| ; |
| ; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2) |
| ; |
| ; Copyright (C) 2009-2011, 2014-2016, D. R. Commander. |
| ; Copyright (C) 2015, Matthieu Darbois. |
| ; |
| ; Based on the x86 SIMD extension for IJG JPEG library |
| ; Copyright (C) 1999-2006, MIYASAKA Masaru. |
| ; For conditions of distribution and use, see copyright notice in jsimdext.inc |
| ; |
| ; This file should be assembled with NASM (Netwide Assembler), |
| ; can *not* be assembled with Microsoft's MASM or any compatible |
| ; assembler (including Borland's Turbo Assembler). |
| ; NASM is available from http://nasm.sourceforge.net/ or |
| ; http://sourceforge.net/project/showfiles.php?group_id=6208 |
| ; |
| ; This file contains an SSE2 implementation for Huffman coding of one block. |
| ; The following code is based directly on jchuff.c; see jchuff.c for more |
| ; details. |
| ; |
| ; [TAB8] |
| |
| %include "jsimdext.inc" |
| |
| ; -------------------------------------------------------------------------- |
| SECTION SEG_CONST |
| |
| alignz 32 |
| GLOBAL_DATA(jconst_huff_encode_one_block) |
| |
| EXTN(jconst_huff_encode_one_block): |
| |
| %include "jpeg_nbits_table.inc" |
| |
| alignz 32 |
| |
| ; -------------------------------------------------------------------------- |
| SECTION SEG_TEXT |
| BITS 64 |
| |
| ; These macros perform the same task as the emit_bits() function in the |
| ; original libjpeg code. In addition to reducing overhead by explicitly |
| ; inlining the code, additional performance is achieved by taking into |
| ; account the size of the bit buffer and waiting until it is almost full |
| ; before emptying it. This mostly benefits 64-bit platforms, since 6 |
| ; bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
| |
| %macro EMIT_BYTE 0 |
| sub put_bits, 8 ; put_bits -= 8; |
| mov rdx, put_buffer |
| mov ecx, put_bits |
| shr rdx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); |
| mov byte [buffer], dl ; *buffer++ = c; |
| add buffer, 1 |
| cmp dl, 0xFF ; need to stuff a zero byte? |
| jne %%.EMIT_BYTE_END |
| mov byte [buffer], 0 ; *buffer++ = 0; |
| add buffer, 1 |
| %%.EMIT_BYTE_END: |
| %endmacro |
| |
| %macro PUT_BITS 1 |
| add put_bits, ecx ; put_bits += size; |
| shl put_buffer, cl ; put_buffer = (put_buffer << size); |
| or put_buffer, %1 |
| %endmacro |
| |
| %macro CHECKBUF31 0 |
| cmp put_bits, 32 ; if (put_bits > 31) { |
| jl %%.CHECKBUF31_END |
| EMIT_BYTE |
| EMIT_BYTE |
| EMIT_BYTE |
| EMIT_BYTE |
| %%.CHECKBUF31_END: |
| %endmacro |
| |
| %macro CHECKBUF47 0 |
| cmp put_bits, 48 ; if (put_bits > 47) { |
| jl %%.CHECKBUF47_END |
| EMIT_BYTE |
| EMIT_BYTE |
| EMIT_BYTE |
| EMIT_BYTE |
| EMIT_BYTE |
| EMIT_BYTE |
| %%.CHECKBUF47_END: |
| %endmacro |
| |
| %macro EMIT_BITS 2 |
| CHECKBUF47 |
| mov ecx, %2 |
| PUT_BITS %1 |
| %endmacro |
| |
| %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) |
| pxor xmm8, xmm8 ; __m128i neg = _mm_setzero_si128(); |
| pxor xmm9, xmm9 ; __m128i neg = _mm_setzero_si128(); |
| pxor xmm10, xmm10 ; __m128i neg = _mm_setzero_si128(); |
| pxor xmm11, xmm11 ; __m128i neg = _mm_setzero_si128(); |
| pinsrw %34, word [r12 + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]; |
| pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]; |
| pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16]; |
| pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24]; |
| pinsrw %34, word [r12 + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]; |
| pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]; |
| pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17]; |
| pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25]; |
| pinsrw %34, word [r12 + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]; |
| pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10]; |
| pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18]; |
| pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26]; |
| pinsrw %34, word [r12 + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]; |
| pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11]; |
| pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19]; |
| pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27]; |
| pinsrw %34, word [r12 + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]; |
| pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12]; |
| pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20]; |
| pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28]; |
| pinsrw %34, word [r12 + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]; |
| pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13]; |
| pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21]; |
| pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29]; |
| pinsrw %34, word [r12 + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]; |
| pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14]; |
| pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22]; |
| pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30]; |
| pinsrw %34, word [r12 + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]; |
| pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15]; |
| pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23]; |
| %if %1 != 32 |
| pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31]; |
| %else |
| pinsrw %37, ebx, 7 ; xmm_shadow[31] = block[jno31]; |
| %endif |
| pcmpgtw xmm8, %34 ; neg = _mm_cmpgt_epi16(neg, x1); |
| pcmpgtw xmm9, %35 ; neg = _mm_cmpgt_epi16(neg, x1); |
| pcmpgtw xmm10, %36 ; neg = _mm_cmpgt_epi16(neg, x1); |
| pcmpgtw xmm11, %37 ; neg = _mm_cmpgt_epi16(neg, x1); |
| paddw %34, xmm8 ; x1 = _mm_add_epi16(x1, neg); |
| paddw %35, xmm9 ; x1 = _mm_add_epi16(x1, neg); |
| paddw %36, xmm10 ; x1 = _mm_add_epi16(x1, neg); |
| paddw %37, xmm11 ; x1 = _mm_add_epi16(x1, neg); |
| pxor %34, xmm8 ; x1 = _mm_xor_si128(x1, neg); |
| pxor %35, xmm9 ; x1 = _mm_xor_si128(x1, neg); |
| pxor %36, xmm10 ; x1 = _mm_xor_si128(x1, neg); |
| pxor %37, xmm11 ; x1 = _mm_xor_si128(x1, neg); |
| pxor xmm8, %34 ; neg = _mm_xor_si128(neg, x1); |
| pxor xmm9, %35 ; neg = _mm_xor_si128(neg, x1); |
| pxor xmm10, %36 ; neg = _mm_xor_si128(neg, x1); |
| pxor xmm11, %37 ; neg = _mm_xor_si128(neg, x1); |
| movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1); |
| movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1); |
| movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1); |
| movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1); |
| movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg); |
| movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg); |
| movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg); |
| movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg); |
| %endmacro |
| |
| ; |
| ; Encode a single block's worth of coefficients. |
| ; |
| ; GLOBAL(JOCTET *) |
| ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, |
| ; JCOEFPTR block, int last_dc_val, |
| ; c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| ; |
| |
| ; r10 = working_state *state |
| ; r11 = JOCTET *buffer |
| ; r12 = JCOEFPTR block |
| ; r13d = int last_dc_val |
| ; r14 = c_derived_tbl *dctbl |
| ; r15 = c_derived_tbl *actbl |
| |
| %define t1 rbp - (DCTSIZE2 * SIZEOF_WORD) |
| %define t2 t1 - (DCTSIZE2 * SIZEOF_WORD) |
| %define put_buffer r8 |
| %define put_bits r9d |
| %define buffer rax |
| |
| align 32 |
| GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) |
| |
| EXTN(jsimd_huff_encode_one_block_sse2): |
| push rbp |
| mov rax, rsp ; rax = original rbp |
| sub rsp, byte 4 |
| and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits |
| mov [rsp], rax |
| mov rbp, rsp ; rbp = aligned rbp |
| lea rsp, [t2] |
| push_xmm 4 |
| collect_args 6 |
| push rbx |
| |
| mov buffer, r11 ; r11 is now sratch |
| |
| mov put_buffer, MMWORD [r10+16] ; put_buffer = state->cur.put_buffer; |
| mov put_bits, DWORD [r10+24] ; put_bits = state->cur.put_bits; |
| push r10 ; r10 is now scratch |
| |
| ; Encode the DC coefficient difference per section F.1.2.1 |
| movsx edi, word [r12] ; temp = temp2 = block[0] - last_dc_val; |
| sub edi, r13d ; r13 is not used anymore |
| mov ebx, edi |
| |
| ; This is a well-known technique for obtaining the absolute value |
| ; without a branch. It is derived from an assembly language technique |
| ; presented in "How to Optimize for the Pentium Processors", |
| ; Copyright (c) 1996, 1997 by Agner Fog. |
| mov esi, edi |
| sar esi, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
| xor edi, esi ; temp ^= temp3; |
| sub edi, esi ; temp -= temp3; |
| |
| ; For a negative input, want temp2 = bitwise complement of abs(input) |
| ; This code assumes we are on a two's complement machine |
| add ebx, esi ; temp2 += temp3; |
| |
| ; Find the number of bits needed for the magnitude of the coefficient |
| lea r11, [rel jpeg_nbits_table] |
