| //===- ValueTracking.cpp - Walk computations to compute properties --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains routines that help analyze properties that chains of |
| // computations have. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <array> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| const unsigned MaxDepth = 6; |
| |
| // Controls the number of uses of the value searched for possible |
| // dominating comparisons. |
| static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", |
| cl::Hidden, cl::init(20)); |
| |
| /// Returns the bitwidth of the given scalar or pointer type. For vector types, |
| /// returns the element type's bitwidth. |
| static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { |
| if (unsigned BitWidth = Ty->getScalarSizeInBits()) |
| return BitWidth; |
| |
| return DL.getIndexTypeSizeInBits(Ty); |
| } |
| |
| namespace { |
| |
| // Simplifying using an assume can only be done in a particular control-flow |
| // context (the context instruction provides that context). If an assume and |
| // the context instruction are not in the same block then the DT helps in |
| // figuring out if we can use it. |
| struct Query { |
| const DataLayout &DL; |
| AssumptionCache *AC; |
| const Instruction *CxtI; |
| const DominatorTree *DT; |
| |
| // Unlike the other analyses, this may be a nullptr because not all clients |
| // provide it currently. |
| OptimizationRemarkEmitter *ORE; |
| |
| /// Set of assumptions that should be excluded from further queries. |
| /// This is because of the potential for mutual recursion to cause |
| /// computeKnownBits to repeatedly visit the same assume intrinsic. The |
| /// classic case of this is assume(x = y), which will attempt to determine |
| /// bits in x from bits in y, which will attempt to determine bits in y from |
| /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call |
| /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo |
| /// (all of which can call computeKnownBits), and so on. |
| std::array<const Value *, MaxDepth> Excluded; |
| |
| unsigned NumExcluded = 0; |
| |
| Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) |
| : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} |
| |
| Query(const Query &Q, const Value *NewExcl) |
| : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), |
| NumExcluded(Q.NumExcluded) { |
| Excluded = Q.Excluded; |
| Excluded[NumExcluded++] = NewExcl; |
| assert(NumExcluded <= Excluded.size()); |
| } |
| |
| bool isExcluded(const Value *Value) const { |
| if (NumExcluded == 0) |
| return false; |
| auto End = Excluded.begin() + NumExcluded; |
| return std::find(Excluded.begin(), End, Value) != End; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| // Given the provided Value and, potentially, a context instruction, return |
| // the preferred context instruction (if any). |
| static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { |
| // If we've been provided with a context instruction, then use that (provided |
| // it has been inserted). |
| if (CxtI && CxtI->getParent()) |
| return CxtI; |
| |
| // If the value is really an already-inserted instruction, then use that. |
| CxtI = dyn_cast<Instruction>(V); |
| if (CxtI && CxtI->getParent()) |
| return CxtI; |
| |
| return nullptr; |
| } |
| |
| static void computeKnownBits(const Value *V, KnownBits &Known, |
| unsigned Depth, const Query &Q); |
| |
| void llvm::computeKnownBits(const Value *V, KnownBits &Known, |
| const DataLayout &DL, unsigned Depth, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT, |
| OptimizationRemarkEmitter *ORE) { |
| ::computeKnownBits(V, Known, Depth, |
| Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); |
| } |
| |
| static KnownBits computeKnownBits(const Value *V, unsigned Depth, |
| const Query &Q); |
| |
| KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, |
| unsigned Depth, AssumptionCache *AC, |
| const Instruction *CxtI, |
| const DominatorTree *DT, |
| OptimizationRemarkEmitter *ORE) { |
| return ::computeKnownBits(V, Depth, |
| Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); |
| } |
| |
| bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, |
| const DataLayout &DL, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT) { |
| assert(LHS->getType() == RHS->getType() && |
| "LHS and RHS should have the same type"); |
| assert(LHS->getType()->isIntOrIntVectorTy() && |
| "LHS and RHS should be integers"); |
| // Look for an inverted mask: (X & ~M) op (Y & M). |
| Value *M; |
| if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && |
| match(RHS, m_c_And(m_Specific(M), m_Value()))) |
| return true; |
| if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && |
| match(LHS, m_c_And(m_Specific(M), m_Value()))) |
| return true; |
| IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); |
| KnownBits LHSKnown(IT->getBitWidth()); |
| KnownBits RHSKnown(IT->getBitWidth()); |
| computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); |
| computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); |
| return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); |
| } |
| |
| bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { |
| for (const User *U : CxtI->users()) { |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) |
| if (IC->isEquality()) |
| if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) |
| if (C->isNullValue()) |
| continue; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, |
| const Query &Q); |
| |
| bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, |
| bool OrZero, |
| unsigned Depth, AssumptionCache *AC, |
| const Instruction *CxtI, |
| const DominatorTree *DT) { |
| return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, |
| Query(DL, AC, safeCxtI(V, CxtI), DT)); |
| } |
| |
| static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); |
| |
| bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT) { |
| return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); |
| } |
| |
| bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, |
| unsigned Depth, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT) { |
| KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); |
| return Known.isNonNegative(); |
| } |
| |
| bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT) { |
| if (auto *CI = dyn_cast<ConstantInt>(V)) |
| return CI->getValue().isStrictlyPositive(); |
| |
| // TODO: We'd doing two recursive queries here. We should factor this such |
| // that only a single query is needed. |
| return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && |
| isKnownNonZero(V, DL, Depth, AC, CxtI, DT); |
| } |
| |
| bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT) { |
| KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); |
| return Known.isNegative(); |
| } |
| |
| static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); |
| |
| bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, |
| const DataLayout &DL, |
| AssumptionCache *AC, const Instruction *CxtI, |
| const DominatorTree *DT) { |
| return ::isKnownNonEqual(V1, V2, Query(DL, AC, |
| safeCxtI(V1, safeCxtI(V2, CxtI)), |
| DT)); |
| } |
| |
| static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, |
| const Query &Q); |
| |
| bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, |
| const DataLayout &DL, |
| unsigned Depth, AssumptionCache *AC, |
| const Instruction *CxtI, const DominatorTree *DT) { |
| return ::MaskedValueIsZero(V, Mask, Depth, |
| Query(DL, AC, safeCxtI(V, CxtI), DT)); |
| } |
| |
| static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, |
| const Query &Q); |
| |
| unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, |
| unsigned Depth, AssumptionCache *AC, |
| const Instruction *CxtI, |
| const DominatorTree *DT) { |
| return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); |
| } |
| |
| static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, |
| bool NSW, |
| KnownBits &KnownOut, KnownBits &Known2, |
| unsigned Depth, const Query &Q) { |
| unsigned BitWidth = KnownOut.getBitWidth(); |
| |
| // If an initial sequence of bits in the result is not needed, the |
| // corresponding bits in the operands are not needed. |
| KnownBits LHSKnown(BitWidth); |
| computeKnownBits(Op0, LHSKnown, Depth + 1, Q); |
| computeKnownBits(Op1, Known2, Depth + 1, Q); |
| |
| KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); |
| } |
| |
| static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, |
| KnownBits &Known, KnownBits &Known2, |
| unsigned Depth, const Query &Q) { |
| unsigned BitWidth = Known.getBitWidth(); |
| computeKnownBits(Op1, Known, Depth + 1, Q); |
| computeKnownBits(Op0, Known2, Depth + 1, Q); |
| |
| bool isKnownNegative = false; |
| bool isKnownNonNegative = false; |
| // If the multiplication is known not to overflow, compute the sign bit. |
| if (NSW) { |
| if (Op0 == Op1) { |
| // The product of a number with itself is non-negative. |
| isKnownNonNegative = true; |
| } else { |
| bool isKnownNonNegativeOp1 = Known.isNonNegative(); |
| bool isKnownNonNegativeOp0 = Known2.isNonNegative(); |
| bool isKnownNegativeOp1 = Known.isNegative(); |
| bool isKnownNegativeOp0 = Known2.isNegative(); |
| // The product of two numbers with the same sign is non-negative. |
| isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || |
| (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); |
| // The product of a negative number and a non-negative number is either |
| // negative or zero. |
| if (!isKnownNonNegative) |
| isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && |
| isKnownNonZero(Op0, Depth, Q)) || |
| (isKnownNegativeOp0 && isKnownNonNegativeOp1 && |
| isKnownNonZero(Op1, Depth, Q)); |
| } |
| } |
| |
| assert(!Known.hasConflict() && !Known2.hasConflict()); |
| // Compute a conservative estimate for high known-0 bits. |
| unsigned LeadZ = std::max(Known.countMinLeadingZeros() + |
| Known2.countMinLeadingZeros(), |
| BitWidth) - BitWidth; |
| LeadZ = std::min(LeadZ, BitWidth); |
| |
| // The result of the bottom bits of an integer multiply can be |
| // inferred by looking at the bottom bits of both operands and |
| // multiplying them together. |
| // We can infer at least the minimum number of known trailing bits |
| // of both operands. Depending on number of trailing zeros, we can |
| // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming |
| // a and b are divisible by m and n respectively. |
| // We then calculate how many of those bits are inferrable and set |
| // the output. For example, the i8 mul: |
| // a = XXXX1100 (12) |
| // b = XXXX1110 (14) |
| // We know the bottom 3 bits are zero since the first can be divided by |
| // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). |
| // Applying the multiplication to the trimmed arguments gets: |
