(reg, ptr);
return jumpWithPatch(label, cond);
}
template <typename T>
CodeOffsetJump branchPtrWithPatch(Condition cond, Address addr, T ptr, RepatchLabel *label) {
ma_ldr(addr, secondScratchReg_);
ma_cmp(secondScratchReg_, ptr);
return jumpWithPatch(label, cond);
}
void branchPtr(Condition cond, Address addr, ImmGCPtr ptr, Label *label) {
ma_ldr(addr, secondScratchReg_);
ma_cmp(secondScratchReg_, ptr);
ma_b(label, cond);
}
void branchPtr(Condition cond, Address addr, ImmWord ptr, Label *label) {
ma_ldr(addr, secondScratchReg_);
ma_cmp(secondScratchReg_, ptr);
ma_b(label, cond);
}
void branchPtr(Condition cond, const AbsoluteAddress &addr, const Register &ptr, Label *label) {
loadPtr(addr, secondScratchReg_); // ma_cmp will use the scratch register.
ma_cmp(secondScratchReg_, ptr);
ma_b(label, cond);
}
void branch32(Condition cond, const AbsoluteAddress &lhs, Imm32 rhs, Label *label) {
loadPtr(lhs, secondScratchReg_); // ma_cmp will use the scratch register.
ma_cmp(secondScratchReg_, rhs);
ma_b(label, cond);
}
void branch32(Condition cond, const AbsoluteAddress &lhs, const Register &rhs, Label *label) {
loadPtr(lhs, secondScratchReg_); // ma_cmp will use the scratch register.
ma_cmp(secondScratchReg_, rhs);
ma_b(label, cond);
}
void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) {
if (dest.isFloat())
loadInt32OrDouble(Operand(address), dest.fpu());
else
ma_ldr(address, dest.gpr());
}
void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) {
if (dest.isFloat())
loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale);
else
load32(address, dest.gpr());
}
void moveValue(const Value &val, const ValueOperand &dest);
void moveValue(const ValueOperand &src, const ValueOperand &dest) {
JS_ASSERT(src.typeReg() != dest.payloadReg());
JS_ASSERT(src.payloadReg() != dest.typeReg());
if (src.typeReg() != dest.typeReg())
ma_mov(src.typeReg(), dest.typeReg());
if (src.payloadReg() != dest.payloadReg())
ma_mov(src.payloadReg(), dest.payloadReg());
}
void storeValue(ValueOperand val, Operand dst);
void storeValue(ValueOperand val, const BaseIndex &dest);
void storeValue(JSValueType type, Register reg, BaseIndex dest) {
// Harder cases not handled yet.
JS_ASSERT(dest.offset == 0);
ma_alu(dest.base, lsl(dest.index, dest.scale), ScratchRegister, op_add);
storeValue(type, reg, Address(ScratchRegister, 0));
}
void storeValue(ValueOperand val, const Address &dest) {
storeValue(val, Operand(dest));
}
void storeValue(JSValueType type, Register reg, Address dest) {
ma_str(reg, dest);
ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), secondScratchReg_);
ma_str(secondScratchReg_, Address(dest.base, dest.offset + 4));
}
void storeValue(const Value &val, Address dest) {
jsval_layout jv = JSVAL_TO_IMPL(val);
ma_mov(Imm32(jv.s.tag), secondScratchReg_);
ma_str(secondScratchReg_, Address(dest.base, dest.offset + 4));
if (val.isMarkable())
ma_mov(ImmGCPtr(reinterpret_cast<gc::Cell *>(val.toGCThing())), secondScratchReg_);
else
ma_mov(Imm32(jv.s.payload.i32), secondScratchReg_);
ma_str(secondScratchReg_, dest);
}
void storeValue(const Value &val, BaseIndex dest) {
// Harder cases not handled yet.
