blob: 26ce5a1ebef3852c934c2a0251c553a44fc0c13a [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp10_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_config.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/vpx_timer.h"
#include "vpx_ports/system_state.h"
#include "vp10/common/common.h"
#include "vp10/common/entropy.h"
#include "vp10/common/entropymode.h"
#include "vp10/common/idct.h"
#include "vp10/common/mvref_common.h"
#include "vp10/common/pred_common.h"
#include "vp10/common/quant_common.h"
#include "vp10/common/reconintra.h"
#include "vp10/common/reconinter.h"
#include "vp10/common/seg_common.h"
#include "vp10/common/tile_common.h"
#include "vp10/encoder/aq_complexity.h"
#include "vp10/encoder/aq_cyclicrefresh.h"
#include "vp10/encoder/aq_variance.h"
#include "vp10/encoder/encodeframe.h"
#include "vp10/encoder/encodemb.h"
#include "vp10/encoder/encodemv.h"
#include "vp10/encoder/ethread.h"
#include "vp10/encoder/extend.h"
#include "vp10/encoder/rd.h"
#include "vp10/encoder/rdopt.h"
#include "vp10/encoder/segmentation.h"
#include "vp10/encoder/tokenize.h"
static void encode_superblock(VP10_COMP *cpi, ThreadData * td,
TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx);
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
#if CONFIG_VP9_HIGHBITDEPTH
static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4
};
static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16
};
#endif // CONFIG_VP9_HIGHBITDEPTH
unsigned int vp10_get_sby_perpixel_variance(VP10_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
VP9_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#if CONFIG_VP9_HIGHBITDEPTH
unsigned int vp10_high_get_sby_perpixel_variance(
VP10_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10),
0, &sse);
break;
case 12:
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12),
0, &sse);
break;
case 8:
default:
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8),
0, &sse);
break;
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static unsigned int get_sby_perpixel_diff_variance(VP10_COMP *cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(VP10_COMP *cpi,
MACROBLOCK *x,
int mi_row,
int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src,
mi_row, mi_col,
BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_mode_info_offsets(VP10_COMP *const cpi,
MACROBLOCK *const x,
MACROBLOCKD *const xd,
int mi_row,
int mi_col) {
VP10_COMMON *const cm = &cpi->common;
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
static void set_offsets(VP10_COMP *cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
const struct segmentation *const seg = &cm->seg;
set_skip_context(xd, mi_row, mi_col);
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
mbmi = &xd->mi[0]->mbmi;
// Set up destination pointers.
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_rows, cm->mi_cols);
// Set up source buffers.
vp10_setup_src_planes(x, cpi->Source, mi_row, mi_col);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
// Setup segment ID.
if (seg->enabled) {
if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
vp10_init_plane_quantizers(cpi, x);
x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
} else {
mbmi->segment_id = 0;
x->encode_breakout = cpi->encode_breakout;
}
// required by vp10_append_sub8x8_mvs_for_idx() and vp10_find_best_ref_mvs()
xd->tile = *tile;
}
static void set_block_size(VP10_COMP * const cpi,
MACROBLOCK *const x,
MACROBLOCKD *const xd,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
xd->mi[0]->mbmi.sb_type = bsize;
}
}
typedef struct {
int64_t sum_square_error;
int64_t sum_error;
int log2_count;
int variance;
} var;
typedef struct {
var none;
var horz[2];
var vert[2];
} partition_variance;
typedef struct {
partition_variance part_variances;
var split[4];
} v4x4;
typedef struct {
partition_variance part_variances;
v4x4 split[4];
} v8x8;
typedef struct {
partition_variance part_variances;
v8x8 split[4];
} v16x16;
typedef struct {
partition_variance part_variances;
v16x16 split[4];
} v32x32;
typedef struct {
partition_variance part_variances;
v32x32 split[4];
} v64x64;
typedef struct {
partition_variance *part_variances;
var *split[4];
} variance_node;
typedef enum {
V16X16,
V32X32,
V64X64,
} TREE_LEVEL;
static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
int i;
node->part_variances = NULL;
switch (bsize) {
case BLOCK_64X64: {
v64x64 *vt = (v64x64 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_32X32: {
v32x32 *vt = (v32x32 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_16X16: {
v16x16 *vt = (v16x16 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_8X8: {
v8x8 *vt = (v8x8 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_4X4: {
v4x4 *vt = (v4x4 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i];
break;
}
default: {
assert(0);
break;
}
}
}
// Set variance values given sum square error, sum error, count.
static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
v->sum_square_error = s2;
v->sum_error = s;
v->log2_count = c;
}
static void get_variance(var *v) {
v->variance = (int)(256 * (v->sum_square_error -
((v->sum_error * v->sum_error) >> v->log2_count)) >> v->log2_count);
}
static void sum_2_variances(const var *a, const var *b, var *r) {
assert(a->log2_count == b->log2_count);
fill_variance(a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->log2_count + 1, r);
}
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
variance_node node;
memset(&node, 0, sizeof(node));
tree_to_node(data, bsize, &node);
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
&node.part_variances->none);
}
static int set_vt_partitioning(VP10_COMP *cpi,
MACROBLOCK *const x,
MACROBLOCKD *const xd,
void *data,
BLOCK_SIZE bsize,
int mi_row,
int mi_col,
int64_t threshold,
BLOCK_SIZE bsize_min,
int force_split) {
VP10_COMMON * const cm = &cpi->common;
variance_node vt;
const int block_width = num_8x8_blocks_wide_lookup[bsize];
const int block_height = num_8x8_blocks_high_lookup[bsize];
const int low_res = (cm->width <= 352 && cm->height <= 288);
assert(block_height == block_width);
tree_to_node(data, bsize, &vt);
if (force_split == 1)
return 0;
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
// variance is below threshold, otherwise split will be selected.