| // XX11 (3) |
| // X111 (7) |
| // ------- |
| // XX11 |
| // XX11 |
| // XX11 |
| // XX11 |
| // ------- |
| // XXXXX01 |
| // Which allows us to infer the 2 LSBs. Since we're multiplying the result |
| // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. |
| // The proof for this can be described as: |
| // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && |
| // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + |
| // umin(countTrailingZeros(C2), C6) + |
| // umin(C5 - umin(countTrailingZeros(C1), C5), |
| // C6 - umin(countTrailingZeros(C2), C6)))) - 1) |
| // %aa = shl i8 %a, C5 |
| // %bb = shl i8 %b, C6 |
| // %aaa = or i8 %aa, C1 |
| // %bbb = or i8 %bb, C2 |
| // %mul = mul i8 %aaa, %bbb |
| // %mask = and i8 %mul, C7 |
| // => |
| // %mask = i8 ((C1*C2)&C7) |
| // Where C5, C6 describe the known bits of %a, %b |
| // C1, C2 describe the known bottom bits of %a, %b. |
| // C7 describes the mask of the known bits of the result. |
| APInt Bottom0 = Known.One; |
| APInt Bottom1 = Known2.One; |
| |
| // How many times we'd be able to divide each argument by 2 (shr by 1). |
| // This gives us the number of trailing zeros on the multiplication result. |
| unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); |
| unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); |
| unsigned TrailZero0 = Known.countMinTrailingZeros(); |
| unsigned TrailZero1 = Known2.countMinTrailingZeros(); |
| unsigned TrailZ = TrailZero0 + TrailZero1; |
| |
| // Figure out the fewest known-bits operand. |
| unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, |
| TrailBitsKnown1 - TrailZero1); |
| unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); |
| |
| APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * |
| Bottom1.getLoBits(TrailBitsKnown1); |
| |
| Known.resetAll(); |
| Known.Zero.setHighBits(LeadZ); |
| Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); |
| Known.One |= BottomKnown.getLoBits(ResultBitsKnown); |
| |
| // Only make use of no-wrap flags if we failed to compute the sign bit |
| // directly. This matters if the multiplication always overflows, in |
| // which case we prefer to follow the result of the direct computation, |
| // though as the program is invoking undefined behaviour we can choose |
| // whatever we like here. |
| if (isKnownNonNegative && !Known.isNegative()) |
| Known.makeNonNegative(); |
| else if (isKnownNegative && !Known.isNonNegative()) |
| Known.makeNegative(); |
| } |
| |
| void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, |
| KnownBits &Known) { |
| unsigned BitWidth = Known.getBitWidth(); |
| unsigned NumRanges = Ranges.getNumOperands() / 2; |
| assert(NumRanges >= 1); |
| |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| |
| for (unsigned i = 0; i < NumRanges; ++i) { |
| ConstantInt *Lower = |
| mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); |
| ConstantInt *Upper = |
| mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); |
| ConstantRange Range(Lower->getValue(), Upper->getValue()); |
| |
| // The first CommonPrefixBits of all values in Range are equal. |
| unsigned CommonPrefixBits = |
| (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); |
| |
| APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); |
| Known.One &= Range.getUnsignedMax() & Mask; |
| Known.Zero &= ~Range.getUnsignedMax() & Mask; |
| } |
| } |
| |
| static bool isEphemeralValueOf(const Instruction *I, const Value *E) { |
| SmallVector<const Value *, 16> WorkSet(1, I); |
| SmallPtrSet<const Value *, 32> Visited; |
| SmallPtrSet<const Value *, 16> EphValues; |
| |
| // The instruction defining an assumption's condition itself is always |
| // considered ephemeral to that assumption (even if it has other |
| // non-ephemeral users). See r246696's test case for an example. |
| if (is_contained(I->operands(), E)) |
| return true; |
| |
| while (!WorkSet.empty()) { |
| const Value *V = WorkSet.pop_back_val(); |
| if (!Visited.insert(V).second) |
| continue; |
| |
| // If all uses of this value are ephemeral, then so is this value. |
| if (llvm::all_of(V->users(), [&](const User *U) { |
| return EphValues.count(U); |
| })) { |
| if (V == E) |
| return true; |
| |
| if (V == I || isSafeToSpeculativelyExecute(V)) { |
| EphValues.insert(V); |
| if (const User *U = dyn_cast<User>(V)) |
| for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); |
| J != JE; ++J) |
| WorkSet.push_back(*J); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Is this an intrinsic that cannot be speculated but also cannot trap? |
| bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| default: break; |
| // FIXME: This list is repeated from NoTTI::getIntrinsicCost. |
| case Intrinsic::assume: |
| case Intrinsic::sideeffect: |
| case Intrinsic::dbg_declare: |
| case Intrinsic::dbg_value: |
| case Intrinsic::dbg_label: |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::objectsize: |
| case Intrinsic::ptr_annotation: |
| case Intrinsic::var_annotation: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool llvm::isValidAssumeForContext(const Instruction *Inv, |
| const Instruction *CxtI, |
| const DominatorTree *DT) { |
| // There are two restrictions on the use of an assume: |
| // 1. The assume must dominate the context (or the control flow must |
| // reach the assume whenever it reaches the context). |
| // 2. The context must not be in the assume's set of ephemeral values |
| // (otherwise we will use the assume to prove that the condition |
| // feeding the assume is trivially true, thus causing the removal of |
| // the assume). |
| |
| if (DT) { |
| if (DT->dominates(Inv, CxtI)) |
| return true; |
| } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { |
| // We don't have a DT, but this trivially dominates. |
| return true; |
| } |
| |
| // With or without a DT, the only remaining case we will check is if the |
| // instructions are in the same BB. Give up if that is not the case. |
| if (Inv->getParent() != CxtI->getParent()) |
| return false; |
| |
| // If we have a dom tree, then we now know that the assume doesn't dominate |
| // the other instruction. If we don't have a dom tree then we can check if |
| // the assume is first in the BB. |
| if (!DT) { |
| // Search forward from the assume until we reach the context (or the end |
| // of the block); the common case is that the assume will come first. |
| for (auto I = std::next(BasicBlock::const_iterator(Inv)), |
| IE = Inv->getParent()->end(); I != IE; ++I) |
| if (&*I == CxtI) |
| return true; |
| } |
| |
| // The context comes first, but they're both in the same block. Make sure |
| // there is nothing in between that might interrupt the control flow. |
| for (BasicBlock::const_iterator I = |
| std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); |
| I != IE; ++I) |
| if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) |
| return false; |
| |
| return !isEphemeralValueOf(Inv, CxtI); |
| } |
| |
| static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, |
| unsigned Depth, const Query &Q) { |
| // Use of assumptions is context-sensitive. If we don't have a context, we |
| // cannot use them! |
| if (!Q.AC || !Q.CxtI) |
| return; |
| |
| unsigned BitWidth = Known.getBitWidth(); |
| |
| // Note that the patterns below need to be kept in sync with the code |
| // in AssumptionCache::updateAffectedValues. |
| |
| for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { |
| if (!AssumeVH) |
| continue; |
| CallInst *I = cast<CallInst>(AssumeVH); |
| assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && |
| "Got assumption for the wrong function!"); |
| if (Q.isExcluded(I)) |
| continue; |
| |
| // Warning: This loop can end up being somewhat performance sensitive. |
| // We're running this loop for once for each value queried resulting in a |
| // runtime of ~O(#assumes * #values). |
| |
| assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && |
| "must be an assume intrinsic"); |
| |
| Value *Arg = I->getArgOperand(0); |
| |
| if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| assert(BitWidth == 1 && "assume operand is not i1?"); |
| Known.setAllOnes(); |
| return; |
| } |
| if (match(Arg, m_Not(m_Specific(V))) && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| assert(BitWidth == 1 && "assume operand is not i1?"); |
| Known.setAllZero(); |
| return; |
| } |
| |
| // The remaining tests are all recursive, so bail out if we hit the limit. |
| if (Depth == MaxDepth) |
| continue; |
| |
| Value *A, *B; |
| auto m_V = m_CombineOr(m_Specific(V), |
| m_CombineOr(m_PtrToInt(m_Specific(V)), |
| m_BitCast(m_Specific(V)))); |
| |
| CmpInst::Predicate Pred; |
| uint64_t C; |
| // assume(v = a) |
| if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| Known.Zero |= RHSKnown.Zero; |
| Known.One |= RHSKnown.One; |
| // assume(v & b = a) |
| } else if (match(Arg, |
| m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| KnownBits MaskKnown(BitWidth); |
| computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); |
| |
| // For those bits in the mask that are known to be one, we can propagate |
| // known bits from the RHS to V. |
| Known.Zero |= RHSKnown.Zero & MaskKnown.One; |
| Known.One |= RHSKnown.One & MaskKnown.One; |
| // assume(~(v & b) = a) |
| } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| KnownBits MaskKnown(BitWidth); |
| computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); |
| |
| // For those bits in the mask that are known to be one, we can propagate |
| // inverted known bits from the RHS to V. |
| Known.Zero |= RHSKnown.One & MaskKnown.One; |
| Known.One |= RHSKnown.Zero & MaskKnown.One; |
| // assume(v | b = a) |
| } else if (match(Arg, |
| m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| KnownBits BKnown(BitWidth); |
| computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); |
| |
| // For those bits in B that are known to be zero, we can propagate known |
| // bits from the RHS to V. |
| Known.Zero |= RHSKnown.Zero & BKnown.Zero; |
| Known.One |= RHSKnown.One & BKnown.Zero; |
| // assume(~(v | b) = a) |
| } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| KnownBits BKnown(BitWidth); |
| computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); |
| |
| // For those bits in B that are known to be zero, we can propagate |
| // inverted known bits from the RHS to V. |
| Known.Zero |= RHSKnown.One & BKnown.Zero; |
| Known.One |= RHSKnown.Zero & BKnown.Zero; |
| // assume(v ^ b = a) |
| } else if (match(Arg, |
| m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| KnownBits BKnown(BitWidth); |
| computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); |
| |
| // For those bits in B that are known to be zero, we can propagate known |
