| // |
| // Copyright 2015 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| // mathutil_unittest: |
| // Unit tests for the utils defined in mathutil.h |
| // |
| |
| #include "mathutil.h" |
| |
| #include <gtest/gtest.h> |
| |
| using namespace gl; |
| |
| namespace |
| { |
| |
| // Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions. |
| // For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2. |
| TEST(MathUtilTest, packAndUnpackSnorm2x16) |
| { |
| const float input[8][2] = |
| { |
| { 0.0f, 0.0f }, |
| { 1.0f, 1.0f }, |
| { -1.0f, 1.0f }, |
| { -1.0f, -1.0f }, |
| { 0.875f, 0.75f }, |
| { 0.00392f, -0.99215f }, |
| { -0.000675f, 0.004954f }, |
| { -0.6937f, -0.02146f } |
| }; |
| const float floatFaultTolerance = 0.0001f; |
| float outputVal1, outputVal2; |
| |
| for (size_t i = 0; i < 8; i++) |
| { |
| unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); |
| EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance); |
| } |
| } |
| |
| // Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values, |
| // result should be clamped to [-1, 1]. |
| TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity) |
| { |
| const float floatFaultTolerance = 0.0001f; |
| float outputVal1, outputVal2; |
| |
| unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(), |
| std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2); |
| EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance); |
| |
| unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2); |
| EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance); |
| |
| unpackSnorm2x16(packSnorm2x16(-std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2); |
| EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance); |
| } |
| |
| // Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions. |
| // For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2. |
| TEST(MathUtilTest, packAndUnpackUnorm2x16) |
| { |
| const float input[8][2] = |
| { |
| { 0.0f, 0.0f }, |
| { 1.0f, 1.0f }, |
| { -1.0f, 1.0f }, |
| { -1.0f, -1.0f }, |
| { 0.875f, 0.75f }, |
| { 0.00392f, -0.99215f }, |
| { -0.000675f, 0.004954f }, |
| { -0.6937f, -0.02146f } |
| }; |
| const float floatFaultTolerance = 0.0001f; |
| float outputVal1, outputVal2; |
| |
| for (size_t i = 0; i < 8; i++) |
| { |
| unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); |
| float expected = input[i][0] < 0.0f ? 0.0f : input[i][0]; |
| EXPECT_NEAR(expected, outputVal1, floatFaultTolerance); |
| expected = input[i][1] < 0.0f ? 0.0f : input[i][1]; |
| EXPECT_NEAR(expected, outputVal2, floatFaultTolerance); |
| } |
| } |
| |
| // Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values, |
| // result should be clamped to [0, 1]. |
| TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity) |
| { |
| const float floatFaultTolerance = 0.0001f; |
| float outputVal1, outputVal2; |
| |
| unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(), |
| std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2); |
| EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance); |
| |
| unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2); |
| EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance); |
| |
| unpackUnorm2x16(packUnorm2x16(-std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2); |
| EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance); |
| } |
| |
| // Test the correctness of packHalf2x16 and unpackHalf2x16 functions. |
| // For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2. |
| TEST(MathUtilTest, packAndUnpackHalf2x16) |
| { |
| const float input[8][2] = |
| { |
| { 0.0f, 0.0f }, |
| { 1.0f, 1.0f }, |
