| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/debug/stack_trace.h" |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/param.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <map> |
| #include <memory> |
| #include <ostream> |
| #include <string> |
| #include <vector> |
| |
| #if !defined(USE_SYMBOLIZE) |
| #include <cxxabi.h> |
| #endif |
| #if !defined(__UCLIBC__) && !defined(_AIX) |
| #include <execinfo.h> |
| #endif |
| |
| #if defined(OS_MACOSX) |
| #include <AvailabilityMacros.h> |
| #endif |
| |
| #if defined(OS_LINUX) |
| #include "base/debug/proc_maps_linux.h" |
| #endif |
| |
| #include "base/cfi_buildflags.h" |
| #include "base/debug/debugger.h" |
| #include "base/files/scoped_file.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/memory/free_deleter.h" |
| #include "base/memory/singleton.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_util.h" |
| #include "build/build_config.h" |
| |
| #if defined(USE_SYMBOLIZE) |
| #include "base/third_party/symbolize/symbolize.h" |
| #include "starboard/common/string.h" |
| #include "starboard/memory.h" |
| #include "starboard/types.h" |
| #endif |
| |
| namespace base { |
| namespace debug { |
| |
| namespace { |
| |
| volatile sig_atomic_t in_signal_handler = 0; |
| |
| bool (*try_handle_signal)(int, void*, void*) = nullptr; |
| |
| #if !defined(USE_SYMBOLIZE) |
| // The prefix used for mangled symbols, per the Itanium C++ ABI: |
| // http://www.codesourcery.com/cxx-abi/abi.html#mangling |
| const char kMangledSymbolPrefix[] = "_Z"; |
| |
| // Characters that can be used for symbols, generated by Ruby: |
| // (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join |
| const char kSymbolCharacters[] = |
| "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; |
| #endif // !defined(USE_SYMBOLIZE) |
| |
| #if !defined(USE_SYMBOLIZE) |
| // Demangles C++ symbols in the given text. Example: |
| // |
| // "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]" |
| // => |
| // "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]" |
| void DemangleSymbols(std::string* text) { |
| // Note: code in this function is NOT async-signal safe (std::string uses |
| // malloc internally). |
| |
| #if !defined(__UCLIBC__) && !defined(_AIX) |
| std::string::size_type search_from = 0; |
| while (search_from < text->size()) { |
| // Look for the start of a mangled symbol, from search_from. |
| std::string::size_type mangled_start = |
| text->find(kMangledSymbolPrefix, search_from); |
| if (mangled_start == std::string::npos) { |
| break; // Mangled symbol not found. |
| } |
| |
| // Look for the end of the mangled symbol. |
| std::string::size_type mangled_end = |
| text->find_first_not_of(kSymbolCharacters, mangled_start); |
| if (mangled_end == std::string::npos) { |
| mangled_end = text->size(); |
| } |
| std::string mangled_symbol = |
| text->substr(mangled_start, mangled_end - mangled_start); |
| |
| // Try to demangle the mangled symbol candidate. |
| int status = 0; |
| std::unique_ptr<char, base::FreeDeleter> demangled_symbol( |
| abi::__cxa_demangle(mangled_symbol.c_str(), nullptr, 0, &status)); |
| if (status == 0) { // Demangling is successful. |
| // Remove the mangled symbol. |
| text->erase(mangled_start, mangled_end - mangled_start); |
| // Insert the demangled symbol. |
| text->insert(mangled_start, demangled_symbol.get()); |
| // Next time, we'll start right after the demangled symbol we inserted. |
| search_from = mangled_start + SbStringGetLength(demangled_symbol.get()); |
| } else { |
| // Failed to demangle. Retry after the "_Z" we just found. |
| search_from = mangled_start + 2; |
| } |
| } |
| #endif // !defined(__UCLIBC__) && !defined(_AIX) |
| } |
| #endif // !defined(USE_SYMBOLIZE) |
| |
| class BacktraceOutputHandler { |
| public: |
| virtual void HandleOutput(const char* output) = 0; |
| |
| protected: |
| virtual ~BacktraceOutputHandler() = default; |
| }; |
| |
| #if !defined(__UCLIBC__) && !defined(_AIX) |
| void OutputPointer(void* pointer, BacktraceOutputHandler* handler) { |