| // bits from the RHS to V. For those bits in B that are known to be one, |
| // we can propagate inverted known bits from the RHS to V. |
| Known.Zero |= RHSKnown.Zero & BKnown.Zero; |
| Known.One |= RHSKnown.One & BKnown.Zero; |
| Known.Zero |= RHSKnown.One & BKnown.One; |
| Known.One |= RHSKnown.Zero & BKnown.One; |
| // assume(~(v ^ b) = a) |
| } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| KnownBits BKnown(BitWidth); |
| computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); |
| |
| // For those bits in B that are known to be zero, we can propagate |
| // inverted known bits from the RHS to V. For those bits in B that are |
| // known to be one, we can propagate known bits from the RHS to V. |
| Known.Zero |= RHSKnown.One & BKnown.Zero; |
| Known.One |= RHSKnown.Zero & BKnown.Zero; |
| Known.Zero |= RHSKnown.Zero & BKnown.One; |
| Known.One |= RHSKnown.One & BKnown.One; |
| // assume(v << c = a) |
| } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT) && |
| C < BitWidth) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| // For those bits in RHS that are known, we can propagate them to known |
| // bits in V shifted to the right by C. |
| RHSKnown.Zero.lshrInPlace(C); |
| Known.Zero |= RHSKnown.Zero; |
| RHSKnown.One.lshrInPlace(C); |
| Known.One |= RHSKnown.One; |
| // assume(~(v << c) = a) |
| } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT) && |
| C < BitWidth) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| // For those bits in RHS that are known, we can propagate them inverted |
| // to known bits in V shifted to the right by C. |
| RHSKnown.One.lshrInPlace(C); |
| Known.Zero |= RHSKnown.One; |
| RHSKnown.Zero.lshrInPlace(C); |
| Known.One |= RHSKnown.Zero; |
| // assume(v >> c = a) |
| } else if (match(Arg, |
| m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT) && |
| C < BitWidth) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| // For those bits in RHS that are known, we can propagate them to known |
| // bits in V shifted to the right by C. |
| Known.Zero |= RHSKnown.Zero << C; |
| Known.One |= RHSKnown.One << C; |
| // assume(~(v >> c) = a) |
| } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), |
| m_Value(A))) && |
| Pred == ICmpInst::ICMP_EQ && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT) && |
| C < BitWidth) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| // For those bits in RHS that are known, we can propagate them inverted |
| // to known bits in V shifted to the right by C. |
| Known.Zero |= RHSKnown.One << C; |
| Known.One |= RHSKnown.Zero << C; |
| // assume(v >=_s c) where c is non-negative |
| } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_SGE && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| |
| if (RHSKnown.isNonNegative()) { |
| // We know that the sign bit is zero. |
| Known.makeNonNegative(); |
| } |
| // assume(v >_s c) where c is at least -1. |
| } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_SGT && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| |
| if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { |
| // We know that the sign bit is zero. |
| Known.makeNonNegative(); |
| } |
| // assume(v <=_s c) where c is negative |
| } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_SLE && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| |
| if (RHSKnown.isNegative()) { |
| // We know that the sign bit is one. |
| Known.makeNegative(); |
| } |
| // assume(v <_s c) where c is non-positive |
| } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_SLT && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| |
| if (RHSKnown.isZero() || RHSKnown.isNegative()) { |
| // We know that the sign bit is one. |
| Known.makeNegative(); |
| } |
| // assume(v <=_u c) |
| } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_ULE && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| |
| // Whatever high bits in c are zero are known to be zero. |
| Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); |
| // assume(v <_u c) |
| } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && |
| Pred == ICmpInst::ICMP_ULT && |
| isValidAssumeForContext(I, Q.CxtI, Q.DT)) { |
| KnownBits RHSKnown(BitWidth); |
| computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); |
| |
| // If the RHS is known zero, then this assumption must be wrong (nothing |
| // is unsigned less than zero). Signal a conflict and get out of here. |
| if (RHSKnown.isZero()) { |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| break; |
| } |
| |
| // Whatever high bits in c are zero are known to be zero (if c is a power |
| // of 2, then one more). |
| if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) |
| Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); |
| else |
| Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); |
| } |
| } |
| |
| // If assumptions conflict with each other or previous known bits, then we |
| // have a logical fallacy. It's possible that the assumption is not reachable, |
| // so this isn't a real bug. On the other hand, the program may have undefined |
| // behavior, or we might have a bug in the compiler. We can't assert/crash, so |
| // clear out the known bits, try to warn the user, and hope for the best. |
| if (Known.Zero.intersects(Known.One)) { |
| Known.resetAll(); |
| |
| if (Q.ORE) |
| Q.ORE->emit([&]() { |
| auto *CxtI = const_cast<Instruction *>(Q.CxtI); |
| return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", |
| CxtI) |
| << "Detected conflicting code assumptions. Program may " |
| "have undefined behavior, or compiler may have " |
| "internal error."; |
| }); |
| } |
| } |
| |
| /// Compute known bits from a shift operator, including those with a |
| /// non-constant shift amount. Known is the output of this function. Known2 is a |
| /// pre-allocated temporary with the same bit width as Known. KZF and KOF are |
| /// operator-specific functions that, given the known-zero or known-one bits |
| /// respectively, and a shift amount, compute the implied known-zero or |
| /// known-one bits of the shift operator's result respectively for that shift |
| /// amount. The results from calling KZF and KOF are conservatively combined for |
| /// all permitted shift amounts. |
| static void computeKnownBitsFromShiftOperator( |
| const Operator *I, KnownBits &Known, KnownBits &Known2, |
| unsigned Depth, const Query &Q, |
| function_ref<APInt(const APInt &, unsigned)> KZF, |
| function_ref<APInt(const APInt &, unsigned)> KOF) { |
| unsigned BitWidth = Known.getBitWidth(); |
| |
| if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| Known.Zero = KZF(Known.Zero, ShiftAmt); |
| Known.One = KOF(Known.One, ShiftAmt); |
| // If the known bits conflict, this must be an overflowing left shift, so |
| // the shift result is poison. We can return anything we want. Choose 0 for |
| // the best folding opportunity. |
| if (Known.hasConflict()) |
| Known.setAllZero(); |
| |
| return; |
| } |
| |
| computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); |
| |
| // If the shift amount could be greater than or equal to the bit-width of the |
| // LHS, the value could be poison, but bail out because the check below is |
| // expensive. TODO: Should we just carry on? |
| if ((~Known.Zero).uge(BitWidth)) { |
| Known.resetAll(); |
| return; |
| } |
| |
| // Note: We cannot use Known.Zero.getLimitedValue() here, because if |
| // BitWidth > 64 and any upper bits are known, we'll end up returning the |
| // limit value (which implies all bits are known). |
| uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); |
| uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); |
| |
| // It would be more-clearly correct to use the two temporaries for this |
| // calculation. Reusing the APInts here to prevent unnecessary allocations. |
| Known.resetAll(); |
| |
| // If we know the shifter operand is nonzero, we can sometimes infer more |
| // known bits. However this is expensive to compute, so be lazy about it and |
| // only compute it when absolutely necessary. |
| Optional<bool> ShifterOperandIsNonZero; |
| |
| // Early exit if we can't constrain any well-defined shift amount. |
| if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && |
| !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { |
| ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); |
| if (!*ShifterOperandIsNonZero) |
| return; |
| } |
| |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { |
| // Combine the shifted known input bits only for those shift amounts |
| // compatible with its known constraints. |
| if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) |
| continue; |
| if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) |
| continue; |
| // If we know the shifter is nonzero, we may be able to infer more known |
| // bits. This check is sunk down as far as possible to avoid the expensive |
| // call to isKnownNonZero if the cheaper checks above fail. |
| if (ShiftAmt == 0) { |
| if (!ShifterOperandIsNonZero.hasValue()) |
| ShifterOperandIsNonZero = |
| isKnownNonZero(I->getOperand(1), Depth + 1, Q); |
| if (*ShifterOperandIsNonZero) |
| continue; |
| } |
| |
| Known.Zero &= KZF(Known2.Zero, ShiftAmt); |
| Known.One &= KOF(Known2.One, ShiftAmt); |
| } |
| |
| // If the known bits conflict, the result is poison. Return a 0 and hope the |
| // caller can further optimize that. |
| if (Known.hasConflict()) |
| Known.setAllZero(); |
| } |
| |
| static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, |
| unsigned Depth, const Query &Q) { |
| unsigned BitWidth = Known.getBitWidth(); |
| |
| KnownBits Known2(Known); |
| switch (I->getOpcode()) { |
| default: break; |
| case Instruction::Load: |
| if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) |
| computeKnownBitsFromRangeMetadata(*MD, Known); |
| break; |
| case Instruction::And: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| Known.One &= Known2.One; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| Known.Zero |= Known2.Zero; |
| |
| // and(x, add (x, -1)) is a common idiom that always clears the low bit; |
| // here we handle the more general case of adding any odd number by |
| // matching the form add(x, add(x, y)) where y is odd. |
| // TODO: This could be generalized to clearing any bit set in y where the |
| // following bit is known to be unset in y. |
| Value *X = nullptr, *Y = nullptr; |
| if (!Known.Zero[0] && !Known.One[0] && |
| match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { |
| Known2.resetAll(); |
| computeKnownBits(Y, Known2, Depth + 1, Q); |
| if (Known2.countMinTrailingOnes() > 0) |
| Known.Zero.setBit(0); |
| } |
| break; |
| } |
| case Instruction::Or: |
| computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| Known.Zero &= Known2.Zero; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| Known.One |= Known2.One; |