| { -1.0f, 1.0f }, |
| { -1.0f, -1.0f }, |
| { 0.875f, 0.75f }, |
| { 0.00392f, -0.99215f }, |
| { -0.000675f, 0.004954f }, |
| { -0.6937f, -0.02146f }, |
| }; |
| const float floatFaultTolerance = 0.0005f; |
| float outputVal1, outputVal2; |
| |
| for (size_t i = 0; i < 8; i++) |
| { |
| unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2); |
| EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance); |
| EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance); |
| } |
| } |
| |
| // Test the correctness of packUnorm4x8 and unpackUnorm4x8 functions. |
| // For floats f1 to f4, unpackUnorm4x8(packUnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4. |
| TEST(MathUtilTest, packAndUnpackUnorm4x8) |
| { |
| const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f}, |
| {1.0f, 1.0f, 1.0f, 1.0f}, |
| {-1.0f, 1.0f, -1.0f, 1.0f}, |
| {-1.0f, -1.0f, -1.0f, -1.0f}, |
| {64.0f / 255.0f, 128.0f / 255.0f, 32.0f / 255.0f, 16.0f / 255.0f}}; |
| |
| const float floatFaultTolerance = 0.005f; |
| float outputVals[4]; |
| |
| for (size_t i = 0; i < 5; i++) |
| { |
| UnpackUnorm4x8(PackUnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]), |
| outputVals); |
| for (size_t j = 0; j < 4; j++) |
| { |
| float expected = input[i][j] < 0.0f ? 0.0f : input[i][j]; |
| EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance); |
| } |
| } |
| } |
| |
| // Test the correctness of packSnorm4x8 and unpackSnorm4x8 functions. |
| // For floats f1 to f4, unpackSnorm4x8(packSnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4. |
| TEST(MathUtilTest, packAndUnpackSnorm4x8) |
| { |
| const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f}, |
| {1.0f, 1.0f, 1.0f, 1.0f}, |
| {-1.0f, 1.0f, -1.0f, 1.0f}, |
| {-1.0f, -1.0f, -1.0f, -1.0f}, |
| {64.0f / 127.0f, -8.0f / 127.0f, 32.0f / 127.0f, 16.0f / 127.0f}}; |
| |
| const float floatFaultTolerance = 0.01f; |
| float outputVals[4]; |
| |
| for (size_t i = 0; i < 5; i++) |
| { |
| UnpackSnorm4x8(PackSnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]), |
| outputVals); |
| for (size_t j = 0; j < 4; j++) |
| { |
| float expected = input[i][j]; |
| EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance); |
| } |
| } |
| } |
| |
| // Test the correctness of gl::isNaN function. |
| TEST(MathUtilTest, isNaN) |
| { |
| EXPECT_TRUE(isNaN(bitCast<float>(0xffu << 23 | 1u))); |
| EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 1u))); |
| EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u))); |
| EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu))); |
| EXPECT_FALSE(isNaN(0.0f)); |
| EXPECT_FALSE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23))); |
| EXPECT_FALSE(isNaN(bitCast<float>(0xffu << 23))); |
| } |
| |
| // Test the correctness of gl::isInf function. |
| TEST(MathUtilTest, isInf) |
| { |
| EXPECT_TRUE(isInf(bitCast<float>(0xffu << 23))); |
| EXPECT_TRUE(isInf(bitCast<float>(1u << 31 | 0xffu << 23))); |
| EXPECT_FALSE(isInf(0.0f)); |
| EXPECT_FALSE(isInf(bitCast<float>(0xffu << 23 | 1u))); |
| EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 1u))); |
| EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u))); |
| EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu))); |
| EXPECT_FALSE(isInf(bitCast<float>(0xfeu << 23 | 0x7fffffu))); |
| EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xfeu << 23 | 0x7fffffu))); |
| } |
| |
| TEST(MathUtilTest, CountLeadingZeros) |
| { |
| for (unsigned int i = 0; i < 32u; ++i) |
| { |
| uint32_t iLeadingZeros = 1u << (31u - i); |
| EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros)); |
| } |
| EXPECT_EQ(32u, CountLeadingZeros(0)); |
| } |
| |