JS_ASSERT(dest.offset == 0);
ma_alu(dest.base, lsl(dest.index, dest.scale), ScratchRegister, op_add);
storeValue(val, Address(ScratchRegister, 0));
}
void loadValue(Address src, ValueOperand val);
void loadValue(Operand dest, ValueOperand val) {
loadValue(dest.toAddress(), val);
}
void loadValue(const BaseIndex &addr, ValueOperand val);
void tagValue(JSValueType type, Register payload, ValueOperand dest);
void pushValue(ValueOperand val);
void popValue(ValueOperand val);
void pushValue(const Value &val) {
jsval_layout jv = JSVAL_TO_IMPL(val);
push(Imm32(jv.s.tag));
if (val.isMarkable())
push(ImmGCPtr(reinterpret_cast<gc::Cell *>(val.toGCThing())));
else
push(Imm32(jv.s.payload.i32));
}
void pushValue(JSValueType type, Register reg) {
push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
ma_push(reg);
}
void pushValue(const Address &addr);
void storePayload(const Value &val, Operand dest);
void storePayload(Register src, Operand dest);
void storePayload(const Value &val, Register base, Register index, int32_t shift = defaultShift);
void storePayload(Register src, Register base, Register index, int32_t shift = defaultShift);
void storeTypeTag(ImmTag tag, Operand dest);
void storeTypeTag(ImmTag tag, Register base, Register index, int32_t shift = defaultShift);
void makeFrameDescriptor(Register frameSizeReg, FrameType type) {
ma_lsl(Imm32(FRAMESIZE_SHIFT), frameSizeReg, frameSizeReg);
ma_orr(Imm32(type), frameSizeReg);
}
void linkExitFrame();
void linkParallelExitFrame(const Register &pt);
void handleFailureWithHandler(void *handler);
/////////////////////////////////////////////////////////////////
// Common interface.
/////////////////////////////////////////////////////////////////
public:
// The following functions are exposed for use in platform-shared code.
void Push(const Register &reg) {
ma_push(reg);
adjustFrame(STACK_SLOT_SIZE);
}
void Push(const Imm32 imm) {
push(imm);
adjustFrame(STACK_SLOT_SIZE);
}
void Push(const ImmWord imm) {
push(imm);
adjustFrame(STACK_SLOT_SIZE);
}
void Push(const ImmGCPtr ptr) {
push(ptr);
adjustFrame(STACK_SLOT_SIZE);
}
void Push(const FloatRegister &t) {
VFPRegister r = VFPRegister(t);
ma_vpush(VFPRegister(t));
adjustFrame(r.size());
}
CodeOffsetLabel PushWithPatch(const ImmWord &word) {
framePushed_ += sizeof(word.value);
return pushWithPatch(word);
}
void PushWithPadding(const Register &reg, const Imm32 extraSpace) {
pushWithPadding(reg, extraSpace);
adjustFrame(STACK_SLOT_SIZE + extraSpace.value);
}
void PushWithPadding(const Imm32 imm, const Imm32 extraSpace) {
pushWithPadding(imm, extraSpace);
adjustFrame(STACK_SLOT_SIZE + extraSpace.value);
}
void Pop(const Register &reg) {
ma_pop(reg);
adjustFrame(-STACK_SLOT_SIZE);
}
void implicitPop(uint32_t args) {
JS_ASSERT(args % STACK_SLOT_SIZE == 0);
adjustFrame(-args);
}
uint32_t framePushed() const {
return framePushed_;
}
void setFramePushed(uint32_t framePushed) {
framePushed_ = framePushed;
}
// Builds an exit frame on the stack, with a return address to an internal
// non-function. Returns offset to be passed to markSafepointAt().
bool buildFakeExitFrame(const Register &scratch, uint32_t *offset);
bool buildOOLFakeExitFrame(void *fakeReturnAddr);
void callWithExitFrame(IonCode *target);
void callWithExitFrame(IonCode *target, Register dynStack);
// Makes an Ion call using the only two methods that it is sane for
// indep code to make a call
void callIon(const Register &callee);
void reserveStack(uint32_t amount);
void freeStack(uint32_t amount);
void freeStack(Register amount);
void add32(Register src, Register dest);
void add32(Imm32 imm, Register dest);
void add32(Imm32 imm, const Address &dest);
void sub32(Imm32 imm, Register dest);
void sub32(Register src, Register dest);
void xor32(Imm32 imm, Register dest);
void and32(Imm32 imm, Register dest);
void and32(Imm32 imm, const Address &dest);
void or32(Imm32 imm, const Address &dest);
void xorPtr(Imm32 imm, Register dest);
void xorPtr(Register src, Register dest);
void orPtr(Imm32 imm, Register dest);
void orPtr(Register src, Register dest);
void andPtr(Imm32 imm, Register dest);
void andPtr(Register src, Register dest);
void addPtr(Register src, Register dest);
void addPtr(const Address &src, Register dest);
void move32(const Imm32 &imm, const Register &dest);
void movePtr(const Register &src, const Register &dest);
void movePtr(const ImmWord &imm, const Register &dest);
void movePtr(const ImmGCPtr &imm, const Register &dest);
void load8SignExtend(const Address &address, const Register &dest);
void load8SignExtend(const BaseIndex &src, const Register &dest);
void load8ZeroExtend(const Address &address, const Register &dest);
void load8ZeroExtend(const BaseIndex &src, const Register &dest);
void load16SignExtend(const Address &address, const Register &dest);
void load16SignExtend(const BaseIndex &src, const Register &dest);
void load16ZeroExtend(const Address &address, const Register &dest);
void load16ZeroExtend(const BaseIndex &src, const Register &dest);
void load32(const Address &address, const Register &dest);
void load32(const BaseIndex &address, const Register &dest);
void load32(const AbsoluteAddress &address, const Register &dest);
void loadPtr(const Address &address, const Register &dest);
void loadPtr(const BaseIndex &src, const Register &dest);
void loadPtr(const AbsoluteAddress &address, const Register &dest);
void loadPrivate(const Address &address, const Register &dest);
void loadDouble(const Address &addr, const FloatRegister &dest);
void loadDouble(const BaseIndex &src, const FloatRegister &dest);
// Load a float value into a register, then expand it to a double.