| break; |
| case Instruction::Xor: { |
| computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); |
| Known.Zero = std::move(KnownZeroOut); |
| break; |
| } |
| case Instruction::Mul: { |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, |
| Known2, Depth, Q); |
| break; |
| } |
| case Instruction::UDiv: { |
| // For the purposes of computing leading zeros we can conservatively |
| // treat a udiv as a logical right shift by the power of 2 known to |
| // be less than the denominator. |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| unsigned LeadZ = Known2.countMinLeadingZeros(); |
| |
| Known2.resetAll(); |
| computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); |
| unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); |
| if (RHSMaxLeadingZeros != BitWidth) |
| LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); |
| |
| Known.Zero.setHighBits(LeadZ); |
| break; |
| } |
| case Instruction::Select: { |
| const Value *LHS, *RHS; |
| SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; |
| if (SelectPatternResult::isMinOrMax(SPF)) { |
| computeKnownBits(RHS, Known, Depth + 1, Q); |
| computeKnownBits(LHS, Known2, Depth + 1, Q); |
| } else { |
| computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); |
| computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); |
| } |
| |
| unsigned MaxHighOnes = 0; |
| unsigned MaxHighZeros = 0; |
| if (SPF == SPF_SMAX) { |
| // If both sides are negative, the result is negative. |
| if (Known.isNegative() && Known2.isNegative()) |
| // We can derive a lower bound on the result by taking the max of the |
| // leading one bits. |
| MaxHighOnes = |
| std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); |
| // If either side is non-negative, the result is non-negative. |
| else if (Known.isNonNegative() || Known2.isNonNegative()) |
| MaxHighZeros = 1; |
| } else if (SPF == SPF_SMIN) { |
| // If both sides are non-negative, the result is non-negative. |
| if (Known.isNonNegative() && Known2.isNonNegative()) |
| // We can derive an upper bound on the result by taking the max of the |
| // leading zero bits. |
| MaxHighZeros = std::max(Known.countMinLeadingZeros(), |
| Known2.countMinLeadingZeros()); |
| // If either side is negative, the result is negative. |
| else if (Known.isNegative() || Known2.isNegative()) |
| MaxHighOnes = 1; |
| } else if (SPF == SPF_UMAX) { |
| // We can derive a lower bound on the result by taking the max of the |
| // leading one bits. |
| MaxHighOnes = |
| std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); |
| } else if (SPF == SPF_UMIN) { |
| // We can derive an upper bound on the result by taking the max of the |
| // leading zero bits. |
| MaxHighZeros = |
| std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); |
| } else if (SPF == SPF_ABS) { |
| // RHS from matchSelectPattern returns the negation part of abs pattern. |
| // If the negate has an NSW flag we can assume the sign bit of the result |
| // will be 0 because that makes abs(INT_MIN) undefined. |
| if (cast<Instruction>(RHS)->hasNoSignedWrap()) |
| MaxHighZeros = 1; |
| } |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| if (MaxHighOnes > 0) |
| Known.One.setHighBits(MaxHighOnes); |
| if (MaxHighZeros > 0) |
| Known.Zero.setHighBits(MaxHighZeros); |
| break; |
| } |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| break; // Can't work with floating point. |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| // Fall through and handle them the same as zext/trunc. |
| LLVM_FALLTHROUGH; |
| case Instruction::ZExt: |
| case Instruction::Trunc: { |
| Type *SrcTy = I->getOperand(0)->getType(); |
| |
| unsigned SrcBitWidth; |
| // Note that we handle pointer operands here because of inttoptr/ptrtoint |
| // which fall through here. |
| Type *ScalarTy = SrcTy->getScalarType(); |
| SrcBitWidth = ScalarTy->isPointerTy() ? |
| Q.DL.getIndexTypeSizeInBits(ScalarTy) : |
| Q.DL.getTypeSizeInBits(ScalarTy); |
| |
| assert(SrcBitWidth && "SrcBitWidth can't be zero"); |
| Known = Known.zextOrTrunc(SrcBitWidth); |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| Known = Known.zextOrTrunc(BitWidth); |
| // Any top bits are known to be zero. |
| if (BitWidth > SrcBitWidth) |
| Known.Zero.setBitsFrom(SrcBitWidth); |
| break; |
| } |
| case Instruction::BitCast: { |
| Type *SrcTy = I->getOperand(0)->getType(); |
| if (SrcTy->isIntOrPtrTy() && |
| // TODO: For now, not handling conversions like: |
| // (bitcast i64 %x to <2 x i32>) |
| !I->getType()->isVectorTy()) { |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| break; |
| } |
| break; |
| } |
| case Instruction::SExt: { |
| // Compute the bits in the result that are not present in the input. |
| unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
| |
| Known = Known.trunc(SrcBitWidth); |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| case Instruction::Shl: { |
| // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { |
| APInt KZResult = KnownZero << ShiftAmt; |
| KZResult.setLowBits(ShiftAmt); // Low bits known 0. |
| // If this shift has "nsw" keyword, then the result is either a poison |
| // value or has the same sign bit as the first operand. |
| if (NSW && KnownZero.isSignBitSet()) |
| KZResult.setSignBit(); |
| return KZResult; |
| }; |
| |
| auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { |
| APInt KOResult = KnownOne << ShiftAmt; |
| if (NSW && KnownOne.isSignBitSet()) |
| KOResult.setSignBit(); |
| return KOResult; |
| }; |
| |
| computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); |
| break; |
| } |
| case Instruction::LShr: { |
| // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { |
| APInt KZResult = KnownZero.lshr(ShiftAmt); |
| // High bits known zero. |
| KZResult.setHighBits(ShiftAmt); |
| return KZResult; |
| }; |
| |
| auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { |
| return KnownOne.lshr(ShiftAmt); |
| }; |
| |
| computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); |
| break; |
| } |
| case Instruction::AShr: { |
| // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { |
| return KnownZero.ashr(ShiftAmt); |
| }; |
| |
| auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { |
| return KnownOne.ashr(ShiftAmt); |
| }; |
| |
| computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); |
| break; |
| } |
| case Instruction::Sub: { |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, |
| Known, Known2, Depth, Q); |
| break; |
| } |
| case Instruction::Add: { |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, |
| Known, Known2, Depth, Q); |
| break; |
| } |
| case Instruction::SRem: |
| if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| APInt RA = Rem->getValue().abs(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = RA - 1; |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| |
| // The low bits of the first operand are unchanged by the srem. |
| Known.Zero = Known2.Zero & LowBits; |
| Known.One = Known2.One & LowBits; |
| |
| // If the first operand is non-negative or has all low bits zero, then |
| // the upper bits are all zero. |
| if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) |
| Known.Zero |= ~LowBits; |
| |
| // If the first operand is negative and not all low bits are zero, then |
| // the upper bits are all one. |
| if (Known2.isNegative() && LowBits.intersects(Known2.One)) |
| Known.One |= ~LowBits; |
| |
| assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); |
| break; |
| } |
| } |
| |
| // The sign bit is the LHS's sign bit, except when the result of the |
| // remainder is zero. |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| // If it's known zero, our sign bit is also zero. |
| if (Known2.isNonNegative()) |
| Known.makeNonNegative(); |
| |
| break; |
| case Instruction::URem: { |
| if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| const APInt &RA = Rem->getValue(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = (RA - 1); |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| Known.Zero |= ~LowBits; |
| Known.One &= LowBits; |
| break; |
| } |
| } |
| |
| // Since the result is less than or equal to either operand, any leading |
| // zero bits in either operand must also exist in the result. |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); |
| |
| unsigned Leaders = |
| std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); |
| Known.resetAll(); |
| Known.Zero.setHighBits(Leaders); |
| break; |
| } |
| |
| case Instruction::Alloca: { |
| const AllocaInst *AI = cast<AllocaInst>(I); |
| unsigned Align = AI->getAlignment(); |
| if (Align == 0) |
| Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); |
| |
| if (Align > 0) |
| Known.Zero.setLowBits(countTrailingZeros(Align)); |
| break; |
| } |
| case Instruction::GetElementPtr: { |
| // Analyze all of the subscripts of this getelementptr instruction |
| // to determine if we can prove known low zero bits. |
| KnownBits LocalKnown(BitWidth); |
| computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); |
| unsigned TrailZ = LocalKnown.countMinTrailingZeros(); |
| |
| gep_type_iterator GTI = gep_type_begin(I); |
| for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { |
| Value *Index = I->getOperand(i); |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| // Handle struct member offset arithmetic. |
| |
| // Handle case when index is vector zeroinitializer |
| Constant *CIndex = cast<Constant>(Index); |
| if (CIndex->isZeroValue()) |
| continue; |
| |
| if (CIndex->getType()->isVectorTy()) |
| Index = CIndex->getSplatValue(); |
| |
| unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); |
| const StructLayout *SL = Q.DL.getStructLayout(STy); |
| uint64_t Offset = SL->getElementOffset(Idx); |
| TrailZ = std::min<unsigned>(TrailZ, |
| countTrailingZeros(Offset)); |
| } else { |
| // Handle array index arithmetic. |
| Type *IndexedTy = GTI.getIndexedType(); |
| if (!IndexedTy->isSized()) { |
| TrailZ = 0; |
| break; |
| } |
| unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); |
| uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); |
| LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); |
| computeKnownBits(Index, LocalKnown, Depth + 1, Q); |
| TrailZ = std::min(TrailZ, |
| unsigned(countTrailingZeros(TypeSize) + |
| LocalKnown.countMinTrailingZeros())); |
| } |
| } |
| |
| Known.Zero.setLowBits(TrailZ); |
| break; |
| } |
| case Instruction::PHI: { |
| const PHINode *P = cast<PHINode>(I); |
| // Handle the case of a simple two-predecessor recurrence PHI. |
| // There's a lot more that could theoretically be done here, but |
| // this is sufficient to catch some interesting cases. |
| if (P->getNumIncomingValues() == 2) { |
| for (unsigned i = 0; i != 2; ++i) { |
