| // |
| // Copyright 2016 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| // vector_utils.h: Utility classes implementing various vector operations |
| |
| #ifndef COMMON_VECTOR_UTILS_H_ |
| #define COMMON_VECTOR_UTILS_H_ |
| |
| #include <cstddef> |
| #include <cmath> |
| #include <type_traits> |
| |
| namespace angle |
| { |
| |
| template <size_t Dimension, typename Type> |
| class Vector; |
| |
| using Vector2 = Vector<2, float>; |
| using Vector3 = Vector<3, float>; |
| using Vector4 = Vector<4, float>; |
| |
| using Vector2I = Vector<2, int>; |
| using Vector3I = Vector<3, int>; |
| using Vector4I = Vector<4, int>; |
| |
| using Vector2U = Vector<2, unsigned int>; |
| using Vector3U = Vector<3, unsigned int>; |
| using Vector4U = Vector<4, unsigned int>; |
| |
| template <size_t Dimension, typename Type> |
| class VectorBase |
| { |
| public: |
| using VectorN = Vector<Dimension, Type>; |
| |
| // Constructors |
| VectorBase() = default; |
| explicit VectorBase(Type element); |
| |
| template <typename Type2> |
| VectorBase(const VectorBase<Dimension, Type2> &other); |
| |
| template <typename Arg1, typename Arg2, typename... Args> |
| VectorBase(const Arg1 &arg1, const Arg2 &arg2, const Args &... args); |
| |
| // Access the vector backing storage directly |
| const Type *data() const { return mData; } |
| Type *data() { return mData; } |
| constexpr size_t size() const { return Dimension; } |
| |
| // Load or store the pointer from / to raw data |
| static VectorN Load(const Type *source); |
| static void Store(const VectorN &source, Type *destination); |
| |
| // Index the vector |
| Type &operator[](size_t i) { return mData[i]; } |
| const Type &operator[](size_t i) const { return mData[i]; } |
| |
| // Basic arithmetic operations |
| VectorN operator+() const; |
| VectorN operator-() const; |
| VectorN operator+(const VectorN &other) const; |
| VectorN operator-(const VectorN &other) const; |
| VectorN operator*(const VectorN &other) const; |
| VectorN operator/(const VectorN &other) const; |
| VectorN operator*(Type other) const; |
| VectorN operator/(Type other) const; |
| friend VectorN operator*(Type a, const VectorN &b) { return b * a; } |
| |
| // Compound arithmetic operations |
| VectorN &operator+=(const VectorN &other); |
| VectorN &operator-=(const VectorN &other); |
| VectorN &operator*=(const VectorN &other); |
| VectorN &operator/=(const VectorN &other); |
| VectorN &operator*=(Type other); |
| VectorN &operator/=(Type other); |
| |
| // Comparison operators |
| bool operator==(const VectorN &other) const; |
| bool operator!=(const VectorN &other) const; |
| |
| // Other arithmetic operations |
| Type length() const; |
| Type lengthSquared() const; |
| Type dot(const VectorBase<Dimension, Type> &other) const; |
| VectorN normalized() const; |
| |
| protected: |
| template <size_t CurrentIndex, size_t OtherDimension, typename OtherType, typename... Args> |
| void initWithList(const Vector<OtherDimension, OtherType> &arg1, const Args &... args); |
| |
| // Some old compilers consider this function an alternative for initWithList(Vector) |
| // when the variant above is more precise. Use SFINAE on the return value to hide |
| // this variant for non-arithmetic types. The return value is still void. |
| template <size_t CurrentIndex, typename OtherType, typename... Args> |
| typename std::enable_if<std::is_arithmetic<OtherType>::value>::type initWithList( |
| OtherType arg1, |
| const Args &... args); |
| |
| template <size_t CurrentIndex> |
| void initWithList() const; |
| |
| template <size_t Dimension2, typename Type2> |
| friend class VectorBase; |
| |
| Type mData[Dimension]; |
| }; |
| |
| template <typename Type> |
| class Vector<2, Type> : public VectorBase<2, Type> |
| { |
| public: |
| // Import the constructors defined in VectorBase |
| using VectorBase<2, Type>::VectorBase; |
| |
| // Element shorthands |
| Type &x() { return this->mData[0]; } |
| Type &y() { return this->mData[1]; } |
| |
| const Type &x() const { return this->mData[0]; } |
| const Type &y() const { return this->mData[1]; } |
| }; |
| |
| template <typename Type> |
| class Vector<3, Type> : public VectorBase<3, Type> |
| { |
| public: |
| // Import the constructors defined in VectorBase |
| using VectorBase<3, Type>::VectorBase; |
| |
| // Additional operations |
| Vector<3, Type> cross(const Vector<3, Type> &other) const; |
| |
| // Element shorthands |
| Type &x() { return this->mData[0]; } |