void loadFloatAsDouble(const Address &addr, const FloatRegister &dest);
void loadFloatAsDouble(const BaseIndex &src, const FloatRegister &dest);
void store8(const Register &src, const Address &address);
void store8(const Imm32 &imm, const Address &address);
void store8(const Register &src, const BaseIndex &address);
void store8(const Imm32 &imm, const BaseIndex &address);
void store16(const Register &src, const Address &address);
void store16(const Imm32 &imm, const Address &address);
void store16(const Register &src, const BaseIndex &address);
void store16(const Imm32 &imm, const BaseIndex &address);
void store32(const Register &src, const AbsoluteAddress &address);
void store32(const Register &src, const Address &address);
void store32(const Register &src, const BaseIndex &address);
void store32(const Imm32 &src, const Address &address);
void store32(const Imm32 &src, const BaseIndex &address);
void storePtr(ImmWord imm, const Address &address);
void storePtr(ImmGCPtr imm, const Address &address);
void storePtr(Register src, const Address &address);
void storePtr(const Register &src, const AbsoluteAddress &dest);
void storeDouble(FloatRegister src, Address addr) {
ma_vstr(src, Operand(addr));
}
void storeDouble(FloatRegister src, BaseIndex addr) {
// Harder cases not handled yet.
JS_ASSERT(addr.offset == 0);
uint32_t scale = Imm32::ShiftOf(addr.scale).value;
ma_vstr(src, addr.base, addr.index, scale);
}
void storeFloat(FloatRegister src, Address addr) {
ma_vstr(VFPRegister(src).singleOverlay(), Operand(addr));
}
void storeFloat(FloatRegister src, BaseIndex addr) {
// Harder cases not handled yet.
JS_ASSERT(addr.offset == 0);
uint32_t scale = Imm32::ShiftOf(addr.scale).value;
ma_vstr(VFPRegister(src).singleOverlay(), addr.base, addr.index, scale);
}
void clampIntToUint8(Register src, Register dest) {
// look at (src >> 8) if it is 0, then src shouldn't be clamped
// if it is <0, then we want to clamp to 0, otherwise, we wish to clamp to 255
as_mov(ScratchRegister, asr(src, 8), SetCond);
ma_mov(src, dest);
ma_mov(Imm32(0xff), dest, NoSetCond, NotEqual);
ma_mov(Imm32(0), dest, NoSetCond, Signed);
}
void cmp32(const Register &lhs, const Imm32 &rhs);
void cmp32(const Register &lhs, const Register &rhs);
void cmp32(const Operand &lhs, const Imm32 &rhs);
void cmp32(const Operand &lhs, const Register &rhs);
void cmpPtr(const Register &lhs, const ImmWord &rhs);
void cmpPtr(const Register &lhs, const Register &rhs);
void cmpPtr(const Register &lhs, const ImmGCPtr &rhs);
void cmpPtr(const Address &lhs, const Register &rhs);
void cmpPtr(const Address &lhs, const ImmWord &rhs);
void subPtr(Imm32 imm, const Register dest);
void subPtr(const Address &addr, const Register dest);
void subPtr(const Register &src, const Register &dest);
void addPtr(Imm32 imm, const Register dest);
void addPtr(Imm32 imm, const Address &dest);
void addPtr(ImmWord imm, const Register dest) {
addPtr(Imm32(imm.value), dest);
}
void setStackArg(const Register &reg, uint32_t arg);
void breakpoint();
// conditional breakpoint
void breakpoint(Condition cc);
void compareDouble(FloatRegister lhs, FloatRegister rhs);
void branchDouble(DoubleCondition cond, const FloatRegister &lhs, const FloatRegister &rhs,
Label *label);
void checkStackAlignment();
void rshiftPtr(Imm32 imm, Register dest) {
ma_lsr(imm, dest, dest);
}
void lshiftPtr(Imm32 imm, Register dest) {
ma_lsl(imm, dest, dest);
}
// If source is a double, load it into dest. If source is int32,
// convert it to double. Else, branch to failure.
void ensureDouble(const ValueOperand &source, FloatRegister dest, Label *failure);
void
emitSet(Assembler::Condition cond, const Register &dest)
{
ma_mov(Imm32(0), dest);
ma_mov(Imm32(1), dest, NoSetCond, cond);
}
// Setup a call to C/C++ code, given the number of general arguments it
// takes. Note that this only supports cdecl.