| Value *L = P->getIncomingValue(i); |
| Value *R = P->getIncomingValue(!i); |
| Operator *LU = dyn_cast<Operator>(L); |
| if (!LU) |
| continue; |
| unsigned Opcode = LU->getOpcode(); |
| // Check for operations that have the property that if |
| // both their operands have low zero bits, the result |
| // will have low zero bits. |
| if (Opcode == Instruction::Add || |
| Opcode == Instruction::Sub || |
| Opcode == Instruction::And || |
| Opcode == Instruction::Or || |
| Opcode == Instruction::Mul) { |
| Value *LL = LU->getOperand(0); |
| Value *LR = LU->getOperand(1); |
| // Find a recurrence. |
| if (LL == I) |
| L = LR; |
| else if (LR == I) |
| L = LL; |
| else |
| break; |
| // Ok, we have a PHI of the form L op= R. Check for low |
| // zero bits. |
| computeKnownBits(R, Known2, Depth + 1, Q); |
| |
| // We need to take the minimum number of known bits |
| KnownBits Known3(Known); |
| computeKnownBits(L, Known3, Depth + 1, Q); |
| |
| Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), |
| Known3.countMinTrailingZeros())); |
| |
| auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); |
| if (OverflowOp && OverflowOp->hasNoSignedWrap()) { |
| // If initial value of recurrence is nonnegative, and we are adding |
| // a nonnegative number with nsw, the result can only be nonnegative |
| // or poison value regardless of the number of times we execute the |
| // add in phi recurrence. If initial value is negative and we are |
| // adding a negative number with nsw, the result can only be |
| // negative or poison value. Similar arguments apply to sub and mul. |
| // |
| // (add non-negative, non-negative) --> non-negative |
| // (add negative, negative) --> negative |
| if (Opcode == Instruction::Add) { |
| if (Known2.isNonNegative() && Known3.isNonNegative()) |
| Known.makeNonNegative(); |
| else if (Known2.isNegative() && Known3.isNegative()) |
| Known.makeNegative(); |
| } |
| |
| // (sub nsw non-negative, negative) --> non-negative |
| // (sub nsw negative, non-negative) --> negative |
| else if (Opcode == Instruction::Sub && LL == I) { |
| if (Known2.isNonNegative() && Known3.isNegative()) |
| Known.makeNonNegative(); |
| else if (Known2.isNegative() && Known3.isNonNegative()) |
| Known.makeNegative(); |
| } |
| |
| // (mul nsw non-negative, non-negative) --> non-negative |
| else if (Opcode == Instruction::Mul && Known2.isNonNegative() && |
| Known3.isNonNegative()) |
| Known.makeNonNegative(); |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| // Unreachable blocks may have zero-operand PHI nodes. |
| if (P->getNumIncomingValues() == 0) |
| break; |
| |
| // Otherwise take the unions of the known bit sets of the operands, |
| // taking conservative care to avoid excessive recursion. |
| if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { |
| // Skip if every incoming value references to ourself. |
| if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) |
| break; |
| |
| Known.Zero.setAllBits(); |
| Known.One.setAllBits(); |
| for (Value *IncValue : P->incoming_values()) { |
| // Skip direct self references. |
| if (IncValue == P) continue; |
| |
| Known2 = KnownBits(BitWidth); |
| // Recurse, but cap the recursion to one level, because we don't |
| // want to waste time spinning around in loops. |
| computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); |
| Known.Zero &= Known2.Zero; |
| Known.One &= Known2.One; |
| // If all bits have been ruled out, there's no need to check |
| // more operands. |
| if (!Known.Zero && !Known.One) |
| break; |
| } |
| } |
| break; |
| } |
| case Instruction::Call: |
| case Instruction::Invoke: |
| // If range metadata is attached to this call, set known bits from that, |
| // and then intersect with known bits based on other properties of the |
| // function. |
| if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) |
| computeKnownBitsFromRangeMetadata(*MD, Known); |
| if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { |
| computeKnownBits(RV, Known2, Depth + 1, Q); |
| Known.Zero |= Known2.Zero; |
| Known.One |= Known2.One; |
| } |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::bitreverse: |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| Known.Zero |= Known2.Zero.reverseBits(); |
| Known.One |= Known2.One.reverseBits(); |
| break; |
| case Intrinsic::bswap: |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| Known.Zero |= Known2.Zero.byteSwap(); |
| Known.One |= Known2.One.byteSwap(); |
| break; |
| case Intrinsic::ctlz: { |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| // If we have a known 1, its position is our upper bound. |
| unsigned PossibleLZ = Known2.One.countLeadingZeros(); |
| // If this call is undefined for 0, the result will be less than 2^n. |
| if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) |
| PossibleLZ = std::min(PossibleLZ, BitWidth - 1); |
| unsigned LowBits = Log2_32(PossibleLZ)+1; |
| Known.Zero.setBitsFrom(LowBits); |
| break; |
| } |
| case Intrinsic::cttz: { |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| // If we have a known 1, its position is our upper bound. |
| unsigned PossibleTZ = Known2.One.countTrailingZeros(); |
| // If this call is undefined for 0, the result will be less than 2^n. |
| if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) |
| PossibleTZ = std::min(PossibleTZ, BitWidth - 1); |
| unsigned LowBits = Log2_32(PossibleTZ)+1; |
| Known.Zero.setBitsFrom(LowBits); |
| break; |
| } |
| case Intrinsic::ctpop: { |
| computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); |
| // We can bound the space the count needs. Also, bits known to be zero |
| // can't contribute to the population. |
| unsigned BitsPossiblySet = Known2.countMaxPopulation(); |
| unsigned LowBits = Log2_32(BitsPossiblySet)+1; |
| Known.Zero.setBitsFrom(LowBits); |
| // TODO: we could bound KnownOne using the lower bound on the number |
| // of bits which might be set provided by popcnt KnownOne2. |
| break; |
| } |
| case Intrinsic::x86_sse42_crc32_64_64: |
| Known.Zero.setBitsFrom(32); |
| break; |
| } |
| } |
| break; |
| case Instruction::ExtractElement: |
| // Look through extract element. At the moment we keep this simple and skip |
| // tracking the specific element. But at least we might find information |
| // valid for all elements of the vector (for example if vector is sign |
| // extended, shifted, etc). |
| computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); |
| break; |
| case Instruction::ExtractValue: |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { |
| const ExtractValueInst *EVI = cast<ExtractValueInst>(I); |
| if (EVI->getNumIndices() != 1) break; |
| if (EVI->getIndices()[0] == 0) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| computeKnownBitsAddSub(true, II->getArgOperand(0), |
| II->getArgOperand(1), false, Known, Known2, |
| Depth, Q); |
| break; |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| computeKnownBitsAddSub(false, II->getArgOperand(0), |
| II->getArgOperand(1), false, Known, Known2, |
| Depth, Q); |
| break; |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, |
| Known, Known2, Depth, Q); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /// Determine which bits of V are known to be either zero or one and return |
| /// them. |
| KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { |
| KnownBits Known(getBitWidth(V->getType(), Q.DL)); |
| computeKnownBits(V, Known, Depth, Q); |
| return Known; |
| } |
| |
| /// Determine which bits of V are known to be either zero or one and return |
| /// them in the Known bit set. |
| /// |
| /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that |
| /// we cannot optimize based on the assumption that it is zero without changing |
| /// it to be an explicit zero. If we don't change it to zero, other code could |
| /// optimized based on the contradictory assumption that it is non-zero. |
| /// Because instcombine aggressively folds operations with undef args anyway, |
| /// this won't lose us code quality. |
| /// |
| /// This function is defined on values with integer type, values with pointer |
| /// type, and vectors of integers. In the case |
| /// where V is a vector, known zero, and known one values are the |
| /// same width as the vector element, and the bit is set only if it is true |
| /// for all of the elements in the vector. |
| void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, |
| const Query &Q) { |
| assert(V && "No Value?"); |
| assert(Depth <= MaxDepth && "Limit Search Depth"); |
| unsigned BitWidth = Known.getBitWidth(); |
| |
| assert((V->getType()->isIntOrIntVectorTy(BitWidth) || |
| V->getType()->isPtrOrPtrVectorTy()) && |
| "Not integer or pointer type!"); |
| |
| Type *ScalarTy = V->getType()->getScalarType(); |
| unsigned ExpectedWidth = ScalarTy->isPointerTy() ? |
| Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); |
| assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); |
| (void)BitWidth; |
| (void)ExpectedWidth; |
| |
| const APInt *C; |
| if (match(V, m_APInt(C))) { |
| // We know all of the bits for a scalar constant or a splat vector constant! |
| Known.One = *C; |
| Known.Zero = ~Known.One; |
| return; |
| } |
| // Null and aggregate-zero are all-zeros. |
| if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { |
| Known.setAllZero(); |
| return; |
| } |
| // Handle a constant vector by taking the intersection of the known bits of |
| // each element. |
| if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { |
| // We know that CDS must be a vector of integers. Take the intersection of |
| // each element. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
| APInt Elt = CDS->getElementAsAPInt(i); |
| Known.Zero &= ~Elt; |
| Known.One &= Elt; |
| } |
| return; |
| } |
| |
| if (const auto *CV = dyn_cast<ConstantVector>(V)) { |
| // We know that CV must be a vector of integers. Take the intersection of |
| // each element. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| Constant *Element = CV->getAggregateElement(i); |
| auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); |
| if (!ElementCI) { |
| Known.resetAll(); |
| return; |
| } |
| const APInt &Elt = ElementCI->getValue(); |
| Known.Zero &= ~Elt; |
| Known.One &= Elt; |
| } |
| return; |
| } |
| |
| // Start out not knowing anything. |
| Known.resetAll(); |
| |
| // We can't imply anything about undefs. |
| if (isa<UndefValue>(V)) |
| return; |
| |
| // There's no point in looking through other users of ConstantData for |
| // assumptions. Confirm that we've handled them all. |
| assert(!isa<ConstantData>(V) && "Unhandled constant data!"); |
| |
| // Limit search depth. |
| // All recursive calls that increase depth must come after this. |
| if (Depth == MaxDepth) |
| return; |
| |
| // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has |