| Type &y() { return this->mData[1]; } |
| Type &z() { return this->mData[2]; } |
| |
| const Type &x() const { return this->mData[0]; } |
| const Type &y() const { return this->mData[1]; } |
| const Type &z() const { return this->mData[2]; } |
| }; |
| |
| template <typename Type> |
| class Vector<4, Type> : public VectorBase<4, Type> |
| { |
| public: |
| // Import the constructors defined in VectorBase |
| using VectorBase<4, Type>::VectorBase; |
| |
| // Element shorthands |
| Type &x() { return this->mData[0]; } |
| Type &y() { return this->mData[1]; } |
| Type &z() { return this->mData[2]; } |
| Type &w() { return this->mData[3]; } |
| |
| const Type &x() const { return this->mData[0]; } |
| const Type &y() const { return this->mData[1]; } |
| const Type &z() const { return this->mData[2]; } |
| const Type &w() const { return this->mData[3]; } |
| }; |
| |
| // Implementation of constructors and misc operations |
| |
| template <size_t Dimension, typename Type> |
| VectorBase<Dimension, Type>::VectorBase(Type element) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] = element; |
| } |
| } |
| |
| template <size_t Dimension, typename Type> |
| template <typename Type2> |
| VectorBase<Dimension, Type>::VectorBase(const VectorBase<Dimension, Type2> &other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] = static_cast<Type>(other.mData[i]); |
| } |
| } |
| |
| // Ideally we would like to have only two constructors: |
| // - a scalar constructor that takes Type as a parameter |
| // - a compound constructor |
| // However if we define the compound constructor for when it has a single arguments, then calling |
| // Vector2(0.0) will be ambiguous. To solve this we take advantage of there being a single compound |
| // constructor with a single argument, which is the copy constructor. We end up with three |
| // constructors: |
| // - the scalar constructor |
| // - the copy constructor |
| // - the compound constructor for two or more arguments, hence the arg1, and arg2 here. |
| template <size_t Dimension, typename Type> |
| template <typename Arg1, typename Arg2, typename... Args> |
| VectorBase<Dimension, Type>::VectorBase(const Arg1 &arg1, const Arg2 &arg2, const Args &... args) |
| { |
| initWithList<0>(arg1, arg2, args...); |
| } |
| |
| template <size_t Dimension, typename Type> |
| template <size_t CurrentIndex, size_t OtherDimension, typename OtherType, typename... Args> |
| void VectorBase<Dimension, Type>::initWithList(const Vector<OtherDimension, OtherType> &arg1, |
| const Args &... args) |
| { |
| static_assert(CurrentIndex + OtherDimension <= Dimension, |
| "Too much data in the vector constructor."); |
| for (size_t i = 0; i < OtherDimension; ++i) |
| { |
| mData[CurrentIndex + i] = static_cast<Type>(arg1.mData[i]); |
| } |
| initWithList<CurrentIndex + OtherDimension>(args...); |
| } |
| |
| template <size_t Dimension, typename Type> |
| template <size_t CurrentIndex, typename OtherType, typename... Args> |
| typename std::enable_if<std::is_arithmetic<OtherType>::value>::type |
| VectorBase<Dimension, Type>::initWithList(OtherType arg1, const Args &... args) |
| { |
| static_assert(CurrentIndex + 1 <= Dimension, "Too much data in the vector constructor."); |
| mData[CurrentIndex] = static_cast<Type>(arg1); |
| initWithList<CurrentIndex + 1>(args...); |
| } |
| |
| template <size_t Dimension, typename Type> |
| template <size_t CurrentIndex> |
| void VectorBase<Dimension, Type>::initWithList() const |
| { |
| static_assert(CurrentIndex == Dimension, "Not enough data in the vector constructor."); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::Load(const Type *source) |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = source[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| void VectorBase<Dimension, Type>::Store(const Vector<Dimension, Type> &source, Type *destination) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| destination[i] = source.mData[i]; |
| } |
| } |
| |
| // Implementation of basic arithmetic operations |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator+() const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = +mData[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator-() const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = -mData[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator+( |
| const Vector<Dimension, Type> &other) const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = mData[i] + other.mData[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator-( |
