blob: 6e9f92d9a82b240468a4ab4c37e41aa3bbab94f8 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// matrix_utils_unittests:
// Unit tests for the matrix utils.
//
#include "matrix_utils.h"
#include <gtest/gtest.h>
using namespace angle;
namespace
{
const unsigned int minDimensions = 2;
const unsigned int maxDimensions = 4;
TEST(MatrixUtilsTest, MatrixConstructorTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
for (unsigned int j = minDimensions; j <= maxDimensions; j++)
{
unsigned int numElements = i * j;
Matrix<float> m(std::vector<float>(numElements, 1.0f), i, j);
EXPECT_EQ(m.rows(), i);
EXPECT_EQ(m.columns(), j);
EXPECT_EQ(m.elements(), std::vector<float>(numElements, 1.0f));
}
}
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
unsigned int numElements = i * i;
Matrix<float> m(std::vector<float>(numElements, 1.0f), i);
EXPECT_EQ(m.size(), i);
EXPECT_EQ(m.columns(), m.columns());
EXPECT_EQ(m.elements(), std::vector<float>(numElements, 1.0f));
}
}
TEST(MatrixUtilsTest, MatrixCompMultTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
unsigned int numElements = i * i;
Matrix<float> m1(std::vector<float>(numElements, 2.0f), i);
Matrix<float> actualResult = m1.compMult(m1);
std::vector<float> actualResultElements = actualResult.elements();
std::vector<float> expectedResultElements(numElements, 4.0f);
EXPECT_EQ(expectedResultElements, actualResultElements);
}
}
TEST(MatrixUtilsTest, MatrixOuterProductTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
for (unsigned int j = minDimensions; j <= maxDimensions; j++)
{
unsigned int numElements = i * j;
Matrix<float> m1(std::vector<float>(numElements, 2.0f), i, 1);
Matrix<float> m2(std::vector<float>(numElements, 2.0f), 1, j);
Matrix<float> actualResult = m1.outerProduct(m2);
EXPECT_EQ(actualResult.rows(), i);
EXPECT_EQ(actualResult.columns(), j);
std::vector<float> actualResultElements = actualResult.elements();
std::vector<float> expectedResultElements(numElements, 4.0f);
EXPECT_EQ(expectedResultElements, actualResultElements);
}
}
}
TEST(MatrixUtilsTest, MatrixTransposeTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
for (unsigned int j = minDimensions; j <= maxDimensions; j++)
{
unsigned int numElements = i * j;
Matrix<float> m1(std::vector<float>(numElements, 2.0f), i, j);
Matrix<float> expectedResult = Matrix<float>(std::vector<float>(numElements, 2.0f), j, i);
Matrix<float> actualResult = m1.transpose();
EXPECT_EQ(expectedResult.elements(), actualResult.elements());
EXPECT_EQ(actualResult.rows(), expectedResult.rows());
EXPECT_EQ(actualResult.columns(), expectedResult.columns());
// transpose(transpose(A)) = A
Matrix<float> m2 = actualResult.transpose();
EXPECT_EQ(m1.elements(), m2.elements());
}
}
}
TEST(MatrixUtilsTest, MatrixDeterminantTest)
{
for (unsigned int i = minDimensions; i <= maxDimensions; i++)
{
unsigned int numElements = i * i;
Matrix<float> m(std::vector<float>(numElements, 2.0f), i);
EXPECT_EQ(m.determinant(), 0.0f);
}
}
TEST(MatrixUtilsTest, 2x2MatrixInverseTest)
{
float inputElements[] =
{
2.0f, 5.0f,
3.0f, 7.0f
};
unsigned int numElements = 4;
std::vector<float> input(inputElements, inputElements + numElements);
Matrix<float> inputMatrix(input, 2);
float identityElements[] =
{
1.0f, 0.0f,
0.0f, 1.0f
};
std::vector<float> identityMatrix(identityElements, identityElements + numElements);
// A * inverse(A) = I, where I is identity matrix.
Matrix<float> result = inputMatrix * inputMatrix.inverse();
EXPECT_EQ(identityMatrix, result.elements());
}
TEST(MatrixUtilsTest, 3x3MatrixInverseTest)
{
float inputElements[] =
{
11.0f, 23.0f, 37.0f,
13.0f, 29.0f, 41.0f,
19.0f, 31.0f, 43.0f
};
unsigned int numElements = 9;
std::vector<float> input(inputElements, inputElements + numElements);
Matrix<float> inputMatrix(input, 3);
float identityElements[] =
{
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f
};
std::vector<float> identityMatrix(identityElements, identityElements + numElements);
// A * inverse(A) = I, where I is identity matrix.
Matrix<float> result = inputMatrix * inputMatrix.inverse();
std::vector<float> resultElements = result.elements();
const float floatFaultTolarance = 0.000001f;
for (size_t i = 0; i < numElements; i++)
EXPECT_NEAR(resultElements[i], identityMatrix[i], floatFaultTolarance);
}
TEST(MatrixUtilsTest, 4x4MatrixInverseTest)
{
float inputElements[] =
{
29.0f, 43.0f, 61.0f, 79.0f,
31.0f, 47.0f, 67.0f, 83.0f,
37.0f, 53.0f, 71.0f, 89.0f,
41.0f, 59.0f, 73.0f, 97.0f
};
unsigned int numElements = 16;
std::vector<float> input(inputElements, inputElements + numElements);
Matrix<float> inputMatrix(input, 4);
float identityElements[] =
{
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
};
std::vector<float> identityMatrix(identityElements, identityElements + numElements);
// A * inverse(A) = I, where I is identity matrix.
Matrix<float> result = inputMatrix * inputMatrix.inverse();
std::vector<float> resultElements = result.elements();
const float floatFaultTolarance = 0.00001f;
for (unsigned int i = 0; i < numElements; i++)
EXPECT_NEAR(resultElements[i], identityMatrix[i], floatFaultTolarance);
}
}