| // the bits of its aliasee. |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
| if (!GA->isInterposable()) |
| computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); |
| return; |
| } |
| |
| if (const Operator *I = dyn_cast<Operator>(V)) |
| computeKnownBitsFromOperator(I, Known, Depth, Q); |
| |
| // Aligned pointers have trailing zeros - refine Known.Zero set |
| if (V->getType()->isPointerTy()) { |
| unsigned Align = V->getPointerAlignment(Q.DL); |
| if (Align) |
| Known.Zero.setLowBits(countTrailingZeros(Align)); |
| } |
| |
| // computeKnownBitsFromAssume strictly refines Known. |
| // Therefore, we run them after computeKnownBitsFromOperator. |
| |
| // Check whether a nearby assume intrinsic can determine some known bits. |
| computeKnownBitsFromAssume(V, Known, Depth, Q); |
| |
| assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); |
| } |
| |
| /// Return true if the given value is known to have exactly one |
| /// bit set when defined. For vectors return true if every element is known to |
| /// be a power of two when defined. Supports values with integer or pointer |
| /// types and vectors of integers. |
| bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, |
| const Query &Q) { |
| assert(Depth <= MaxDepth && "Limit Search Depth"); |
| |
| // Attempt to match against constants. |
| if (OrZero && match(V, m_Power2OrZero())) |
| return true; |
| if (match(V, m_Power2())) |
| return true; |
| |
| // 1 << X is clearly a power of two if the one is not shifted off the end. If |
| // it is shifted off the end then the result is undefined. |
| if (match(V, m_Shl(m_One(), m_Value()))) |
| return true; |
| |
| // (signmask) >>l X is clearly a power of two if the one is not shifted off |
| // the bottom. If it is shifted off the bottom then the result is undefined. |
| if (match(V, m_LShr(m_SignMask(), m_Value()))) |
| return true; |
| |
| // The remaining tests are all recursive, so bail out if we hit the limit. |
| if (Depth++ == MaxDepth) |
| return false; |
| |
| Value *X = nullptr, *Y = nullptr; |
| // A shift left or a logical shift right of a power of two is a power of two |
| // or zero. |
| if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || |
| match(V, m_LShr(m_Value(X), m_Value())))) |
| return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); |
| |
| if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) |
| return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); |
| |
| if (const SelectInst *SI = dyn_cast<SelectInst>(V)) |
| return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && |
| isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); |
| |
| if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { |
| // A power of two and'd with anything is a power of two or zero. |
| if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || |
| isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) |
| return true; |
| // X & (-X) is always a power of two or zero. |
| if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) |
| return true; |
| return false; |
| } |
| |
| // Adding a power-of-two or zero to the same power-of-two or zero yields |
| // either the original power-of-two, a larger power-of-two or zero. |
| if (match(V, m_Add(m_Value(X), m_Value(Y)))) { |
| const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); |
| if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { |
| if (match(X, m_And(m_Specific(Y), m_Value())) || |
| match(X, m_And(m_Value(), m_Specific(Y)))) |
| if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) |
| return true; |
| if (match(Y, m_And(m_Specific(X), m_Value())) || |
| match(Y, m_And(m_Value(), m_Specific(X)))) |
| if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) |
| return true; |
| |
| unsigned BitWidth = V->getType()->getScalarSizeInBits(); |
| KnownBits LHSBits(BitWidth); |
| computeKnownBits(X, LHSBits, Depth, Q); |
| |
| KnownBits RHSBits(BitWidth); |
| computeKnownBits(Y, RHSBits, Depth, Q); |
| // If i8 V is a power of two or zero: |
| // ZeroBits: 1 1 1 0 1 1 1 1 |
| // ~ZeroBits: 0 0 0 1 0 0 0 0 |
| if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) |
| // If OrZero isn't set, we cannot give back a zero result. |
| // Make sure either the LHS or RHS has a bit set. |
| if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) |
| return true; |
| } |
| } |
| |
| // An exact divide or right shift can only shift off zero bits, so the result |
| // is a power of two only if the first operand is a power of two and not |
| // copying a sign bit (sdiv int_min, 2). |
| if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || |
| match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { |
| return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, |
| Depth, Q); |
| } |
| |
| return false; |
| } |
| |
| /// Test whether a GEP's result is known to be non-null. |
| /// |
| /// Uses properties inherent in a GEP to try to determine whether it is known |
| /// to be non-null. |
| /// |
| /// Currently this routine does not support vector GEPs. |
| static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, |
| const Query &Q) { |
| const Function *F = nullptr; |
| if (const Instruction *I = dyn_cast<Instruction>(GEP)) |
| F = I->getFunction(); |
| |
| if (!GEP->isInBounds() || |
| NullPointerIsDefined(F, GEP->getPointerAddressSpace())) |
| return false; |
| |
| // FIXME: Support vector-GEPs. |
| assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); |
| |
| // If the base pointer is non-null, we cannot walk to a null address with an |
| // inbounds GEP in address space zero. |
| if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) |
| return true; |
| |
| // Walk the GEP operands and see if any operand introduces a non-zero offset. |
| // If so, then the GEP cannot produce a null pointer, as doing so would |
| // inherently violate the inbounds contract within address space zero. |
| for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); |
| GTI != GTE; ++GTI) { |
| // Struct types are easy -- they must always be indexed by a constant. |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); |
| unsigned ElementIdx = OpC->getZExtValue(); |
| const StructLayout *SL = Q.DL.getStructLayout(STy); |
| uint64_t ElementOffset = SL->getElementOffset(ElementIdx); |
| if (ElementOffset > 0) |
| return true; |
| continue; |
| } |
| |
| // If we have a zero-sized type, the index doesn't matter. Keep looping. |
| if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) |
| continue; |
| |
| // Fast path the constant operand case both for efficiency and so we don't |
| // increment Depth when just zipping down an all-constant GEP. |
| if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { |
| if (!OpC->isZero()) |
| return true; |
| continue; |
| } |
| |
| // We post-increment Depth here because while isKnownNonZero increments it |
| // as well, when we pop back up that increment won't persist. We don't want |
| // to recurse 10k times just because we have 10k GEP operands. We don't |
| // bail completely out because we want to handle constant GEPs regardless |
| // of depth. |
| if (Depth++ >= MaxDepth) |
| continue; |
| |
| if (isKnownNonZero(GTI.getOperand(), Depth, Q)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isKnownNonNullFromDominatingCondition(const Value *V, |
| const Instruction *CtxI, |
| const DominatorTree *DT) { |
| assert(V->getType()->isPointerTy() && "V must be pointer type"); |
| assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); |
| |
| if (!CtxI || !DT) |
| return false; |
| |
| unsigned NumUsesExplored = 0; |
| for (auto *U : V->users()) { |
| // Avoid massive lists |
| if (NumUsesExplored >= DomConditionsMaxUses) |
| break; |
| NumUsesExplored++; |
| |
| // If the value is used as an argument to a call or invoke, then argument |
| // attributes may provide an answer about null-ness. |
| if (auto CS = ImmutableCallSite(U)) |
| if (auto *CalledFunc = CS.getCalledFunction()) |
| for (const Argument &Arg : CalledFunc->args()) |
| if (CS.getArgOperand(Arg.getArgNo()) == V && |
| Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) |
| return true; |
| |
| // Consider only compare instructions uniquely controlling a branch |
| CmpInst::Predicate Pred; |
| if (!match(const_cast<User *>(U), |
| m_c_ICmp(Pred, m_Specific(V), m_Zero())) || |
| (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) |
| continue; |
| |
| for (auto *CmpU : U->users()) { |
| if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { |
| assert(BI->isConditional() && "uses a comparison!"); |
| |
| BasicBlock *NonNullSuccessor = |
| BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); |
| BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); |
| if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) |
| return true; |
| } else if (Pred == ICmpInst::ICMP_NE && |
| match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && |
| DT->dominates(cast<Instruction>(CmpU), CtxI)) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Does the 'Range' metadata (which must be a valid MD_range operand list) |
| /// ensure that the value it's attached to is never Value? 'RangeType' is |
| /// is the type of the value described by the range. |
| static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { |
| const unsigned NumRanges = Ranges->getNumOperands() / 2; |
| assert(NumRanges >= 1); |
| for (unsigned i = 0; i < NumRanges; ++i) { |
| ConstantInt *Lower = |
| mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); |
| ConstantInt *Upper = |
| mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); |
| ConstantRange Range(Lower->getValue(), Upper->getValue()); |
| if (Range.contains(Value)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Return true if the given value is known to be non-zero when defined. For |
| /// vectors, return true if every element is known to be non-zero when |
| /// defined. For pointers, if the context instruction and dominator tree are |
| /// specified, perform context-sensitive analysis and return true if the |
| /// pointer couldn't possibly be null at the specified instruction. |
| /// Supports values with integer or pointer type and vectors of integers. |
| bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { |
| if (auto *C = dyn_cast<Constant>(V)) { |
| if (C->isNullValue()) |
| return false; |
| if (isa<ConstantInt>(C)) |
| // Must be non-zero due to null test above. |
| return true; |
| |
| // For constant vectors, check that all elements are undefined or known |
| // non-zero to determine that the whole vector is known non-zero. |
| if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { |
| for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt || Elt->isNullValue()) |
| return false; |