| // This should be more than enough to store a 64-bit number in hex: |
| // 16 hex digits + 1 for null-terminator. |
| char buf[17] = { '\0' }; |
| handler->HandleOutput("0x"); |
| internal::itoa_r(reinterpret_cast<intptr_t>(pointer), |
| buf, sizeof(buf), 16, 12); |
| handler->HandleOutput(buf); |
| } |
| |
| #if defined(USE_SYMBOLIZE) |
| void OutputFrameId(intptr_t frame_id, BacktraceOutputHandler* handler) { |
| // Max unsigned 64-bit number in decimal has 20 digits (18446744073709551615). |
| // Hence, 30 digits should be more than enough to represent it in decimal |
| // (including the null-terminator). |
| char buf[30] = { '\0' }; |
| handler->HandleOutput("#"); |
| internal::itoa_r(frame_id, buf, sizeof(buf), 10, 1); |
| handler->HandleOutput(buf); |
| } |
| #endif // defined(USE_SYMBOLIZE) |
| |
| void ProcessBacktrace(void* const* trace, |
| size_t size, |
| const char* prefix_string, |
| BacktraceOutputHandler* handler) { |
| // NOTE: This code MUST be async-signal safe (it's used by in-process |
| // stack dumping signal handler). NO malloc or stdio is allowed here. |
| |
| #if defined(USE_SYMBOLIZE) |
| for (size_t i = 0; i < size; ++i) { |
| if (prefix_string) |
| handler->HandleOutput(prefix_string); |
| |
| OutputFrameId(i, handler); |
| handler->HandleOutput(" "); |
| OutputPointer(trace[i], handler); |
| handler->HandleOutput(" "); |
| |
| char buf[1024] = { '\0' }; |
| |
| // Subtract by one as return address of function may be in the next |
| // function when a function is annotated as noreturn. |
| void* address = static_cast<char*>(trace[i]) - 1; |
| if (google::Symbolize(address, buf, sizeof(buf))) |
| handler->HandleOutput(buf); |
| else |
| handler->HandleOutput("<unknown>"); |
| |
| handler->HandleOutput("\n"); |
| } |
| #else |
| bool printed = false; |
| |
| // Below part is async-signal unsafe (uses malloc), so execute it only |
| // when we are not executing the signal handler. |
| if (in_signal_handler == 0) { |
| std::unique_ptr<char*, FreeDeleter> trace_symbols( |
| backtrace_symbols(trace, size)); |
| if (trace_symbols.get()) { |
| for (size_t i = 0; i < size; ++i) { |
| std::string trace_symbol = trace_symbols.get()[i]; |
| DemangleSymbols(&trace_symbol); |
| if (prefix_string) |
| handler->HandleOutput(prefix_string); |
| handler->HandleOutput(trace_symbol.c_str()); |
| handler->HandleOutput("\n"); |
| } |
| |
| printed = true; |
| } |
| } |
| |
| if (!printed) { |
| for (size_t i = 0; i < size; ++i) { |
| handler->HandleOutput(" ["); |
| OutputPointer(trace[i], handler); |
| handler->HandleOutput("]\n"); |
| } |
| } |
| #endif // defined(USE_SYMBOLIZE) |
| } |
| #endif // !defined(__UCLIBC__) && !defined(_AIX) |
| |
| void PrintToStderr(const char* output) { |
| // NOTE: This code MUST be async-signal safe (it's used by in-process |
| // stack dumping signal handler). NO malloc or stdio is allowed here. |
| ignore_result( |
| HANDLE_EINTR(write(STDERR_FILENO, output, SbStringGetLength(output)))); |
| } |
| |
| void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) { |
| // NOTE: This code MUST be async-signal safe. |
| // NO malloc or stdio is allowed here. |
| |
| // Give a registered callback a chance to recover from this signal |
| // |
| // V8 uses guard regions to guarantee memory safety in WebAssembly. This means |
| // some signals might be expected if they originate from Wasm code while |
| // accessing the guard region. We give V8 the chance to handle and recover |
| // from these signals first. |
| if (try_handle_signal != nullptr && |
| try_handle_signal(signal, info, void_context)) { |
| // The first chance handler took care of this. The SA_RESETHAND flag |
| // replaced this signal handler upon entry, but we want to stay |
| // installed. Thus, we reinstall ourselves before returning. |
| struct sigaction action; |
| SbMemorySet(&action, 0, sizeof(action)); |
| action.sa_flags = SA_RESETHAND | SA_SIGINFO; |
| action.sa_sigaction = &StackDumpSignalHandler; |