//
// In order for alignment to work correctly, the MacroAssembler must have a
// consistent view of the stack displacement. It is okay to call "push"
// manually, however, if the stack alignment were to change, the macro
// assembler should be notified before starting a call.
void setupAlignedABICall(uint32_t args);
// Sets up an ABI call for when the alignment is not known. This may need a
// scratch register.
void setupUnalignedABICall(uint32_t args, const Register &scratch);
// Arguments must be assigned in a left-to-right order. This process may
// temporarily use more stack, in which case esp-relative addresses will be
// automatically adjusted. It is extremely important that esp-relative
// addresses are computed *after* setupABICall(). Furthermore, no
// operations should be emitted while setting arguments.
void passABIArg(const MoveOperand &from);
void passABIArg(const Register &reg);
void passABIArg(const FloatRegister &reg);
void passABIArg(const ValueOperand &regs);
private:
void callWithABIPre(uint32_t *stackAdjust);
void callWithABIPost(uint32_t stackAdjust, Result result);
public:
// Emits a call to a C/C++ function, resolving all argument moves.
void callWithABI(void *fun, Result result = GENERAL);
void callWithABI(const Address &fun, Result result = GENERAL);
CodeOffsetLabel labelForPatch() {
return CodeOffsetLabel(nextOffset().getOffset());
}
void computeEffectiveAddress(const Address &address, Register dest) {
ma_add(address.base, Imm32(address.offset), dest, NoSetCond);
}
void computeEffectiveAddress(const BaseIndex &address, Register dest) {
ma_alu(address.base, lsl(address.index, address.scale), dest, op_add, NoSetCond);
if (address.offset)
ma_add(dest, Imm32(address.offset), dest, NoSetCond);
}
void floor(FloatRegister input, Register output, Label *handleNotAnInt);
void round(FloatRegister input, Register output, Label *handleNotAnInt, FloatRegister tmp);
void clampCheck(Register r, Label *handleNotAnInt) {
// check explicitly for r == INT_MIN || r == INT_MAX
// this is the instruction sequence that gcc generated for this
// operation.
ma_sub(r, Imm32(0x80000001), ScratchRegister);
ma_cmn(ScratchRegister, Imm32(3));
ma_b(handleNotAnInt, Above);
}
void enterOsr(Register calleeToken, Register code);
void memIntToValue(Address Source, Address Dest) {
load32(Source, lr);
storeValue(JSVAL_TYPE_INT32, lr, Dest);
}
void memMove32(Address Source, Address Dest) {
loadPtr(Source, lr);
storePtr(lr, Dest);
}
void memMove64(Address Source, Address Dest) {
loadPtr(Source, lr);
storePtr(lr, Dest);
loadPtr(Address(Source.base, Source.offset+4), lr);
storePtr(lr, Address(Dest.base, Dest.offset+4));
}
void lea(Operand addr, Register dest) {
ma_add(addr.baseReg(), Imm32(addr.disp()), dest);
}
void stackCheck(ImmWord limitAddr, Label *label) {
int *foo = 0;
*foo = 5;
movePtr(limitAddr, ScratchRegister);
ma_ldr(Address(ScratchRegister, 0), ScratchRegister);
ma_cmp(ScratchRegister, StackPointer);
ma_b(label, Assembler::AboveOrEqual);
}
void abiret() {
as_bx(lr);
}
void ma_storeImm(Imm32 c, const Operand &dest) {
ma_mov(c, lr);
ma_str(lr, dest);
}
BufferOffset ma_BoundsCheck(Register bounded) {
return as_mov(ScratchRegister, lsl(bounded, 0), SetCond);
}
void storeFloat(VFPRegister src, Register base, Register index, Condition cond) {
as_vcvt(VFPRegister(ScratchFloatReg).singleOverlay(), src, false, cond);
ma_vstr(VFPRegister(ScratchFloatReg).singleOverlay(), base, index, 0, cond);
}
};
typedef MacroAssemblerARMCompat MacroAssemblerSpecific;
} // namespace jit
} // namespace js
#endif /* jit_arm_MacroAssembler_arm_h */