| if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) |
| return false; |
| } |
| return true; |
| } |
| |
| // A global variable in address space 0 is non null unless extern weak |
| // or an absolute symbol reference. Other address spaces may have null as a |
| // valid address for a global, so we can't assume anything. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && |
| GV->getType()->getAddressSpace() == 0) |
| return true; |
| } else |
| return false; |
| } |
| |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { |
| // If the possible ranges don't contain zero, then the value is |
| // definitely non-zero. |
| if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { |
| const APInt ZeroValue(Ty->getBitWidth(), 0); |
| if (rangeMetadataExcludesValue(Ranges, ZeroValue)) |
| return true; |
| } |
| } |
| } |
| |
| // Some of the tests below are recursive, so bail out if we hit the limit. |
| if (Depth++ >= MaxDepth) |
| return false; |
| |
| // Check for pointer simplifications. |
| if (V->getType()->isPointerTy()) { |
| // Alloca never returns null, malloc might. |
| if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) |
| return true; |
| |
| // A byval, inalloca, or nonnull argument is never null. |
| if (const Argument *A = dyn_cast<Argument>(V)) |
| if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) |
| return true; |
| |
| // A Load tagged with nonnull metadata is never null. |
| if (const LoadInst *LI = dyn_cast<LoadInst>(V)) |
| if (LI->getMetadata(LLVMContext::MD_nonnull)) |
| return true; |
| |
| if (auto CS = ImmutableCallSite(V)) { |
| if (CS.isReturnNonNull()) |
| return true; |
| if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) |
| return isKnownNonZero(RP, Depth, Q); |
| } |
| } |
| |
| |
| // Check for recursive pointer simplifications. |
| if (V->getType()->isPointerTy()) { |
| if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) |
| return true; |
| |
| if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) |
| if (isGEPKnownNonNull(GEP, Depth, Q)) |
| return true; |
| } |
| |
| unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); |
| |
| // X | Y != 0 if X != 0 or Y != 0. |
| Value *X = nullptr, *Y = nullptr; |
| if (match(V, m_Or(m_Value(X), m_Value(Y)))) |
| return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); |
| |
| // ext X != 0 if X != 0. |
| if (isa<SExtInst>(V) || isa<ZExtInst>(V)) |
| return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); |
| |
| // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined |
| // if the lowest bit is shifted off the end. |
| if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { |
| // shl nuw can't remove any non-zero bits. |
| const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); |
| if (BO->hasNoUnsignedWrap()) |
| return isKnownNonZero(X, Depth, Q); |
| |
| KnownBits Known(BitWidth); |
| computeKnownBits(X, Known, Depth, Q); |
| if (Known.One[0]) |
| return true; |
| } |
| // shr X, Y != 0 if X is negative. Note that the value of the shift is not |
| // defined if the sign bit is shifted off the end. |
| else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { |
| // shr exact can only shift out zero bits. |
| const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); |
| if (BO->isExact()) |
| return isKnownNonZero(X, Depth, Q); |
| |
| KnownBits Known = computeKnownBits(X, Depth, Q); |
| if (Known.isNegative()) |
| return true; |
| |
| // If the shifter operand is a constant, and all of the bits shifted |
| // out are known to be zero, and X is known non-zero then at least one |
| // non-zero bit must remain. |
| if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { |
| auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); |
| // Is there a known one in the portion not shifted out? |
| if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) |
| return true; |
| // Are all the bits to be shifted out known zero? |
| if (Known.countMinTrailingZeros() >= ShiftVal) |
| return isKnownNonZero(X, Depth, Q); |
| } |
| } |
| // div exact can only produce a zero if the dividend is zero. |
| else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { |
| return isKnownNonZero(X, Depth, Q); |
| } |
| // X + Y. |
| else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { |
| KnownBits XKnown = computeKnownBits(X, Depth, Q); |
| KnownBits YKnown = computeKnownBits(Y, Depth, Q); |
| |
| // If X and Y are both non-negative (as signed values) then their sum is not |
| // zero unless both X and Y are zero. |
| if (XKnown.isNonNegative() && YKnown.isNonNegative()) |
| if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) |
| return true; |
| |
| // If X and Y are both negative (as signed values) then their sum is not |
| // zero unless both X and Y equal INT_MIN. |
| if (XKnown.isNegative() && YKnown.isNegative()) { |
| APInt Mask = APInt::getSignedMaxValue(BitWidth); |
| // The sign bit of X is set. If some other bit is set then X is not equal |
| // to INT_MIN. |
| if (XKnown.One.intersects(Mask)) |
| return true; |
| // The sign bit of Y is set. If some other bit is set then Y is not equal |
| // to INT_MIN. |
| if (YKnown.One.intersects(Mask)) |
| return true; |
| } |
| |
| // The sum of a non-negative number and a power of two is not zero. |
| if (XKnown.isNonNegative() && |
| isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) |
| return true; |
| if (YKnown.isNonNegative() && |
| isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) |
| return true; |
| } |
| // X * Y. |
| else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { |
| const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); |
| // If X and Y are non-zero then so is X * Y as long as the multiplication |
| // does not overflow. |
| if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && |
| isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) |
| return true; |
| } |
| // (C ? X : Y) != 0 if X != 0 and Y != 0. |
| else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { |
| if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && |
| isKnownNonZero(SI->getFalseValue(), Depth, Q)) |
| return true; |
| } |
| // PHI |
| else if (const PHINode *PN = dyn_cast<PHINode>(V)) { |
| // Try and detect a recurrence that monotonically increases from a |
| // starting value, as these are common as induction variables. |
| if (PN->getNumIncomingValues() == 2) { |
| Value *Start = PN->getIncomingValue(0); |
| Value *Induction = PN->getIncomingValue(1); |
| if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) |
| std::swap(Start, Induction); |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { |
| if (!C->isZero() && !C->isNegative()) { |
| ConstantInt *X; |
| if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || |
| match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && |
| !X->isNegative()) |
| return true; |
| } |
| } |
| } |
| // Check if all incoming values are non-zero constant. |
| bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { |
| return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); |
| }); |
| if (AllNonZeroConstants) |
| return true; |
| } |
| |
| KnownBits Known(BitWidth); |
| computeKnownBits(V, Known, Depth, Q); |
| return Known.One != 0; |
| } |
| |
| /// Return true if V2 == V1 + X, where X is known non-zero. |
| static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { |
| const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); |
| if (!BO || BO->getOpcode() != Instruction::Add) |
| return false; |
| Value *Op = nullptr; |
| if (V2 == BO->getOperand(0)) |
| Op = BO->getOperand(1); |
| else if (V2 == BO->getOperand(1)) |
| Op = BO->getOperand(0); |
| else |
| return false; |
| return isKnownNonZero(Op, 0, Q); |
| } |
| |
| /// Return true if it is known that V1 != V2. |
| static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { |
| if (V1 == V2) |
| return false; |
| if (V1->getType() != V2->getType()) |
| // We can't look through casts yet. |
| return false; |
| if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) |
| return true; |
| |
| if (V1->getType()->isIntOrIntVectorTy()) { |
| // Are any known bits in V1 contradictory to known bits in V2? If V1 |
| // has a known zero where V2 has a known one, they must not be equal. |
| KnownBits Known1 = computeKnownBits(V1, 0, Q); |
| KnownBits Known2 = computeKnownBits(V2, 0, Q); |
| |
| if (Known1.Zero.intersects(Known2.One) || |
| Known2.Zero.intersects(Known1.One)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Return true if 'V & Mask' is known to be zero. We use this predicate to |
| /// simplify operations downstream. Mask is known to be zero for bits that V |
| /// cannot have. |
| /// |
| /// This function is defined on values with integer type, values with pointer |
| /// type, and vectors of integers. In the case |
| /// where V is a vector, the mask, known zero, and known one values are the |
| /// same width as the vector element, and the bit is set only if it is true |
| /// for all of the elements in the vector. |
| bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, |
| const Query &Q) { |
| KnownBits Known(Mask.getBitWidth()); |
| computeKnownBits(V, Known, Depth, Q); |
| return Mask.isSubsetOf(Known.Zero); |
| } |
| |
| /// For vector constants, loop over the elements and find the constant with the |
| /// minimum number of sign bits. Return 0 if the value is not a vector constant |
| /// or if any element was not analyzed; otherwise, return the count for the |
| /// element with the minimum number of sign bits. |
| static unsigned computeNumSignBitsVectorConstant(const Value *V, |
| unsigned TyBits) { |
| const auto *CV = dyn_cast<Constant>(V); |
| if (!CV || !CV->getType()->isVectorTy()) |
| return 0; |
| |
| unsigned MinSignBits = TyBits; |
| unsigned NumElts = CV->getType()->getVectorNumElements(); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // If we find a non-ConstantInt, bail out. |
| auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); |
| if (!Elt) |
| return 0; |
| |
| MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); |
| } |
| |
| return MinSignBits; |
| } |
| |
| static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, |
| const Query &Q); |
| |
| static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, |
| const Query &Q) { |
| unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); |
| assert(Result > 0 && "At least one sign bit needs to be present!"); |
| return Result; |
| } |
| |
| /// Return the number of times the sign bit of the register is replicated into |
| /// the other bits. We know that at least 1 bit is always equal to the sign bit |
| /// (itself), but other cases can give us information. For example, immediately |
| /// after an "ashr X, 2", we know that the top 3 bits are all equal to each |