| sigemptyset(&action.sa_mask); |
| |
| sigaction(signal, &action, nullptr); |
| return; |
| } |
| |
| // Do not take the "in signal handler" code path on Mac in a DCHECK-enabled |
| // build, as this prevents seeing a useful (symbolized) stack trace on a crash |
| // or DCHECK() failure. While it may not be fully safe to run the stack symbol |
| // printing code, in practice it's better to provide meaningful stack traces - |
| // and the risk is low given we're likely crashing already. |
| #if !defined(OS_MACOSX) || !DCHECK_IS_ON() |
| // Record the fact that we are in the signal handler now, so that the rest |
| // of StackTrace can behave in an async-signal-safe manner. |
| in_signal_handler = 1; |
| #endif |
| |
| if (BeingDebugged()) |
| BreakDebugger(); |
| |
| PrintToStderr("Received signal "); |
| char buf[1024] = { 0 }; |
| internal::itoa_r(signal, buf, sizeof(buf), 10, 0); |
| PrintToStderr(buf); |
| if (signal == SIGBUS) { |
| if (info->si_code == BUS_ADRALN) |
| PrintToStderr(" BUS_ADRALN "); |
| else if (info->si_code == BUS_ADRERR) |
| PrintToStderr(" BUS_ADRERR "); |
| else if (info->si_code == BUS_OBJERR) |
| PrintToStderr(" BUS_OBJERR "); |
| else |
| PrintToStderr(" <unknown> "); |
| } else if (signal == SIGFPE) { |
| if (info->si_code == FPE_FLTDIV) |
| PrintToStderr(" FPE_FLTDIV "); |
| else if (info->si_code == FPE_FLTINV) |
| PrintToStderr(" FPE_FLTINV "); |
| else if (info->si_code == FPE_FLTOVF) |
| PrintToStderr(" FPE_FLTOVF "); |
| else if (info->si_code == FPE_FLTRES) |
| PrintToStderr(" FPE_FLTRES "); |
| else if (info->si_code == FPE_FLTSUB) |
| PrintToStderr(" FPE_FLTSUB "); |
| else if (info->si_code == FPE_FLTUND) |
| PrintToStderr(" FPE_FLTUND "); |
| else if (info->si_code == FPE_INTDIV) |
| PrintToStderr(" FPE_INTDIV "); |
| else if (info->si_code == FPE_INTOVF) |
| PrintToStderr(" FPE_INTOVF "); |
| else |
| PrintToStderr(" <unknown> "); |
| } else if (signal == SIGILL) { |
| if (info->si_code == ILL_BADSTK) |
| PrintToStderr(" ILL_BADSTK "); |
| else if (info->si_code == ILL_COPROC) |
| PrintToStderr(" ILL_COPROC "); |
| else if (info->si_code == ILL_ILLOPN) |
| PrintToStderr(" ILL_ILLOPN "); |
| else if (info->si_code == ILL_ILLADR) |
| PrintToStderr(" ILL_ILLADR "); |
| else if (info->si_code == ILL_ILLTRP) |
| PrintToStderr(" ILL_ILLTRP "); |
| else if (info->si_code == ILL_PRVOPC) |
| PrintToStderr(" ILL_PRVOPC "); |
| else if (info->si_code == ILL_PRVREG) |
| PrintToStderr(" ILL_PRVREG "); |
| else |
| PrintToStderr(" <unknown> "); |
| } else if (signal == SIGSEGV) { |
| if (info->si_code == SEGV_MAPERR) |
| PrintToStderr(" SEGV_MAPERR "); |
| else if (info->si_code == SEGV_ACCERR) |
| PrintToStderr(" SEGV_ACCERR "); |
| else |
| PrintToStderr(" <unknown> "); |
| } |
| if (signal == SIGBUS || signal == SIGFPE || |
| signal == SIGILL || signal == SIGSEGV) { |
| internal::itoa_r(reinterpret_cast<intptr_t>(info->si_addr), |
| buf, sizeof(buf), 16, 12); |
| PrintToStderr(buf); |
| } |
| PrintToStderr("\n"); |
| |
| #if BUILDFLAG(CFI_ENFORCEMENT_TRAP) |
| if (signal == SIGILL && info->si_code == ILL_ILLOPN) { |
| PrintToStderr( |
| "CFI: Most likely a control flow integrity violation; for more " |
| "information see:\n"); |
| PrintToStderr( |
| "https://www.chromium.org/developers/testing/control-flow-integrity\n"); |
| } |
| #endif // BUILDFLAG(CFI_ENFORCEMENT_TRAP) |
| |
| debug::StackTrace().Print(); |
| |
| #if defined(OS_LINUX) |
| #if ARCH_CPU_X86_FAMILY |
| ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context); |
| const struct { |
| const char* label; |
| greg_t value; |
| } registers[] = { |
| #if ARCH_CPU_32_BITS |
| { " gs: ", context->uc_mcontext.gregs[REG_GS] }, |
| { " fs: ", context->uc_mcontext.gregs[REG_FS] }, |
| { " es: ", context->uc_mcontext.gregs[REG_ES] }, |
| { " ds: ", context->uc_mcontext.gregs[REG_DS] }, |
| { " edi: ", context->uc_mcontext.gregs[REG_EDI] }, |
| { " esi: ", context->uc_mcontext.gregs[REG_ESI] }, |
| { " ebp: ", context->uc_mcontext.gregs[REG_EBP] }, |