// No check for vert/horiz split as too few samples for variance.
if (bsize == bsize_min) {
// Variance already computed to set the force_split.
if (low_res || cm->frame_type == KEY_FRAME)
get_variance(&vt.part_variances->none);
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
return 1;
}
return 0;
} else if (bsize > bsize_min) {
// Variance already computed to set the force_split.
if (low_res || cm->frame_type == KEY_FRAME)
get_variance(&vt.part_variances->none);
// For key frame: take split for bsize above 32X32 or very high variance.
if (cm->frame_type == KEY_FRAME &&
(bsize > BLOCK_32X32 ||
vt.part_variances->none.variance > (threshold << 4))) {
return 0;
}
// If variance is low, take the bsize (no split).
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
return 1;
}
// Check vertical split.
if (mi_row + block_height / 2 < cm->mi_rows) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
get_variance(&vt.part_variances->vert[0]);
get_variance(&vt.part_variances->vert[1]);
if (vt.part_variances->vert[0].variance < threshold &&
vt.part_variances->vert[1].variance < threshold &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
return 1;
}
}
// Check horizontal split.
if (mi_col + block_width / 2 < cm->mi_cols) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
get_variance(&vt.part_variances->horz[0]);
get_variance(&vt.part_variances->horz[1]);
if (vt.part_variances->horz[0].variance < threshold &&
vt.part_variances->horz[1].variance < threshold &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
return 1;
}
}
return 0;
}
return 0;
}
// Set the variance split thresholds for following the block sizes:
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
// currently only used on key frame.
static void set_vbp_thresholds(VP10_COMP *cpi, int64_t thresholds[], int q) {
VP10_COMMON *const cm = &cpi->common;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
const int threshold_multiplier = is_key_frame ? 20 : 1;
const int64_t threshold_base = (int64_t)(threshold_multiplier *
cpi->y_dequant[q][1]);
if (is_key_frame) {
thresholds[0] = threshold_base;
thresholds[1] = threshold_base >> 2;
thresholds[2] = threshold_base >> 2;
thresholds[3] = threshold_base << 2;
} else {
thresholds[1] = threshold_base;
if (cm->width <= 352 && cm->height <= 288) {
thresholds[0] = threshold_base >> 2;
thresholds[2] = threshold_base << 3;
} else {
thresholds[0] = threshold_base;
thresholds[1] = (5 * threshold_base) >> 2;
if (cm->width >= 1920 && cm->height >= 1080)
thresholds[1] = (7 * threshold_base) >> 2;
thresholds[2] = threshold_base << cpi->oxcf.speed;
}
}
}
void vp10_set_variance_partition_thresholds(VP10_COMP *cpi, int q) {
VP10_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
if (sf->partition_search_type != VAR_BASED_PARTITION &&
sf->partition_search_type != REFERENCE_PARTITION) {
return;
} else {
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
// The thresholds below are not changed locally.
if (is_key_frame) {
cpi->vbp_threshold_sad = 0;
cpi->vbp_bsize_min = BLOCK_8X8;
} else {
if (cm->width <= 352 && cm->height <= 288)
cpi->vbp_threshold_sad = 100;
else
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 ?
(cpi->y_dequant[q][1] << 1) : 1000;
cpi->vbp_bsize_min = BLOCK_16X16;
}
cpi->vbp_threshold_minmax = 15 + (q >> 3);
}
}
// Compute the minmax over the 8x8 subblocks.
static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x16_idx, int y16_idx,
#if CONFIG_VP9_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide,
int pixels_high) {
int k;
int minmax_max = 0;
int minmax_min = 255;
// Loop over the 4 8x8 subblocks.
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
int min = 0;
int max = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
#if CONFIG_VP9_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
d + y8_idx * dp + x8_idx, dp,
&min, &max);
} else {
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
d + y8_idx * dp + x8_idx, dp,
&min, &max);
}
#else
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
d + y8_idx * dp + x8_idx, dp,
&min, &max);
#endif
if ((max - min) > minmax_max)
minmax_max = (max - min);
if ((max - min) < minmax_min)
minmax_min = (max - min);
}
}
return (minmax_max - minmax_min);
}
static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x8_idx, int y8_idx, v8x8 *vst,
#if CONFIG_VP9_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide,
int pixels_high,
int is_key_frame) {
int k;
for (k = 0; k < 4; k++) {
int x4_idx = x8_idx + ((k & 1) << 2);
int y4_idx = y8_idx + ((k >> 1) << 2);
unsigned int sse = 0;
int sum = 0;
if (x4_idx < pixels_wide && y4_idx < pixels_high) {
int s_avg;
int d_avg = 128;
#if CONFIG_VP9_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
if (!is_key_frame)
d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
} else {
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
if (!is_key_frame)
d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
}
#else
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
if (!is_key_frame)
d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
#endif
sum = s_avg - d_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
}
}
static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x16_idx, int y16_idx, v16x16 *vst,
#if CONFIG_VP9_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide,
int pixels_high,
int is_key_frame) {
int k;
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
unsigned int sse = 0;
int sum = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
int s_avg;
int d_avg = 128;
#if CONFIG_VP9_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
if (!is_key_frame)
d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
} else {
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
if (!is_key_frame)
d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
}
#else
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
if (!is_key_frame)
d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
#endif
sum = s_avg - d_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
}
}
// This function chooses partitioning based on the variance between source and
// reconstructed last, where variance is computed for down-sampled inputs.
static int choose_partitioning(VP10_COMP *cpi,
const TileInfo *const tile,
MACROBLOCK *x,
int mi_row, int mi_col) {
VP10_COMMON * const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int i, j, k, m;
v64x64 vt;
v16x16 vt2[16];
int force_split[21];
uint8_t *s;
const uint8_t *d;
int sp;
int dp;
int pixels_wide = 64, pixels_high = 64;
int64_t thresholds[4] = {cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
cpi->vbp_thresholds[2], cpi->vbp_thresholds[3]};
// Always use 4x4 partition for key frame.