| movzx rdi, byte [r11 + rdi] ; nbits = JPEG_NBITS(temp); |
| ; Emit the Huffman-coded symbol for the number of bits |
| mov r11d, INT [r14 + rdi * 4] ; code = dctbl->ehufco[nbits]; |
| movzx esi, byte [r14 + rdi + 1024] ; size = dctbl->ehufsi[nbits]; |
| EMIT_BITS r11, esi ; EMIT_BITS(code, size) |
| |
| ; Mask off any extra bits in code |
| mov esi, 1 |
| mov ecx, edi |
| shl esi, cl |
| dec esi |
| and ebx, esi ; temp2 &= (((JLONG)1)<<nbits) - 1; |
| |
| ; Emit that number of bits of the value, if positive, |
| ; or the complement of its magnitude, if negative. |
| EMIT_BITS rbx, edi ; EMIT_BITS(temp2, nbits) |
| |
| ; Prepare data |
| xor ebx, ebx |
| kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ |
| 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ |
| 27, 20, 13, 6, 7, 14, 21, 28, 35, \ |
| xmm0, xmm1, xmm2, xmm3 |
| kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ |
| 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ |
| 53, 60, 61, 54, 47, 55, 62, 63, 63, \ |
| xmm4, xmm5, xmm6, xmm7 |
| |
| pxor xmm8, xmm8 |
| pcmpeqw xmm0, xmm8 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
| pcmpeqw xmm1, xmm8 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
| pcmpeqw xmm2, xmm8 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
| pcmpeqw xmm3, xmm8 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
| pcmpeqw xmm4, xmm8 ; tmp4 = _mm_cmpeq_epi16(tmp4, zero); |
| pcmpeqw xmm5, xmm8 ; tmp5 = _mm_cmpeq_epi16(tmp5, zero); |
| pcmpeqw xmm6, xmm8 ; tmp6 = _mm_cmpeq_epi16(tmp6, zero); |
| pcmpeqw xmm7, xmm8 ; tmp7 = _mm_cmpeq_epi16(tmp7, zero); |
| packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
| packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
| packsswb xmm4, xmm5 ; tmp4 = _mm_packs_epi16(tmp4, tmp5); |
| packsswb xmm6, xmm7 ; tmp6 = _mm_packs_epi16(tmp6, tmp7); |
| pmovmskb r11d, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
| pmovmskb r12d, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; |
| pmovmskb r13d, xmm4 ; index = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32; |
| pmovmskb r14d, xmm6 ; index = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48; |
| shl r12, 16 |
| shl r14, 16 |
| or r11, r12 |
| or r13, r14 |
| shl r13, 32 |
| or r11, r13 |
| not r11 ; index = ~index; |
| |
| ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11 |
| ;jmp .EFN |
| |
| mov r13d, INT [r15 + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
| movzx r14d, byte [r15 + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
| lea rsi, [t1] |
| .BLOOP: |
| bsf r12, r11 ; r = __builtin_ctzl(index); |
| jz .ELOOP |
| mov rcx, r12 |
| lea rsi, [rsi+r12*2] ; k += r; |
| shr r11, cl ; index >>= r; |
| movzx rdi, word [rsi] ; temp = t1[k]; |
| lea rbx, [rel jpeg_nbits_table] |
| movzx rdi, byte [rbx + rdi] ; nbits = JPEG_NBITS(temp); |
| .BRLOOP: |
| cmp r12, 16 ; while (r > 15) { |
| jl .ERLOOP |
| EMIT_BITS r13, r14d ; EMIT_BITS(code_0xf0, size_0xf0) |
| sub r12, 16 ; r -= 16; |
| jmp .BRLOOP |
| .ERLOOP: |
| ; Emit Huffman symbol for run length / number of bits |
| CHECKBUF31 ; uses rcx, rdx |
| |
| shl r12, 4 ; temp3 = (r << 4) + nbits; |
| add r12, rdi |
| mov ebx, INT [r15 + r12 * 4] ; code = actbl->ehufco[temp3]; |
| movzx ecx, byte [r15 + r12 + 1024] ; size = actbl->ehufsi[temp3]; |
| PUT_BITS rbx |
| |
| ;EMIT_CODE(code, size) |
| |
| movsx ebx, word [rsi-DCTSIZE2*2] ; temp2 = t2[k]; |
| ; Mask off any extra bits in code |
| mov rcx, rdi |
| mov rdx, 1 |
| shl rdx, cl |
| dec rdx |
| and rbx, rdx ; temp2 &= (((JLONG)1)<<nbits) - 1; |
| PUT_BITS rbx ; PUT_BITS(temp2, nbits) |
| |
| shr r11, 1 ; index >>= 1; |
| add rsi, 2 ; ++k; |
| jmp .BLOOP |
| .ELOOP: |
| ; If the last coef(s) were zero, emit an end-of-block code |
| lea rdi, [t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; |
| cmp rdi, rsi ; if (r > 0) { |
| je .EFN |
| mov ebx, INT [r15] ; code = actbl->ehufco[0]; |
| movzx r12d, byte [r15 + 1024] ; size = actbl->ehufsi[0]; |
| EMIT_BITS rbx, r12d |
| .EFN: |
| pop r10 |
| ; Save put_buffer & put_bits |
| mov MMWORD [r10+16], put_buffer ; state->cur.put_buffer = put_buffer; |
| mov DWORD [r10+24], put_bits ; state->cur.put_bits = put_bits; |
| |
| pop rbx |
| uncollect_args 6 |
| pop_xmm 4 |
| mov rsp, rbp ; rsp <- aligned rbp |
| pop rsp ; rsp <- original rbp |
| pop rbp |
| ret |
| |
| ; For some reason, the OS X linker does not honor the request to align the |
| ; segment unless we do this. |
| align 32 |