| { " esp: ", context->uc_mcontext.gregs[REG_ESP] }, |
| { " ebx: ", context->uc_mcontext.gregs[REG_EBX] }, |
| { " edx: ", context->uc_mcontext.gregs[REG_EDX] }, |
| { " ecx: ", context->uc_mcontext.gregs[REG_ECX] }, |
| { " eax: ", context->uc_mcontext.gregs[REG_EAX] }, |
| { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, |
| { " err: ", context->uc_mcontext.gregs[REG_ERR] }, |
| { " ip: ", context->uc_mcontext.gregs[REG_EIP] }, |
| { " cs: ", context->uc_mcontext.gregs[REG_CS] }, |
| { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, |
| { " usp: ", context->uc_mcontext.gregs[REG_UESP] }, |
| { " ss: ", context->uc_mcontext.gregs[REG_SS] }, |
| #elif ARCH_CPU_64_BITS |
| { " r8: ", context->uc_mcontext.gregs[REG_R8] }, |
| { " r9: ", context->uc_mcontext.gregs[REG_R9] }, |
| { " r10: ", context->uc_mcontext.gregs[REG_R10] }, |
| { " r11: ", context->uc_mcontext.gregs[REG_R11] }, |
| { " r12: ", context->uc_mcontext.gregs[REG_R12] }, |
| { " r13: ", context->uc_mcontext.gregs[REG_R13] }, |
| { " r14: ", context->uc_mcontext.gregs[REG_R14] }, |
| { " r15: ", context->uc_mcontext.gregs[REG_R15] }, |
| { " di: ", context->uc_mcontext.gregs[REG_RDI] }, |
| { " si: ", context->uc_mcontext.gregs[REG_RSI] }, |
| { " bp: ", context->uc_mcontext.gregs[REG_RBP] }, |
| { " bx: ", context->uc_mcontext.gregs[REG_RBX] }, |
| { " dx: ", context->uc_mcontext.gregs[REG_RDX] }, |
| { " ax: ", context->uc_mcontext.gregs[REG_RAX] }, |
| { " cx: ", context->uc_mcontext.gregs[REG_RCX] }, |
| { " sp: ", context->uc_mcontext.gregs[REG_RSP] }, |
| { " ip: ", context->uc_mcontext.gregs[REG_RIP] }, |
| { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, |
| { " cgf: ", context->uc_mcontext.gregs[REG_CSGSFS] }, |
| { " erf: ", context->uc_mcontext.gregs[REG_ERR] }, |
| { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, |
| { " msk: ", context->uc_mcontext.gregs[REG_OLDMASK] }, |
| { " cr2: ", context->uc_mcontext.gregs[REG_CR2] }, |
| #endif // ARCH_CPU_32_BITS |
| }; |
| |
| #if ARCH_CPU_32_BITS |
| const int kRegisterPadding = 8; |
| #elif ARCH_CPU_64_BITS |
| const int kRegisterPadding = 16; |
| #endif |
| |
| for (size_t i = 0; i < arraysize(registers); i++) { |
| PrintToStderr(registers[i].label); |
| internal::itoa_r(registers[i].value, buf, sizeof(buf), |
| 16, kRegisterPadding); |
| PrintToStderr(buf); |
| |
| if ((i + 1) % 4 == 0) |
| PrintToStderr("\n"); |
| } |
| PrintToStderr("\n"); |
| #endif // ARCH_CPU_X86_FAMILY |
| #endif // defined(OS_LINUX) |
| |
| PrintToStderr("[end of stack trace]\n"); |
| |
| #if defined(OS_MACOSX) && !defined(OS_IOS) |
| if (::signal(signal, SIG_DFL) == SIG_ERR) |
| _exit(1); |
| #else |
| // Non-Mac OSes should probably reraise the signal as well, but the Linux |
| // sandbox tests break on CrOS devices. |
| // https://code.google.com/p/chromium/issues/detail?id=551681 |
| PrintToStderr("Calling _exit(1). Core file will not be generated.\n"); |
| _exit(1); |
| #endif // defined(OS_MACOSX) && !defined(OS_IOS) |
| } |
| |
| class PrintBacktraceOutputHandler : public BacktraceOutputHandler { |
| public: |
| PrintBacktraceOutputHandler() = default; |
| |
| void HandleOutput(const char* output) override { |
| // NOTE: This code MUST be async-signal safe (it's used by in-process |
| // stack dumping signal handler). NO malloc or stdio is allowed here. |
| PrintToStderr(output); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler); |
| }; |
| |
| class StreamBacktraceOutputHandler : public BacktraceOutputHandler { |
| public: |
| explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) { |
| } |
| |
| void HandleOutput(const char* output) override { (*os_) << output; } |
| |
| private: |
| std::ostream* os_; |
| |
| DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler); |
| }; |
| |
| void WarmUpBacktrace() { |
| // Warm up stack trace infrastructure. It turns out that on the first |
| // call glibc initializes some internal data structures using pthread_once, |