const int is_key_frame = (cm->frame_type == KEY_FRAME);
const int use_4x4_partition = is_key_frame;
const int low_res = (cm->width <= 352 && cm->height <= 288);
int variance4x4downsample[16];
int segment_id = CR_SEGMENT_ID_BASE;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map :
cm->last_frame_seg_map;
segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
if (cyclic_refresh_segment_id_boosted(segment_id)) {
int q = vp10_get_qindex(&cm->seg, segment_id, cm->base_qindex);
set_vbp_thresholds(cpi, thresholds, q);
}
}
set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
if (xd->mb_to_right_edge < 0)
pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0)
pixels_high += (xd->mb_to_bottom_edge >> 3);
s = x->plane[0].src.buf;
sp = x->plane[0].src.stride;
if (!is_key_frame) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
unsigned int uv_sad;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = NULL;
unsigned int y_sad, y_sad_g;
const BLOCK_SIZE bsize = BLOCK_32X32
+ (mi_col + 4 < cm->mi_cols) * 2 + (mi_row + 4 < cm->mi_rows);
assert(yv12 != NULL);
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
if (yv12_g && yv12_g != yv12) {
vp10_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
y_sad_g = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
x->plane[0].src.stride,
xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
} else {
y_sad_g = UINT_MAX;
}
vp10_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[LAST_FRAME - 1].sf);
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->sb_type = BLOCK_64X64;
mbmi->mv[0].as_int = 0;
mbmi->interp_filter = BILINEAR;
y_sad = vp10_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
if (y_sad_g < y_sad) {
vp10_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
mbmi->ref_frame[0] = GOLDEN_FRAME;
mbmi->mv[0].as_int = 0;
y_sad = y_sad_g;
} else {
x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
}
vp10_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
for (i = 1; i <= 2; ++i) {
struct macroblock_plane *p = &x->plane[i];
struct macroblockd_plane *pd = &xd->plane[i];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
if (bs == BLOCK_INVALID)
uv_sad = UINT_MAX;
else
uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
}
d = xd->plane[0].dst.buf;
dp = xd->plane[0].dst.stride;
// If the y_sad is very small, take 64x64 as partition and exit.
// Don't check on boosted segment for now, as 64x64 is suppressed there.
if (segment_id == CR_SEGMENT_ID_BASE &&
y_sad < cpi->vbp_threshold_sad) {
const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows) {
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
return 0;
}
}
} else {
d = VP9_VAR_OFFS;
dp = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (xd->bd) {
case 10:
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10);
break;
case 12:
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12);
break;
case 8:
default:
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8);
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
// Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
// 5-20 for the 16x16 blocks.
force_split[0] = 0;
// Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
// for splits.
for (i = 0; i < 4; i++) {
const int x32_idx = ((i & 1) << 5);
const int y32_idx = ((i >> 1) << 5);
const int i2 = i << 2;
force_split[i + 1] = 0;
for (j = 0; j < 4; j++) {
const int x16_idx = x32_idx + ((j & 1) << 4);
const int y16_idx = y32_idx + ((j >> 1) << 4);
const int split_index = 5 + i2 + j;
v16x16 *vst = &vt.split[i].split[j];
force_split[split_index] = 0;
variance4x4downsample[i2 + j] = 0;
if (!is_key_frame) {
fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
#if CONFIG_VP9_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide,
pixels_high,
is_key_frame);
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
get_variance(&vt.split[i].split[j].part_variances.none);
if (vt.split[i].split[j].part_variances.none.variance >
thresholds[2]) {
// 16X16 variance is above threshold for split, so force split to 8x8
// for this 16x16 block (this also forces splits for upper levels).
force_split[split_index] = 1;
force_split[i + 1] = 1;
force_split[0] = 1;
} else if (vt.split[i].split[j].part_variances.none.variance >
thresholds[1] &&
!cyclic_refresh_segment_id_boosted(segment_id)) {
// We have some nominal amount of 16x16 variance (based on average),
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
// force split to 8x8 block for this 16x16 block.
int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
#if CONFIG_VP9_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high);
if (minmax > cpi->vbp_threshold_minmax) {
force_split[split_index] = 1;
force_split[i + 1] = 1;
force_split[0] = 1;
}
}
}
if (is_key_frame || (low_res &&
vt.split[i].split[j].part_variances.none.variance >
(thresholds[1] << 1))) {
force_split[split_index] = 0;
// Go down to 4x4 down-sampling for variance.
variance4x4downsample[i2 + j] = 1;
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
v8x8 *vst2 = is_key_frame ? &vst->split[k] :
&vt2[i2 + j].split[k];
fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
#if CONFIG_VP9_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide,
pixels_high,
is_key_frame);
}
}
}
}
// Fill the rest of the variance tree by summing split partition values.
for (i = 0; i < 4; i++) {
const int i2 = i << 2;
for (j = 0; j < 4; j++) {
if (variance4x4downsample[i2 + j] == 1) {
v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] :
&vt.split[i].split[j];
for (m = 0; m < 4; m++)
fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
fill_variance_tree(vtemp, BLOCK_16X16);
}
}
fill_variance_tree(&vt.split[i], BLOCK_32X32);
// If variance of this 32x32 block is above the threshold, force the block
// to split. This also forces a split on the upper (64x64) level.
if (!force_split[i + 1]) {
get_variance(&vt.split[i].part_variances.none);
if (vt.split[i].part_variances.none.variance > thresholds[1]) {
force_split[i + 1] = 1;
force_split[0] = 1;
}
}
}
if (!force_split[0]) {
fill_variance_tree(&vt, BLOCK_64X64);
get_variance(&vt.part_variances.none);
}
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold.
if ( mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
!set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
thresholds[0], BLOCK_16X16, force_split[0])) {
for (i = 0; i < 4; ++i) {
const int x32_idx = ((i & 1) << 2);
const int y32_idx = ((i >> 1) << 2);
const int i2 = i << 2;
if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
(mi_row + y32_idx), (mi_col + x32_idx),
thresholds[1], BLOCK_16X16,
force_split[i + 1])) {
for (j = 0; j < 4; ++j) {
const int x16_idx = ((j & 1) << 1);
const int y16_idx = ((j >> 1) << 1);
// For inter frames: if variance4x4downsample[] == 1 for this 16x16
// block, then the variance is based on 4x4 down-sampling, so use vt2
// in set_vt_partioning(), otherwise use vt.
v16x16 *vtemp = (!is_key_frame &&
variance4x4downsample[i2 + j] == 1) ?