| /// other, so we return 3. For vectors, return the number of sign bits for the |
| /// vector element with the minimum number of known sign bits. |
| static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, |
| const Query &Q) { |
| assert(Depth <= MaxDepth && "Limit Search Depth"); |
| |
| // We return the minimum number of sign bits that are guaranteed to be present |
| // in V, so for undef we have to conservatively return 1. We don't have the |
| // same behavior for poison though -- that's a FIXME today. |
| |
| Type *ScalarTy = V->getType()->getScalarType(); |
| unsigned TyBits = ScalarTy->isPointerTy() ? |
| Q.DL.getIndexTypeSizeInBits(ScalarTy) : |
| Q.DL.getTypeSizeInBits(ScalarTy); |
| |
| unsigned Tmp, Tmp2; |
| unsigned FirstAnswer = 1; |
| |
| // Note that ConstantInt is handled by the general computeKnownBits case |
| // below. |
| |
| if (Depth == MaxDepth) |
| return 1; // Limit search depth. |
| |
| const Operator *U = dyn_cast<Operator>(V); |
| switch (Operator::getOpcode(V)) { |
| default: break; |
| case Instruction::SExt: |
| Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); |
| return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; |
| |
| case Instruction::SDiv: { |
| const APInt *Denominator; |
| // sdiv X, C -> adds log(C) sign bits. |
| if (match(U->getOperand(1), m_APInt(Denominator))) { |
| |
| // Ignore non-positive denominator. |
| if (!Denominator->isStrictlyPositive()) |
| break; |
| |
| // Calculate the incoming numerator bits. |
| unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| |
| // Add floor(log(C)) bits to the numerator bits. |
| return std::min(TyBits, NumBits + Denominator->logBase2()); |
| } |
| break; |
| } |
| |
| case Instruction::SRem: { |
| const APInt *Denominator; |
| // srem X, C -> we know that the result is within [-C+1,C) when C is a |
| // positive constant. This let us put a lower bound on the number of sign |
| // bits. |
| if (match(U->getOperand(1), m_APInt(Denominator))) { |
| |
| // Ignore non-positive denominator. |
| if (!Denominator->isStrictlyPositive()) |
| break; |
| |
| // Calculate the incoming numerator bits. SRem by a positive constant |
| // can't lower the number of sign bits. |
| unsigned NumrBits = |
| ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| |
| // Calculate the leading sign bit constraints by examining the |
| // denominator. Given that the denominator is positive, there are two |
| // cases: |
| // |
| // 1. the numerator is positive. The result range is [0,C) and [0,C) u< |
| // (1 << ceilLogBase2(C)). |
| // |
| // 2. the numerator is negative. Then the result range is (-C,0] and |
| // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). |
| // |
| // Thus a lower bound on the number of sign bits is `TyBits - |
| // ceilLogBase2(C)`. |
| |
| unsigned ResBits = TyBits - Denominator->ceilLogBase2(); |
| return std::max(NumrBits, ResBits); |
| } |
| break; |
| } |
| |
| case Instruction::AShr: { |
| Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| // ashr X, C -> adds C sign bits. Vectors too. |
| const APInt *ShAmt; |
| if (match(U->getOperand(1), m_APInt(ShAmt))) { |
| if (ShAmt->uge(TyBits)) |
| break; // Bad shift. |
| unsigned ShAmtLimited = ShAmt->getZExtValue(); |
| Tmp += ShAmtLimited; |
| if (Tmp > TyBits) Tmp = TyBits; |
| } |
| return Tmp; |
| } |
| case Instruction::Shl: { |
| const APInt *ShAmt; |
| if (match(U->getOperand(1), m_APInt(ShAmt))) { |
| // shl destroys sign bits. |
| Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| if (ShAmt->uge(TyBits) || // Bad shift. |
| ShAmt->uge(Tmp)) break; // Shifted all sign bits out. |
| Tmp2 = ShAmt->getZExtValue(); |
| return Tmp - Tmp2; |
| } |
| break; |
| } |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: // NOT is handled here. |
| // Logical binary ops preserve the number of sign bits at the worst. |
| Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| if (Tmp != 1) { |
| Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); |
| FirstAnswer = std::min(Tmp, Tmp2); |
| // We computed what we know about the sign bits as our first |
| // answer. Now proceed to the generic code that uses |
| // computeKnownBits, and pick whichever answer is better. |
| } |
| break; |
| |
| case Instruction::Select: |
| Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); |
| if (Tmp == 1) break; |
| Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); |
| return std::min(Tmp, Tmp2); |
| |
| case Instruction::Add: |
| // Add can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| if (Tmp == 1) break; |
| |
| // Special case decrementing a value (ADD X, -1): |
| if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) |
| if (CRHS->isAllOnesValue()) { |
| KnownBits Known(TyBits); |
| computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); |
| |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((Known.Zero | 1).isAllOnesValue()) |
| return TyBits; |
| |
| // If we are subtracting one from a positive number, there is no carry |
| // out of the result. |
| if (Known.isNonNegative()) |
| return Tmp; |
| } |
| |
| Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); |
| if (Tmp2 == 1) break; |
| return std::min(Tmp, Tmp2)-1; |
| |
| case Instruction::Sub: |
| Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); |
| if (Tmp2 == 1) break; |
| |
| // Handle NEG. |
| if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) |
| if (CLHS->isNullValue()) { |
| KnownBits Known(TyBits); |
| computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((Known.Zero | 1).isAllOnesValue()) |
| return TyBits; |
| |
| // If the input is known to be positive (the sign bit is known clear), |
| // the output of the NEG has the same number of sign bits as the input. |
| if (Known.isNonNegative()) |
| return Tmp2; |
| |
| // Otherwise, we treat this like a SUB. |
| } |
| |
| // Sub can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| if (Tmp == 1) break; |
| return std::min(Tmp, Tmp2)-1; |
| |
| case Instruction::Mul: { |
| // The output of the Mul can be at most twice the valid bits in the inputs. |
| unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| if (SignBitsOp0 == 1) break; |
| unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); |
| if (SignBitsOp1 == 1) break; |
| unsigned OutValidBits = |
| (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); |
| return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; |
| } |
| |
| case Instruction::PHI: { |
| const PHINode *PN = cast<PHINode>(U); |
| unsigned NumIncomingValues = PN->getNumIncomingValues(); |
| // Don't analyze large in-degree PHIs. |
| if (NumIncomingValues > 4) break; |
| // Unreachable blocks may have zero-operand PHI nodes. |
| if (NumIncomingValues == 0) break; |
| |
| // Take the minimum of all incoming values. This can't infinitely loop |
| // because of our depth threshold. |
| Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); |
| for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { |
| if (Tmp == 1) return Tmp; |
| Tmp = std::min( |
| Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); |
| } |
| return Tmp; |
| } |
| |
| case Instruction::Trunc: |
| // FIXME: it's tricky to do anything useful for this, but it is an important |
| // case for targets like X86. |
| break; |
| |
| case Instruction::ExtractElement: |
| // Look through extract element. At the moment we keep this simple and skip |
| // tracking the specific element. But at least we might find information |
| // valid for all elements of the vector (for example if vector is sign |
| // extended, shifted, etc). |
| return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); |
| } |
| |
| // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| // use this information. |
| |
| // If we can examine all elements of a vector constant successfully, we're |
| // done (we can't do any better than that). If not, keep trying. |
| if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) |
| return VecSignBits; |
| |
| KnownBits Known(TyBits); |
| computeKnownBits(V, Known, Depth, Q); |
| |
| // If we know that the sign bit is either zero or one, determine the number of |
| // identical bits in the top of the input value. |
| return std::max(FirstAnswer, Known.countMinSignBits()); |
| } |
| |
| /// This function computes the integer multiple of Base that equals V. |
| /// If successful, it returns true and returns the multiple in |
| /// Multiple. If unsuccessful, it returns false. It looks |
| /// through SExt instructions only if LookThroughSExt is true. |
| bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, |
| bool LookThroughSExt, unsigned Depth) { |
| const unsigned MaxDepth = 6; |
| |
| assert(V && "No Value?"); |
| assert(Depth <= MaxDepth && "Limit Search Depth"); |
| assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); |
| |
| Type *T = V->getType(); |
| |
| ConstantInt *CI = dyn_cast<ConstantInt>(V); |
| |
| if (Base == 0) |
| return false; |
| |
| if (Base == 1) { |
| Multiple = V; |
| return true; |
| } |
| |
| ConstantExpr *CO = dyn_cast<ConstantExpr>(V); |
| Constant *BaseVal = ConstantInt::get(T, Base); |
| if (CO && CO == BaseVal) { |
| // Multiple is 1. |
| Multiple = ConstantInt::get(T, 1); |
| return true; |
| } |
| |
| if (CI && CI->getZExtValue() % Base == 0) { |
| Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); |
| return true; |
| } |
| |
| if (Depth == MaxDepth) return false; // Limit search depth. |
| |
| Operator *I = dyn_cast<Operator>(V); |
| if (!I) return false; |
| |
| switch (I->getOpcode()) { |
| default: break; |
| case Instruction::SExt: |
| if (!LookThroughSExt) return false; |
| // otherwise fall through to ZExt |
| LLVM_FALLTHROUGH; |
| case Instruction::ZExt: |
| return ComputeMultiple(I->getOperand(0), Base, Multiple, |
| LookThroughSExt, Depth+1); |
| case Instruction::Shl: |
| case Instruction::Mul: { |
| Value *Op0 = I->getOperand(0); |
| Value *Op1 = I->getOperand(1); |
| |
| if (I->getOpcode() == Instruction::Shl) { |
| ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); |
| if (!Op1CI) return false; |
| // Turn Op0 << Op1 into Op0 * 2^Op1 |
| APInt Op1Int = Op1CI->getValue(); |
| uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); |
| APInt API(Op1Int.getBitWidth(), 0); |
| API.setBit(BitToSet); |
| Op1 = ConstantInt::get(V->getContext(), API); |
| } |
| |
| Value *Mul0 = nullptr; |
| if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { |
| if (Constant *Op1C = dyn_cast<Constant>(Op1)) |
| if (Constant *MulC = dyn_cast<Constant>(Mul0)) { |
| if (Op1C->getType()->getPrimitiveSizeInBits() < |
| MulC->getType()->getPrimitiveSizeInBits()) |
| Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); |
| if (Op1C->getType()->getPrimitiveSizeInBits() > |
| MulC->getType()->getPrimitiveSizeInBits()) |