| // and even backtrace() can call malloc(), leading to hangs. |
| // |
| // Example stack trace snippet (with tcmalloc): |
| // |
| // #8 0x0000000000a173b5 in tc_malloc |
| // at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161 |
| // #9 0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517 |
| // #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262 |
| // #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 |
| // #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1") |
| // at dl-open.c:639 |
| // #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89 |
| // #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 |
| // #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48 |
| // #16 __GI___libc_dlopen_mode at dl-libc.c:165 |
| // #17 0x00007ffff61ef8f5 in init |
| // at ../sysdeps/x86_64/../ia64/backtrace.c:53 |
| // #18 0x00007ffff6aad400 in pthread_once |
| // at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104 |
| // #19 0x00007ffff61efa14 in __GI___backtrace |
| // at ../sysdeps/x86_64/../ia64/backtrace.c:104 |
| // #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace |
| // at base/debug/stack_trace_posix.cc:175 |
| // #21 0x00000000007a4ae5 in |
| // base::(anonymous namespace)::StackDumpSignalHandler |
| // at base/process_util_posix.cc:172 |
| // #22 <signal handler called> |
| StackTrace stack_trace; |
| } |
| |
| #if defined(USE_SYMBOLIZE) |
| |
| // class SandboxSymbolizeHelper. |
| // |
| // The purpose of this class is to prepare and install a "file open" callback |
| // needed by the stack trace symbolization code |
| // (base/third_party/symbolize/symbolize.h) so that it can function properly |
| // in a sandboxed process. The caveat is that this class must be instantiated |
| // before the sandboxing is enabled so that it can get the chance to open all |
| // the object files that are loaded in the virtual address space of the current |
| // process. |
| class SandboxSymbolizeHelper { |
| public: |
| // Returns the singleton instance. |
| static SandboxSymbolizeHelper* GetInstance() { |
| return Singleton<SandboxSymbolizeHelper, |
| LeakySingletonTraits<SandboxSymbolizeHelper>>::get(); |
| } |
| |
| private: |
| friend struct DefaultSingletonTraits<SandboxSymbolizeHelper>; |
| |
| SandboxSymbolizeHelper() |
| : is_initialized_(false) { |
| Init(); |
| } |
| |
| ~SandboxSymbolizeHelper() { |
| UnregisterCallback(); |
| CloseObjectFiles(); |
| } |
| |
| // Returns a O_RDONLY file descriptor for |file_path| if it was opened |
| // successfully during the initialization. The file is repositioned at |
| // offset 0. |
| // IMPORTANT: This function must be async-signal-safe because it can be |
| // called from a signal handler (symbolizing stack frames for a crash). |
| int GetFileDescriptor(const char* file_path) { |
| int fd = -1; |
| |
| #if !defined(OFFICIAL_BUILD) |
| if (file_path) { |
| // The assumption here is that iterating over std::map<std::string, int> |
| // using a const_iterator does not allocate dynamic memory, hense it is |
| // async-signal-safe. |
| std::map<std::string, int>::const_iterator it; |
| for (it = modules_.begin(); it != modules_.end(); ++it) { |
| if (strcmp((it->first).c_str(), file_path) == 0) { |
| // POSIX.1-2004 requires an implementation to guarantee that dup() |
| // is async-signal-safe. |
| fd = HANDLE_EINTR(dup(it->second)); |
| break; |
| } |
| } |
| // POSIX.1-2004 requires an implementation to guarantee that lseek() |
| // is async-signal-safe. |
| if (fd >= 0 && lseek(fd, 0, SEEK_SET) < 0) { |
| // Failed to seek. |
| fd = -1; |
| } |
| } |
| #endif // !defined(OFFICIAL_BUILD) |
| |
| return fd; |
| } |
| |
| // Searches for the object file (from /proc/self/maps) that contains |
| // the specified pc. If found, sets |start_address| to the start address |
| // of where this object file is mapped in memory, sets the module base |
| // address into |base_address|, copies the object file name into |
| // |out_file_name|, and attempts to open the object file. If the object |