&vt2[i2 + j] : &vt.split[i].split[j];
if (!set_vt_partitioning(cpi, x, xd, vtemp, BLOCK_16X16,
mi_row + y32_idx + y16_idx,
mi_col + x32_idx + x16_idx,
thresholds[2],
cpi->vbp_bsize_min,
force_split[5 + i2 + j])) {
for (k = 0; k < 4; ++k) {
const int x8_idx = (k & 1);
const int y8_idx = (k >> 1);
if (use_4x4_partition) {
if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
BLOCK_8X8,
mi_row + y32_idx + y16_idx + y8_idx,
mi_col + x32_idx + x16_idx + x8_idx,
thresholds[3], BLOCK_8X8, 0)) {
set_block_size(cpi, x, xd,
(mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx),
BLOCK_4X4);
}
} else {
set_block_size(cpi, x, xd,
(mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx),
BLOCK_8X8);
}
}
}
}
}
}
}
return 0;
}
static void update_state(VP10_COMP *cpi, ThreadData *td,
PICK_MODE_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int output_enabled) {
int i, x_idx, y;
VP10_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
MV_REF *const frame_mvs =
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int max_plane;
assert(mi->mbmi.sb_type == bsize);
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mi_addr->mbmi.segment_id =
get_segment_id(cm, map, bsize, mi_row, mi_col);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp10_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row,
mi_col, bsize, ctx->rate, ctx->dist,
x->skip);
}
}
max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
for (i = 0; i < max_plane; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][1];
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
p[i].eobs = ctx->eobs_pbuf[i][1];
}
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][2];
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
p[i].eobs = ctx->eobs_pbuf[i][2];
}
for (i = 0; i < 2; ++i)
pd[i].color_index_map = ctx->color_index_map[i];
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
if (cpi->oxcf.aq_mode)
vp10_init_plane_quantizers(cpi, x);
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
if (!output_enabled)
return;
#if CONFIG_INTERNAL_STATS
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
};
++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
} else {
// Note how often each mode chosen as best
++cpi->mode_chosen_counts[ctx->best_mode_index];
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mbmi)) {
vp10_update_mv_count(td);
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp10_get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[ctx][mbmi->interp_filter];
}
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
rdc->filter_diff[i] += ctx->best_filter_diff[i];
}
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
}
}
}
void vp10_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[3] = {src->y_buffer, src->u_buffer, src->v_buffer };
const int strides[3] = {src->y_stride, src->uv_stride, src->uv_stride };
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static int set_segment_rdmult(VP10_COMP *const cpi,
MACROBLOCK *const x,
int8_t segment_id) {
int segment_qindex;
VP10_COMMON *const cm = &cpi->common;
vp10_init_plane_quantizers(cpi, x);
vpx_clear_system_state();
segment_qindex = vp10_get_qindex(&cm->seg, segment_id,
cm->base_qindex);
return vp10_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
}
static void rd_pick_sb_modes(VP10_COMP *cpi,
TileDataEnc *tile_data,
MACROBLOCK *const x,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
VP10_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i, orig_rdmult;
vpx_clear_system_state();
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
mbmi->sb_type = bsize;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
for (i = 0; i < 2; ++i)
pd[i].color_index_map = ctx->color_index_map[i];
ctx->is_coded = 0;
ctx->skippable = 0;
ctx->pred_pixel_ready = 0;
x->skip_recode = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance =
vp10_high_get_sby_perpixel_variance(cpi, &x->plane[0].src,
bsize, xd->bd);
} else {
x->source_variance =
vp10_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
#else
x->source_variance =
vp10_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if (aq_mode == VARIANCE_AQ) {
const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
: vp10_block_energy(cpi, x, bsize);
if (cm->frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
mbmi->segment_id = vp10_vaq_segment_id(energy);
} else {
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(
get_segment_id(cm, map, bsize, mi_row, mi_col)))
x->rdmult = vp10_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
vp10_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
} else {
if (bsize >= BLOCK_8X8) {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
vp10_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
ctx, best_rd);
else
vp10_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd);
} else {
vp10_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd);
}
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) &&
(aq_mode == COMPLEXITY_AQ) && (bsize >= BLOCK_16X16) &&
(cm->frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
vp10_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX)
rd_cost->rdcost = INT64_MAX;
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
}
static void update_stats(VP10_COMMON *cm, ThreadData *td) {
const MACROBLOCK *x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (!frame_is_intra_only(cm)) {
FRAME_COUNTS *const counts = td->counts;
const int inter_block = is_inter_block(mbmi);
const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
counts->intra_inter[vp10_get_intra_inter_context(xd)][inter_block]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
if (cm->reference_mode == REFERENCE_MODE_SELECT)
counts->comp_inter[vp10_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
if (has_second_ref(mbmi)) {
counts->comp_ref[vp10_get_pred_context_comp_ref_p(cm, xd)]
[ref0 == GOLDEN_FRAME]++;
} else {
counts->single_ref[vp10_get_pred_context_single_ref_p1(xd)][0]
[ref0 != LAST_FRAME]++;
if (ref0 != LAST_FRAME)
counts->single_ref[vp10_get_pred_context_single_ref_p2(xd)][1]
[ref0 != GOLDEN_FRAME]++;
}
}
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
if (bsize >= BLOCK_8X8) {
const PREDICTION_MODE mode = mbmi->mode;
++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
}
}
}
}
}
}
static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(
xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(
xd->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_seg_context + mi_col, sa,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
sizeof(xd->left_seg_context[0]) * mi_height);
}
static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
const MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
memcpy(
a + num_4x4_blocks_wide * p,
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(
l + num_4x4_blocks_high * p,
xd->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
}
static void encode_b(VP10_COMP *cpi, const TileInfo *const tile,
ThreadData *td,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCK *const x = &td->mb;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
if (output_enabled) {
update_stats(&cpi->common, td);
}
}