| const Vector<Dimension, Type> &other) const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = mData[i] - other.mData[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator*( |
| const Vector<Dimension, Type> &other) const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = mData[i] * other.mData[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator/( |
| const Vector<Dimension, Type> &other) const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = mData[i] / other.mData[i]; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator*(Type other) const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = mData[i] * other; |
| } |
| return result; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::operator/(Type other) const |
| { |
| Vector<Dimension, Type> result; |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| result.mData[i] = mData[i] / other; |
| } |
| return result; |
| } |
| |
| // Implementation of compound arithmetic operations |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> &VectorBase<Dimension, Type>::operator+=( |
| const Vector<Dimension, Type> &other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] += other.mData[i]; |
| } |
| return *reinterpret_cast<Vector<Dimension, Type> *>(this); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> &VectorBase<Dimension, Type>::operator-=( |
| const Vector<Dimension, Type> &other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] -= other.mData[i]; |
| } |
| return *reinterpret_cast<Vector<Dimension, Type> *>(this); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> &VectorBase<Dimension, Type>::operator*=( |
| const Vector<Dimension, Type> &other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] *= other.mData[i]; |
| } |
| return *reinterpret_cast<Vector<Dimension, Type> *>(this); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> &VectorBase<Dimension, Type>::operator/=( |
| const Vector<Dimension, Type> &other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] /= other.mData[i]; |
| } |
| return *reinterpret_cast<Vector<Dimension, Type> *>(this); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> &VectorBase<Dimension, Type>::operator*=(Type other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] *= other; |
| } |
| return *reinterpret_cast<Vector<Dimension, Type> *>(this); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> &VectorBase<Dimension, Type>::operator/=(Type other) |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| mData[i] /= other; |
| } |
| return *reinterpret_cast<Vector<Dimension, Type> *>(this); |
| } |
| |
| // Implementation of comparison operators |
| template <size_t Dimension, typename Type> |
| bool VectorBase<Dimension, Type>::operator==(const Vector<Dimension, Type> &other) const |
| { |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| if (mData[i] != other.mData[i]) |
| { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <size_t Dimension, typename Type> |
| bool VectorBase<Dimension, Type>::operator!=(const Vector<Dimension, Type> &other) const |
| { |
| return !(*this == other); |
| } |
| |
| // Implementation of other arithmetic operations |
| template <size_t Dimension, typename Type> |
| Type VectorBase<Dimension, Type>::length() const |
| { |
| static_assert(std::is_floating_point<Type>::value, |
| "VectorN::length is only defined for floating point vectors"); |
| return std::sqrt(lengthSquared()); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Type VectorBase<Dimension, Type>::lengthSquared() const |
| { |
| return dot(*this); |
| } |
| |
| template <size_t Dimension, typename Type> |
| Type VectorBase<Dimension, Type>::dot(const VectorBase<Dimension, Type> &other) const |
| { |
| Type sum = Type(); |
| for (size_t i = 0; i < Dimension; ++i) |
| { |
| sum += mData[i] * other.mData[i]; |
| } |
| return sum; |
| } |
| |
| template <size_t Dimension, typename Type> |
| Vector<Dimension, Type> VectorBase<Dimension, Type>::normalized() const |
| { |
| static_assert(std::is_floating_point<Type>::value, |
| "VectorN::normalized is only defined for floating point vectors"); |
| return *this / length(); |
| } |
| |
| template <typename Type> |
| Vector<3, Type> Vector<3, Type>::cross(const Vector<3, Type> &other) const |
| { |
| return Vector<3, Type>(y() * other.z() - z() * other.y(), z() * other.x() - x() * other.z(), |
| x() * other.y() - y() * other.x()); |
| } |
| |
| } // namespace angle |
| |
| #endif // COMMON_VECTOR_UTILS_H_ |