| // file is opened successfully, returns the file descriptor. Otherwise, |
| // returns -1. |out_file_name_size| is the size of the file name buffer |
| // (including the null terminator). |
| // IMPORTANT: This function must be async-signal-safe because it can be |
| // called from a signal handler (symbolizing stack frames for a crash). |
| static int OpenObjectFileContainingPc(uint64_t pc, uint64_t& start_address, |
| uint64_t& base_address, char* file_path, |
| int file_path_size) { |
| // This method can only be called after the singleton is instantiated. |
| // This is ensured by the following facts: |
| // * This is the only static method in this class, it is private, and |
| // the class has no friends (except for the DefaultSingletonTraits). |
| // The compiler guarantees that it can only be called after the |
| // singleton is instantiated. |
| // * This method is used as a callback for the stack tracing code and |
| // the callback registration is done in the constructor, so logically |
| // it cannot be called before the singleton is created. |
| SandboxSymbolizeHelper* instance = GetInstance(); |
| |
| // The assumption here is that iterating over |
| // std::vector<MappedMemoryRegion> using a const_iterator does not allocate |
| // dynamic memory, hence it is async-signal-safe. |
| for (const MappedMemoryRegion& region : instance->regions_) { |
| if (region.start <= pc && pc < region.end) { |
| start_address = region.start; |
| base_address = region.base; |
| if (file_path && file_path_size > 0) { |
| SbStringCopy(file_path, region.path.c_str(), file_path_size); |
| // Ensure null termination. |
| file_path[file_path_size - 1] = '\0'; |
| } |
| return instance->GetFileDescriptor(region.path.c_str()); |
| } |
| } |
| return -1; |
| } |
| |
| // Set the base address for each memory region by reading ELF headers in |
| // process memory. |
| void SetBaseAddressesForMemoryRegions() { |
| base::ScopedFD mem_fd( |
| HANDLE_EINTR(open("/proc/self/mem", O_RDONLY | O_CLOEXEC))); |
| if (!mem_fd.is_valid()) |
| return; |
| |
| auto safe_memcpy = [&mem_fd](void* dst, uintptr_t src, size_t size) { |
| return HANDLE_EINTR(pread(mem_fd.get(), dst, size, src)) == ssize_t(size); |
| }; |
| |
| uintptr_t cur_base = 0; |
| for (auto& r : regions_) { |
| ElfW(Ehdr) ehdr; |
| static_assert(SELFMAG <= sizeof(ElfW(Ehdr)), "SELFMAG too large"); |
| if ((r.permissions & MappedMemoryRegion::READ) && |
| safe_memcpy(&ehdr, r.start, sizeof(ElfW(Ehdr))) && |
| SbMemoryCompare(ehdr.e_ident, ELFMAG, SELFMAG) == 0) { |
| switch (ehdr.e_type) { |
| case ET_EXEC: |
| cur_base = 0; |
| break; |
| case ET_DYN: |
| // Find the segment containing file offset 0. This will correspond |
| // to the ELF header that we just read. Normally this will have |
| // virtual address 0, but this is not guaranteed. We must subtract |
| // the virtual address from the address where the ELF header was |
| // mapped to get the base address. |
| // |
| // If we fail to find a segment for file offset 0, use the address |
| // of the ELF header as the base address. |
| cur_base = r.start; |
| for (unsigned i = 0; i != ehdr.e_phnum; ++i) { |
| ElfW(Phdr) phdr; |
| if (safe_memcpy(&phdr, r.start + ehdr.e_phoff + i * sizeof(phdr), |
| sizeof(phdr)) && |
| phdr.p_type == PT_LOAD && phdr.p_offset == 0) { |
| cur_base = r.start - phdr.p_vaddr; |
| break; |
| } |
| } |
| break; |
| default: |
| // ET_REL or ET_CORE. These aren't directly executable, so they |
| // don't affect the base address. |
| break; |
| } |
| } |
| |
| r.base = cur_base; |
| } |
| } |
| |
| // Parses /proc/self/maps in order to compile a list of all object file names |
| // for the modules that are loaded in the current process. |
| // Returns true on success. |
| bool CacheMemoryRegions() { |
| // Reads /proc/self/maps. |
| std::string contents; |
| if (!ReadProcMaps(&contents)) { |
| LOG(ERROR) << "Failed to read /proc/self/maps"; |
| return false; |
| } |
| |
| // Parses /proc/self/maps. |