static void encode_sb(VP10_COMP *cpi, ThreadData *td,
const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize = bsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
subsize = get_subsize(bsize, pc_tree->partitioning);
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
if (output_enabled && bsize != BLOCK_4X4)
td->counts->partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->none);
break;
case PARTITION_VERT:
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
subsize, &pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
subsize, &pc_tree->horizontal[1]);
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->leaf_split[0]);
} else {
encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->split[0]);
encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, pc_tree->split[1]);
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, pc_tree->split[2]);
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
subsize, pc_tree->split[3]);
}
break;
default:
assert(0 && "Invalid partition type.");
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return VPXMIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; bsize -= 3) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
BLOCK_SIZE bsize, MODE_INFO **mi_8x8) {
int bh = bh_in;
int r, c;
for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
int bw = bw_in;
for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
const int index = r * mis + c;
mi_8x8[index] = mi + index;
mi_8x8[index]->mbmi.sb_type = find_partition_size(bsize,
row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(VP10_COMP *cpi, const TileInfo *const tile,
MODE_INFO **mi_8x8, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP10_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
col8x8_remaining, bsize, mi_8x8);
}
}
static void rd_use_partition(VP10_COMP *cpi,
ThreadData *td,
TileDataEnc *tile_data,
MODE_INFO **mi_8x8, TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize,
int *rate, int64_t *dist,
int do_recon, PC_TREE *pc_tree) {
VP10_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mis = cm->mi_stride;
const int bsl = b_width_log2_lookup[bsize];
const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
const int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
RD_COST last_part_rdc, none_rdc, chosen_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
assert(num_4x4_blocks_wide_lookup[bsize] ==
num_4x4_blocks_high_lookup[bsize]);
vp10_rd_cost_reset(&last_part_rdc);
vp10_rd_cost_reset(&none_rdc);
vp10_rd_cost_reset(&chosen_rdc);
partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
pc_tree->partitioning = partition;
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = vp10_block_energy(cpi, x, bsize);
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (mi_step >> 1) < cm->mi_rows &&
mi_col + (mi_step >> 1) < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
ctx, INT64_MAX);
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, none_rdc.rate,
none_rdc.dist);
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->mbmi.sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
bsize, ctx, INT64_MAX);
break;
case PARTITION_HORZ:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
subsize, &pc_tree->horizontal[0],
INT64_MAX);
if (last_part_rdc.rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
RD_COST tmp_rdc;
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
vp10_rd_cost_init(&tmp_rdc);
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
rd_pick_sb_modes(cpi, tile_data, x,
mi_row + (mi_step >> 1), mi_col, &tmp_rdc,
subsize, &pc_tree->horizontal[1], INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp10_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
subsize, &pc_tree->vertical[0], INT64_MAX);
if (last_part_rdc.rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
RD_COST tmp_rdc;
PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
vp10_rd_cost_init(&tmp_rdc);
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
rd_pick_sb_modes(cpi, tile_data, x,
mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp10_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
subsize, pc_tree->leaf_split[0], INT64_MAX);
break;
}
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
int jj = i >> 1, ii = i & 0x01;
RD_COST tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
vp10_rd_cost_init(&tmp_rdc);
rd_use_partition(cpi, td, tile_data,
mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize,
&tmp_rdc.rate, &tmp_rdc.dist,
i != 3, pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp10_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
default:
assert(0);
break;
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += cpi->partition_cost[pl][partition];
last_part_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
last_part_rdc.rate, last_part_rdc.dist);
}
if (do_partition_search
&& cpi->sf.adjust_partitioning_from_last_frame
&& cpi->sf.partition_search_type == SEARCH_PARTITION
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + mi_step < cm->mi_rows ||
mi_row + (mi_step >> 1) == cm->mi_rows)
&& (mi_col + mi_step < cm->mi_cols ||
mi_col + (mi_step >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
RD_COST tmp_rdc;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x,
mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
split_subsize, &pc_tree->split[i]->none, INT64_MAX);
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp10_rd_cost_reset(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != 3)
encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize, pc_tree->split[i]);
pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
split_subsize);
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mi_8x8[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == BLOCK_64X64)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
pc_tree);
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size,
int bs_hist[BLOCK_SIZES]) {
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO *mi = mi_8x8[index+j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
bs_hist[sb_type]++;
*min_block_size = VPXMIN(*min_block_size, sb_type);
*max_block_size = VPXMAX(*max_block_size, sb_type);
}
index += xd->mi_stride;
}
}
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
BLOCK_64X64
};
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP10_COMP *cpi, const TileInfo *const tile,
MACROBLOCKD *const xd,
int mi_row, int mi_col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP10_COMMON *const cm = &cpi->common;
MODE_INFO **mi = xd->mi;
const int left_in_image = xd->left_available && mi[-1];
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_64X64;
int bs_hist[BLOCK_SIZES] = {0};
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
MODE_INFO **prev_mi =
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
}
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
bs_hist);
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
bs_hist);
}
// Adjust observed min and max for "relaxed" auto partition case.
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
}
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
// Test for blocks at the edge of the active image.