| // Some basic tests. Tests that rounding up zero produces zero. |
| TEST(MathUtilTest, BasicRoundUp) |
| { |
| EXPECT_EQ(0u, rx::roundUp(0u, 4u)); |
| EXPECT_EQ(4u, rx::roundUp(1u, 4u)); |
| EXPECT_EQ(4u, rx::roundUp(4u, 4u)); |
| } |
| |
| // Test that rounding up zero produces zero for checked ints. |
| TEST(MathUtilTest, CheckedRoundUpZero) |
| { |
| auto checkedValue = rx::CheckedRoundUp(0u, 4u); |
| ASSERT_TRUE(checkedValue.IsValid()); |
| ASSERT_EQ(0u, checkedValue.ValueOrDie()); |
| } |
| |
| // Test out-of-bounds with CheckedRoundUp |
| TEST(MathUtilTest, CheckedRoundUpInvalid) |
| { |
| // The answer to this query is out of bounds. |
| auto limit = std::numeric_limits<unsigned int>::max(); |
| auto checkedValue = rx::CheckedRoundUp(limit, limit - 1); |
| ASSERT_FALSE(checkedValue.IsValid()); |
| |
| // Our implementation can't handle this query, despite the parameters being in range. |
| auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit); |
| ASSERT_FALSE(checkedLimit.IsValid()); |
| } |
| |
| // Test BitfieldReverse which reverses the order of the bits in an integer. |
| TEST(MathUtilTest, BitfieldReverse) |
| { |
| EXPECT_EQ(0u, gl::BitfieldReverse(0u)); |
| EXPECT_EQ(0x80000000u, gl::BitfieldReverse(1u)); |
| EXPECT_EQ(0x1u, gl::BitfieldReverse(0x80000000u)); |
| uint32_t bits = (1u << 4u) | (1u << 7u); |
| uint32_t reversed = (1u << (31u - 4u)) | (1u << (31u - 7u)); |
| EXPECT_EQ(reversed, gl::BitfieldReverse(bits)); |
| } |
| |
| // Test BitCount, which counts 1 bits in an integer. |
| TEST(MathUtilTest, BitCount) |
| { |
| EXPECT_EQ(0, gl::BitCount(0u)); |
| EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFu)); |
| EXPECT_EQ(10, gl::BitCount(0x17103121u)); |
| |
| #if defined(ANGLE_X64_CPU) |
| EXPECT_EQ(0, gl::BitCount(0ull)); |
| EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFull)); |
| EXPECT_EQ(10, gl::BitCount(0x17103121ull)); |
| #endif // defined(ANGLE_X64_CPU) |
| } |
| |
| // Test ScanForward, which scans for the least significant 1 bit from a non-zero integer. |
| TEST(MathUtilTest, ScanForward) |
| { |
| EXPECT_EQ(0ul, gl::ScanForward(1u)); |
| EXPECT_EQ(16ul, gl::ScanForward(0x80010000u)); |
| EXPECT_EQ(31ul, gl::ScanForward(0x80000000u)); |
| |
| #if defined(ANGLE_X64_CPU) |
| EXPECT_EQ(0ul, gl::ScanForward(1ull)); |
| EXPECT_EQ(16ul, gl::ScanForward(0x80010000ull)); |
| EXPECT_EQ(31ul, gl::ScanForward(0x80000000ull)); |
| #endif // defined(ANGLE_X64_CPU) |
| } |
| |
| // Test ScanReverse, which scans for the most significant 1 bit from a non-zero integer. |
| TEST(MathUtilTest, ScanReverse) |
| { |
| EXPECT_EQ(0ul, gl::ScanReverse(1ul)); |
| EXPECT_EQ(16ul, gl::ScanReverse(0x00010030ul)); |
| EXPECT_EQ(31ul, gl::ScanReverse(0x80000000ul)); |
| } |
| |
| // Test FindLSB, which finds the least significant 1 bit. |
| TEST(MathUtilTest, FindLSB) |
| { |
| EXPECT_EQ(-1, gl::FindLSB(0u)); |
| EXPECT_EQ(0, gl::FindLSB(1u)); |
| EXPECT_EQ(16, gl::FindLSB(0x80010000u)); |
| EXPECT_EQ(31, gl::FindLSB(0x80000000u)); |
| } |
| |
| // Test FindMSB, which finds the most significant 1 bit. |
| TEST(MathUtilTest, FindMSB) |
| { |
| EXPECT_EQ(-1, gl::FindMSB(0u)); |
| EXPECT_EQ(0, gl::FindMSB(1u)); |
| EXPECT_EQ(16, gl::FindMSB(0x00010030u)); |
| EXPECT_EQ(31, gl::FindMSB(0x80000000u)); |
| } |
| |
| // Test Ldexp, which combines mantissa and exponent into a floating-point number. |
| TEST(MathUtilTest, Ldexp) |
| { |
| EXPECT_EQ(2.5f, Ldexp(0.625f, 2)); |
| EXPECT_EQ(-5.0f, Ldexp(-0.625f, 3)); |
| EXPECT_EQ(std::numeric_limits<float>::infinity(), Ldexp(0.625f, 129)); |
| EXPECT_EQ(0.0f, Ldexp(1.0f, -129)); |
| } |
| |
| } // anonymous namespace |