| if (!ParseProcMaps(contents, ®ions_)) { |
| LOG(ERROR) << "Failed to parse the contents of /proc/self/maps"; |
| return false; |
| } |
| |
| SetBaseAddressesForMemoryRegions(); |
| |
| is_initialized_ = true; |
| return true; |
| } |
| |
| // Opens all object files and caches their file descriptors. |
| void OpenSymbolFiles() { |
| // Pre-opening and caching the file descriptors of all loaded modules is |
| // not safe for production builds. Hence it is only done in non-official |
| // builds. For more details, take a look at: http://crbug.com/341966. |
| #if !defined(OFFICIAL_BUILD) |
| // Open the object files for all read-only executable regions and cache |
| // their file descriptors. |
| std::vector<MappedMemoryRegion>::const_iterator it; |
| for (it = regions_.begin(); it != regions_.end(); ++it) { |
| const MappedMemoryRegion& region = *it; |
| // Only interesed in read-only executable regions. |
| if ((region.permissions & MappedMemoryRegion::READ) == |
| MappedMemoryRegion::READ && |
| (region.permissions & MappedMemoryRegion::WRITE) == 0 && |
| (region.permissions & MappedMemoryRegion::EXECUTE) == |
| MappedMemoryRegion::EXECUTE) { |
| if (region.path.empty()) { |
| // Skip regions with empty file names. |
| continue; |
| } |
| if (region.path[0] == '[') { |
| // Skip pseudo-paths, like [stack], [vdso], [heap], etc ... |
| continue; |
| } |
| if (base::EndsWith(region.path, " (deleted)", |
| base::CompareCase::SENSITIVE)) { |
| // Skip deleted files. |
| continue; |
| } |
| // Avoid duplicates. |
| if (modules_.find(region.path) == modules_.end()) { |
| int fd = open(region.path.c_str(), O_RDONLY | O_CLOEXEC); |
| if (fd >= 0) { |
| modules_.insert(std::make_pair(region.path, fd)); |
| } else { |
| LOG(WARNING) << "Failed to open file: " << region.path |
| << "\n Error: " << strerror(errno); |
| } |
| } |
| } |
| } |
| #endif // !defined(OFFICIAL_BUILD) |
| } |
| |
| // Initializes and installs the symbolization callback. |
| void Init() { |
| if (CacheMemoryRegions()) { |
| OpenSymbolFiles(); |
| google::InstallSymbolizeOpenObjectFileCallback( |
| &OpenObjectFileContainingPc); |
| } |
| } |
| |
| // Unregister symbolization callback. |
| void UnregisterCallback() { |
| if (is_initialized_) { |
| google::InstallSymbolizeOpenObjectFileCallback(nullptr); |
| is_initialized_ = false; |
| } |
| } |
| |
| // Closes all file descriptors owned by this instance. |
| void CloseObjectFiles() { |
| #if !defined(OFFICIAL_BUILD) |
| std::map<std::string, int>::iterator it; |
| for (it = modules_.begin(); it != modules_.end(); ++it) { |
| int ret = IGNORE_EINTR(close(it->second)); |
| DCHECK(!ret); |
| it->second = -1; |
| } |
| modules_.clear(); |
| #endif // !defined(OFFICIAL_BUILD) |
| } |
| |
| // Set to true upon successful initialization. |
| bool is_initialized_; |
| |
| #if !defined(OFFICIAL_BUILD) |
| // Mapping from file name to file descriptor. Includes file descriptors |
| // for all successfully opened object files and the file descriptor for |
| // /proc/self/maps. This code is not safe for production builds. |
| std::map<std::string, int> modules_; |
| #endif // !defined(OFFICIAL_BUILD) |
| |
| // Cache for the process memory regions. Produced by parsing the contents |
| // of /proc/self/maps cache. |
| std::vector<MappedMemoryRegion> regions_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SandboxSymbolizeHelper); |
| }; |
| #endif // USE_SYMBOLIZE |
| |
| } // namespace |
| |
| bool EnableInProcessStackDumping() { |
| #if defined(USE_SYMBOLIZE) |
| SandboxSymbolizeHelper::GetInstance(); |
| #endif // USE_SYMBOLIZE |
| |
| // When running in an application, our code typically expects SIGPIPE |
| // to be ignored. Therefore, when testing that same code, it should run |
| // with SIGPIPE ignored as well. |
| struct sigaction sigpipe_action; |
| SbMemorySet(&sigpipe_action, 0, sizeof(sigpipe_action)); |
| sigpipe_action.sa_handler = SIG_IGN; |
| sigemptyset(&sigpipe_action.sa_mask); |
| bool success = (sigaction(SIGPIPE, &sigpipe_action, nullptr) == 0); |