// This may be the actual edge of the image or where there are formatting
// bars.
if (vp10_active_edge_sb(cpi, mi_row, mi_col)) {
min_size = BLOCK_4X4;
} else {
min_size =
VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
}
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (cpi->sf.use_square_partition_only &&
next_square_size[max_size] < min_size) {
min_size = next_square_size[max_size];
}
*min_block_size = min_size;
*max_block_size = max_size;
}
// TODO(jingning) refactor functions setting partition search range
static void set_partition_range(VP10_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
int idx, idy;
MODE_INFO *mi;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
BLOCK_SIZE bs, min_size, max_size;
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
if (prev_mi) {
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
mi = prev_mi[idy * cm->mi_stride + idx];
bs = mi ? mi->mbmi.sb_type : bsize;
min_size = VPXMIN(min_size, bs);
max_size = VPXMAX(max_size, bs);
}
}
}
if (xd->left_available) {
for (idy = 0; idy < mi_height; ++idy) {
mi = xd->mi[idy * cm->mi_stride - 1];
bs = mi ? mi->mbmi.sb_type : bsize;
min_size = VPXMIN(min_size, bs);
max_size = VPXMAX(max_size, bs);
}
}
if (xd->up_available) {
for (idx = 0; idx < mi_width; ++idx) {
mi = xd->mi[idx - cm->mi_stride];
bs = mi ? mi->mbmi.sb_type : bsize;
min_size = VPXMIN(min_size, bs);
max_size = VPXMAX(max_size, bs);
}
}
if (min_size == max_size) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
*min_bs = min_size;
*max_bs = max_size;
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if CONFIG_FP_MB_STATS
const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] =
{1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4};
const int num_16x16_blocks_high_lookup[BLOCK_SIZES] =
{1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4};
const int qindex_skip_threshold_lookup[BLOCK_SIZES] =
{0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120};
const int qindex_split_threshold_lookup[BLOCK_SIZES] =
{0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120};
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] =
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6};
typedef enum {
MV_ZERO = 0,
MV_LEFT = 1,
MV_UP = 2,
MV_RIGHT = 3,
MV_DOWN = 4,
MV_INVALID
} MOTION_DIRECTION;
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
return MV_ZERO;
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
return MV_LEFT;
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
return MV_RIGHT;
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
return MV_UP;
} else {
return MV_DOWN;
}
}
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
MOTION_DIRECTION that_mv) {
if (this_mv == that_mv) {
return 0;
} else {
return abs(this_mv - that_mv) == 2 ? 2 : 1;
}
}
#endif
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP10_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, RD_COST *rd_cost,
int64_t best_rd, PC_TREE *pc_tree) {
VP10_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
int i, pl;
BLOCK_SIZE subsize;
RD_COST this_rdc, sum_rdc, best_rdc;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
BLOCK_SIZE min_size = x->min_partition_size;
BLOCK_SIZE max_size = x->max_partition_size;
#if CONFIG_FP_MB_STATS
unsigned int src_diff_var = UINT_MAX;
int none_complexity = 0;
#endif
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && yss <= xss &&
bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && xss <= yss &&
bsize >= BLOCK_8X8;
(void) *tp_orig;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
vp10_rd_cost_init(&this_rdc);
vp10_rd_cost_init(&sum_rdc);
vp10_rd_cost_reset(&best_rdc);
best_rdc.rdcost = best_rd;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
x->mb_energy = vp10_block_energy(cpi, x, bsize);
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3)
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) ||
force_vert_split);
do_split &= bsize > min_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src,
mi_row, mi_col, bsize);
}
#endif
#if CONFIG_FP_MB_STATS
// Decide whether we shall split directly and skip searching NONE by using
// the first pass block statistics
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
partition_none_allowed && src_diff_var > 4 &&
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
// compute a complexity measure, basically measure inconsistency of motion
// vectors obtained from the first pass in the current block
for (r = mb_row; r < mb_row_end ; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
MOTION_DIRECTION this_mv;
MOTION_DIRECTION right_mv;
MOTION_DIRECTION bottom_mv;
this_mv =
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
// to its right
if (c != mb_col_end - 1) {
right_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
none_complexity += get_motion_inconsistency(this_mv, right_mv);
}
// to its bottom
if (r != mb_row_end - 1) {
bottom_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
}
// do not count its left and top neighbors to avoid double counting
}
}
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
partition_none_allowed = 0;
}
}
#endif
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col,
&this_rdc, bsize, ctx, best_rdc.rdcost);
if (this_rdc.rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
}
if (this_rdc.rdcost < best_rdc.rdcost) {
int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
best_rdc = this_rdc;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
// Adjust dist breakout threshold according to the partition size.
dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
rate_breakout_thr *= num_pels_log2_lookup[bsize];
// If all y, u, v transform blocks in this partition are skippable, and
// the dist & rate are within the thresholds, the partition search is
// terminated for current branch of the partition search tree.
// The dist & rate thresholds are set to 0 at speed 0 to disable the
// early termination at that speed.
if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] &&
(ctx->skippable && best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr)) {
do_split = 0;
do_rect = 0;
}
#if CONFIG_FP_MB_STATS
// Check if every 16x16 first pass block statistics has zero
// motion and the corresponding first pass residue is small enough.
// If that is the case, check the difference variance between the
// current frame and the last frame. If the variance is small enough,
// stop further splitting in RD optimization
if (cpi->use_fp_mb_stats && do_split != 0 &&
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
int skip = 1;
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_MOTION_ZERO_MASK) ||
!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_ERROR_SMALL_MASK)) {
skip = 0;
break;
}
}
if (skip == 0) {
break;
}
}
if (skip) {
if (src_diff_var == UINT_MAX) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
}
if (src_diff_var < 8) {
do_split = 0;
do_rect = 0;
}
}
}
#endif
}
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search)
store_pred_mv(x, ctx);
// PARTITION_SPLIT
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (bsize == BLOCK_8X8) {
i = 4;
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
pc_tree->leaf_split[0]->pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
pc_tree->leaf_split[0], best_rdc.rdcost);
if (sum_rdc.rate == INT_MAX)
sum_rdc.rdcost = INT64_MAX;
} else {
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
const int x_idx = (i & 1) * mi_step;
const int y_idx = (i >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
pc_tree->split[i]->index = i;
rd_pick_partition(cpi, td, tile_data, tp,
mi_row + y_idx, mi_col + x_idx,
subsize, &this_rdc,
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
break;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
}
if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_HORZ
if (partition_horz_allowed &&
(do_rect || vp10_active_h_edge(cpi, mi_row, mi_step))) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[0].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->horizontal[0], best_rdc.rdcost);
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
bsize > BLOCK_8X8) {
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[1].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col,
&this_rdc, subsize, &pc_tree->horizontal[1],
best_rdc.rdcost - sum_rdc.rdcost);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ;
}
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed &&
(do_rect || vp10_active_v_edge(cpi, mi_col, mi_step))) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[0].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->vertical[0], best_rdc.rdcost);
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
bsize > BLOCK_8X8) {
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
&pc_tree->vertical[0]);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[1].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step,
&this_rdc, subsize,
&pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT;
}
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
// TODO(jbb): This code added so that we avoid static analysis
// warning related to the fact that best_rd isn't used after this
// point. This code should be refactored so that the duplicate
// checks occur in some sub function and thus are used...
(void) best_rd;
*rd_cost = best_rdc;
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
pc_tree->index != 3) {
int output_enabled = (bsize == BLOCK_64X64);
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
bsize, pc_tree);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip));
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void encode_rd_sb_row(VP10_COMP *cpi,
ThreadData *td,
TileDataEnc *tile_data,
int mi_row,
TOKENEXTRA **tp) {
VP10_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
SPEED_FEATURES *const sf = &cpi->sf;
int mi_col;
// Initialize the left context for the new SB row
memset(&xd->left_context, 0, sizeof(xd->left_context));
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
const struct segmentation *const seg = &cm->seg;
int dummy_rate;
int64_t dummy_dist;
RD_COST dummy_rdc;
int i;
int seg_skip = 0;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
if (sf->adaptive_pred_interp_filter) {
for (i = 0; i < 64; ++i)
td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
for (i = 0; i < 64; ++i) {
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
vp10_zero(x->pred_mv);
td->pc_root->index = 0;
if (seg->enabled) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
x->source_variance = UINT_MAX;
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
const BLOCK_SIZE bsize =
seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
} else if (cpi->partition_search_skippable_frame) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
} else if (sf->partition_search_type == VAR_BASED_PARTITION &&
cm->frame_type != KEY_FRAME) {
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
} else {
// If required set upper and lower partition size limits
if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
&x->min_partition_size,
&x->max_partition_size);
}
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rdc, INT64_MAX, td->pc_root);
}
}
}
static void init_encode_frame_mb_context(VP10_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
// Copy data over into macro block data structures.
vp10_setup_src_planes(x, cpi->Source, 0, 0);
vp10_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
memset(xd->above_context[0], 0,
sizeof(*xd->above_context[0]) *
2 * aligned_mi_cols * MAX_MB_PLANE);
memset(xd->above_seg_context, 0,
sizeof(*xd->above_seg_context) * aligned_mi_cols);
}
static int check_dual_ref_flags(VP10_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static void reset_skip_tx_size(VP10_COMMON *cm, TX_SIZE max_tx_size) {
int mi_row, mi_col;
const int mis = cm->mi_stride;
MODE_INFO **mi_ptr = cm->mi_grid_visible;
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
if (mi_ptr[mi_col]->mbmi.tx_size > max_tx_size)
mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
}
}
}
static MV_REFERENCE_FRAME get_frame_type(const VP10_COMP *cpi) {
if (frame_is_intra_only(&cpi->common))
return INTRA_FRAME;
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
return GOLDEN_FRAME;
else
return LAST_FRAME;
}
static TX_MODE select_tx_mode(const VP10_COMP *cpi, MACROBLOCKD *const xd) {
if (xd->lossless[0])
return ONLY_4X4;
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return ALLOW_32X32;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD||
cpi->sf.tx_size_search_method == USE_TX_8X8)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
}
void vp10_init_tile_data(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_col, tile_row;
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
int tile_tok = 0;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
if (cpi->tile_data != NULL)
vpx_free(cpi->tile_data);
CHECK_MEM_ERROR(cm, cpi->tile_data,
vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
int i, j;
for (i = 0; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
tile_data->thresh_freq_fact[i][j] = 32;
tile_data->mode_map[i][j] = j;
}
}
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileInfo *tile_info =
&cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
vp10_tile_init(tile_info, cm, tile_row, tile_col);
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = cpi->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(*tile_info);
}
}
}
void vp10_encode_tile(VP10_COMP *cpi, ThreadData *td,
int tile_row, int tile_col) {
VP10_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
TileDataEnc *this_tile =
&cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo * const tile_info = &this_tile->tile_info;
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
int mi_row;
// Set up pointers to per thread motion search counters.
td->mb.m_search_count_ptr = &td->rd_counts.m_search_count;
td->mb.ex_search_count_ptr = &td->rd_counts.ex_search_count;
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
}
cpi->tok_count[tile_row][tile_col] =
(unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
assert(tok - cpi->tile_tok[tile_row][tile_col] <=
allocated_tokens(*tile_info));
}
static void encode_tiles(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_col, tile_row;
vp10_init_tile_data(cpi);
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col)
vp10_encode_tile(cpi, &cpi->td, tile_row, tile_col);
}
#if CONFIG_FP_MB_STATS
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
VP10_COMMON *cm, uint8_t **this_frame_mb_stats) {
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
if (mb_stats_in > firstpass_mb_stats->mb_stats_end)
return EOF;
*this_frame_mb_stats = mb_stats_in;
return 1;
}
#endif
static void encode_frame_internal(VP10_COMP *cpi) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
int i;
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
vp10_zero(*td->counts);
vp10_zero(rdc->coef_counts);
vp10_zero(rdc->comp_pred_diff);
vp10_zero(rdc->filter_diff);
rdc->m_search_count = 0; // Count of motion search hits.
rdc->ex_search_count = 0; // Exhaustive mesh search hits.