| |
| // Avoid hangs during backtrace initialization, see above. |
| WarmUpBacktrace(); |
| |
| struct sigaction action; |
| SbMemorySet(&action, 0, sizeof(action)); |
| action.sa_flags = SA_RESETHAND | SA_SIGINFO; |
| action.sa_sigaction = &StackDumpSignalHandler; |
| sigemptyset(&action.sa_mask); |
| |
| success &= (sigaction(SIGILL, &action, nullptr) == 0); |
| success &= (sigaction(SIGABRT, &action, nullptr) == 0); |
| success &= (sigaction(SIGFPE, &action, nullptr) == 0); |
| success &= (sigaction(SIGBUS, &action, nullptr) == 0); |
| success &= (sigaction(SIGSEGV, &action, nullptr) == 0); |
| // On Linux, SIGSYS is reserved by the kernel for seccomp-bpf sandboxing. |
| #if !defined(OS_LINUX) |
| success &= (sigaction(SIGSYS, &action, nullptr) == 0); |
| #endif // !defined(OS_LINUX) |
| |
| return success; |
| } |
| |
| void SetStackDumpFirstChanceCallback(bool (*handler)(int, void*, void*)) { |
| DCHECK(try_handle_signal == nullptr || handler == nullptr); |
| try_handle_signal = handler; |
| } |
| |
| StackTrace::StackTrace(size_t count) { |
| // NOTE: This code MUST be async-signal safe (it's used by in-process |
| // stack dumping signal handler). NO malloc or stdio is allowed here. |
| |
| #if !defined(__UCLIBC__) && !defined(_AIX) |
| count = std::min(arraysize(trace_), count); |
| |
| // Though the backtrace API man page does not list any possible negative |
| // return values, we take no chance. |
| count_ = base::saturated_cast<size_t>(backtrace(trace_, count)); |
| #else |
| count_ = 0; |
| #endif |
| } |
| |
| void StackTrace::PrintWithPrefix(const char* prefix_string) const { |
| // NOTE: This code MUST be async-signal safe (it's used by in-process |
| // stack dumping signal handler). NO malloc or stdio is allowed here. |
| |
| #if !defined(__UCLIBC__) && !defined(_AIX) |
| PrintBacktraceOutputHandler handler; |
| ProcessBacktrace(trace_, count_, prefix_string, &handler); |
| #endif |
| } |
| |
| #if !defined(__UCLIBC__) && !defined(_AIX) |
| void StackTrace::OutputToStreamWithPrefix(std::ostream* os, |
| const char* prefix_string) const { |
| StreamBacktraceOutputHandler handler(os); |
| ProcessBacktrace(trace_, count_, prefix_string, &handler); |
| } |
| #endif |
| |
| namespace internal { |
| |
| // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. |
| char* itoa_r(intptr_t i, char* buf, size_t sz, int base, size_t padding) { |
| // Make sure we can write at least one NUL byte. |
| size_t n = 1; |
| if (n > sz) |
| return nullptr; |
| |
| if (base < 2 || base > 16) { |
| buf[0] = '\000'; |
| return nullptr; |
| } |
| |
| char* start = buf; |
| |
| uintptr_t j = i; |
| |
| // Handle negative numbers (only for base 10). |
| if (i < 0 && base == 10) { |
| // This does "j = -i" while avoiding integer overflow. |
| j = static_cast<uintptr_t>(-(i + 1)) + 1; |
| |
| // Make sure we can write the '-' character. |
| if (++n > sz) { |
| buf[0] = '\000'; |
| return nullptr; |
| } |
| *start++ = '-'; |
| } |
| |
| // Loop until we have converted the entire number. Output at least one |
| // character (i.e. '0'). |
| char* ptr = start; |
| do { |
| // Make sure there is still enough space left in our output buffer. |
| if (++n > sz) { |
| buf[0] = '\000'; |
| return nullptr; |
| } |
| |
| // Output the next digit. |
| *ptr++ = "0123456789abcdef"[j % base]; |
| j /= base; |
| |
| if (padding > 0) |
| padding--; |
| } while (j > 0 || padding > 0); |
| |
| // Terminate the output with a NUL character. |
| *ptr = '\000'; |
| |
| // Conversion to ASCII actually resulted in the digits being in reverse |
| // order. We can't easily generate them in forward order, as we can't tell |
| // the number of characters needed until we are done converting. |
| // So, now, we reverse the string (except for the possible "-" sign). |
| while (--ptr > start) { |
| char ch = *ptr; |
| *ptr = *start; |
| *start++ = ch; |
| } |
| return buf; |
| } |
| |
| } // namespace internal |
| |
| } // namespace debug |
| } // namespace base |