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = CONFIG_MISC_FIXES && cm->seg.enabled ?
vp10_get_qindex(&cm->seg, i, cm->base_qindex) :
cm->base_qindex;
xd->lossless[i] = qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
}
if (!cm->seg.enabled && xd->lossless[0])
x->optimize = 0;
cm->tx_mode = select_tx_mode(cpi, xd);
vp10_frame_init_quantizer(cpi);
vp10_initialize_rd_consts(cpi);
vp10_initialize_me_consts(cpi, x, cm->base_qindex);
init_encode_frame_mb_context(cpi);
cm->use_prev_frame_mvs = !cm->error_resilient_mode &&
cm->width == cm->last_width &&
cm->height == cm->last_height &&
!cm->intra_only &&
cm->last_show_frame;
// Special case: set prev_mi to NULL when the previous mode info
// context cannot be used.
cm->prev_mi = cm->use_prev_frame_mvs ?
cm->prev_mip + cm->mi_stride + 1 : NULL;
x->quant_fp = cpi->sf.use_quant_fp;
vp10_zero(x->skip_txfm);
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
&cpi->twopass.this_frame_mb_stats);
}
#endif
// If allowed, encoding tiles in parallel with one thread handling one tile.
if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
vp10_encode_tiles_mt(cpi);
else
encode_tiles(cpi);
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static INTERP_FILTER get_interp_filter(
const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
if (!is_alt_ref &&
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP_SMOOTH;
} else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP_SHARP;
} else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP;
} else {
return SWITCHABLE;
}
}
void vp10_encode_frame(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[LAST_FRAME])) {
cpi->allow_comp_inter_inter = 0;
} else {
cpi->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
} else {
cpi->allow_comp_inter_inter = 0;
}
if (cpi->sf.frame_parameter_update) {
int i;
RD_OPT *const rd_opt = &cpi->rd;
FRAME_COUNTS *counts = cpi->td.counts;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
// This code does a single RD pass over the whole frame assuming
// either compound, single or hybrid prediction as per whatever has
// worked best for that type of frame in the past.
// It also predicts whether another coding mode would have worked
// better that this coding mode. If that is the case, it remembers
// that for subsequent frames.
// It does the same analysis for transform size selection also.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
if (is_alt_ref || !cpi->allow_comp_inter_inter)
cm->reference_mode = SINGLE_REFERENCE;
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
mode_thrs[COMPOUND_REFERENCE] >
mode_thrs[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) &&
cpi->static_mb_pct == 100)
cm->reference_mode = COMPOUND_REFERENCE;
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
cm->reference_mode = SINGLE_REFERENCE;
else
cm->reference_mode = REFERENCE_MODE_SELECT;
if (cm->interp_filter == SWITCHABLE)
cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i)
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += counts->comp_inter[i][0];
comp_count_zero += counts->comp_inter[i][1];
}
if (comp_count_zero == 0) {
cm->reference_mode = SINGLE_REFERENCE;
vp10_zero(counts->comp_inter);
} else if (single_count_zero == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
vp10_zero(counts->comp_inter);
}
}
if (cm->tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += counts->tx.p32x32[i][TX_4X4];
count4x4 += counts->tx.p16x16[i][TX_4X4];
count4x4 += counts->tx.p8x8[i][TX_4X4];
count8x8_lp += counts->tx.p32x32[i][TX_8X8];
count8x8_lp += counts->tx.p16x16[i][TX_8X8];
count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
count16x16_lp += counts->tx.p32x32[i][TX_16X16];
count32x32 += counts->tx.p32x32[i][TX_32X32];
}
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_tx_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_tx_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_tx_size(cm, TX_16X16);
}
}
} else {
cm->reference_mode = SINGLE_REFERENCE;
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi,
const MODE_INFO *above_mi, const MODE_INFO *left_mi,
const int intraonly) {
const PREDICTION_MODE y_mode = mi->mbmi.mode;
const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h)
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int bidx = idy * 2 + idx;
const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode;
if (intraonly) {
const PREDICTION_MODE a = vp10_above_block_mode(mi, above_mi, bidx);
const PREDICTION_MODE l = vp10_left_block_mode(mi, left_mi, bidx);
++counts->kf_y_mode[a][l][bmode];
} else {
++counts->y_mode[0][bmode];
}
}
} else {
if (intraonly) {
const PREDICTION_MODE above = vp10_above_block_mode(mi, above_mi, 0);
const PREDICTION_MODE left = vp10_left_block_mode(mi, left_mi, 0);
++counts->kf_y_mode[above][left][y_mode];
} else {
++counts->y_mode[size_group_lookup[bsize]][y_mode];
}
}
++counts->uv_mode[y_mode][uv_mode];
}
static void encode_superblock(VP10_COMP *cpi, ThreadData *td,
TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi;
MODE_INFO *mi = mi_8x8[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
const int seg_skip = segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_SKIP);
const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->skip_recode = !x->select_tx_size && mbmi->sb_type >= BLOCK_8X8 &&
cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
cpi->sf.allow_skip_recode;
if (!x->skip_recode)
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
x->skip_optimize = ctx->is_coded;
ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
if (!is_inter_block(mbmi)) {
int plane;
mbmi->skip = 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
vp10_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane);
if (output_enabled)
sum_intra_stats(td->counts, mi, xd->above_mi, xd->left_mi,
frame_is_intra_only(cm));
vp10_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
mbmi->ref_frame[ref]);
assert(cfg != NULL);
vp10_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
}
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
vp10_build_inter_predictors_sby(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
vp10_build_inter_predictors_sbuv(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
vp10_encode_sb(x, VPXMAX(bsize, BLOCK_8X8));
vp10_tokenize_sb(cpi, td, t, !output_enabled, VPXMAX(bsize, BLOCK_8X8));
}
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
&td->counts->tx)[mbmi->tx_size];
} else {
int x, y;
TX_SIZE tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter_block(&mi->mbmi)) {
tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
max_txsize_lookup[bsize]);
} else {
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
}
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
}
++td->counts->tx.tx_totals[mbmi->tx_size];
++td->counts->tx.tx_totals[get_uv_tx_size(mbmi, &xd->plane[1])];
if (mbmi->tx_size < TX_32X32 &&
cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
if (is_inter_block(mbmi)) {
++td->counts->inter_ext_tx[mbmi->tx_size][mbmi->tx_type];
} else {
++td->counts->intra_ext_tx[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
}
}
}