| //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the RAGreedy function pass for register allocation in |
| // optimized builds. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AllocationOrder.h" |
| #include "InterferenceCache.h" |
| #include "LiveDebugVariables.h" |
| #include "RegAllocBase.h" |
| #include "SpillPlacement.h" |
| #include "Spiller.h" |
| #include "SplitKit.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/EdgeBundles.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervalUnion.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LiveRangeEdit.h" |
| #include "llvm/CodeGen/LiveRegMatrix.h" |
| #include "llvm/CodeGen/LiveStacks.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <queue> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| STATISTIC(NumGlobalSplits, "Number of split global live ranges"); |
| STATISTIC(NumLocalSplits, "Number of split local live ranges"); |
| STATISTIC(NumEvicted, "Number of interferences evicted"); |
| |
| static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( |
| "split-spill-mode", cl::Hidden, |
| cl::desc("Spill mode for splitting live ranges"), |
| cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), |
| clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), |
| clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), |
| cl::init(SplitEditor::SM_Speed)); |
| |
| static cl::opt<unsigned> |
| LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, |
| cl::desc("Last chance recoloring max depth"), |
| cl::init(5)); |
| |
| static cl::opt<unsigned> LastChanceRecoloringMaxInterference( |
| "lcr-max-interf", cl::Hidden, |
| cl::desc("Last chance recoloring maximum number of considered" |
| " interference at a time"), |
| cl::init(8)); |
| |
| static cl::opt<bool> ExhaustiveSearch( |
| "exhaustive-register-search", cl::NotHidden, |
| cl::desc("Exhaustive Search for registers bypassing the depth " |
| "and interference cutoffs of last chance recoloring"), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableLocalReassignment( |
| "enable-local-reassign", cl::Hidden, |
| cl::desc("Local reassignment can yield better allocation decisions, but " |
| "may be compile time intensive"), |
| cl::init(false)); |
| |
| static cl::opt<bool> EnableDeferredSpilling( |
| "enable-deferred-spilling", cl::Hidden, |
| cl::desc("Instead of spilling a variable right away, defer the actual " |
| "code insertion to the end of the allocation. That way the " |
| "allocator might still find a suitable coloring for this " |
| "variable because of other evicted variables."), |
| cl::init(false)); |
| |
| static cl::opt<unsigned> |
| HugeSizeForSplit("huge-size-for-split", cl::Hidden, |
| cl::desc("A threshold of live range size which may cause " |
| "high compile time cost in global splitting."), |
| cl::init(5000)); |
| |
| // FIXME: Find a good default for this flag and remove the flag. |
| static cl::opt<unsigned> |
| CSRFirstTimeCost("regalloc-csr-first-time-cost", |
| cl::desc("Cost for first time use of callee-saved register."), |
| cl::init(0), cl::Hidden); |
| |
| static cl::opt<bool> ConsiderLocalIntervalCost( |
| "condsider-local-interval-cost", cl::Hidden, |
| cl::desc("Consider the cost of local intervals created by a split " |
| "candidate when choosing the best split candidate."), |
| cl::init(false)); |
| |
| static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", |
| createGreedyRegisterAllocator); |
| |
| namespace { |
| |
| class RAGreedy : public MachineFunctionPass, |
| public RegAllocBase, |
| private LiveRangeEdit::Delegate { |
| // Convenient shortcuts. |
| using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; |
| using SmallLISet = SmallPtrSet<LiveInterval *, 4>; |
| using SmallVirtRegSet = SmallSet<unsigned, 16>; |
| |
| // context |
| MachineFunction *MF; |
| |
| // Shortcuts to some useful interface. |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| RegisterClassInfo RCI; |
| |
| // analyses |
| SlotIndexes *Indexes; |
| MachineBlockFrequencyInfo *MBFI; |
| MachineDominatorTree *DomTree; |
| MachineLoopInfo *Loops; |
| MachineOptimizationRemarkEmitter *ORE; |
| EdgeBundles *Bundles; |
| SpillPlacement *SpillPlacer; |
| LiveDebugVariables *DebugVars; |
| AliasAnalysis *AA; |
| |
| // state |
| std::unique_ptr<Spiller> SpillerInstance; |
| PQueue Queue; |
| unsigned NextCascade; |
| |
| // Live ranges pass through a number of stages as we try to allocate them. |
| // Some of the stages may also create new live ranges: |
| // |
| // - Region splitting. |
| // - Per-block splitting. |
| // - Local splitting. |
| // - Spilling. |
| // |
| // Ranges produced by one of the stages skip the previous stages when they are |
| // dequeued. This improves performance because we can skip interference checks |
| // that are unlikely to give any results. It also guarantees that the live |
| // range splitting algorithm terminates, something that is otherwise hard to |
| // ensure. |
| enum LiveRangeStage { |
| /// Newly created live range that has never been queued. |
| RS_New, |
| |
| /// Only attempt assignment and eviction. Then requeue as RS_Split. |
| RS_Assign, |
| |
| /// Attempt live range splitting if assignment is impossible. |
| RS_Split, |
| |
| /// Attempt more aggressive live range splitting that is guaranteed to make |
| /// progress. This is used for split products that may not be making |
| /// progress. |
| RS_Split2, |
| |
| /// Live range will be spilled. No more splitting will be attempted. |
| RS_Spill, |
| |
| |
| /// Live range is in memory. Because of other evictions, it might get moved |
| /// in a register in the end. |
| RS_Memory, |
| |
| /// There is nothing more we can do to this live range. Abort compilation |
| /// if it can't be assigned. |
| RS_Done |
| }; |
| |
| // Enum CutOffStage to keep a track whether the register allocation failed |
| // because of the cutoffs encountered in last chance recoloring. |
| // Note: This is used as bitmask. New value should be next power of 2. |
| enum CutOffStage { |
| // No cutoffs encountered |
| CO_None = 0, |
| |
| // lcr-max-depth cutoff encountered |
| CO_Depth = 1, |
| |
| // lcr-max-interf cutoff encountered |
| CO_Interf = 2 |
| }; |
| |
| uint8_t CutOffInfo; |
| |
| #ifndef NDEBUG |
| static const char *const StageName[]; |
| #endif |
| |
| // RegInfo - Keep additional information about each live range. |
| struct RegInfo { |
| LiveRangeStage Stage = RS_New; |
| |
| // Cascade - Eviction loop prevention. See canEvictInterference(). |
| unsigned Cascade = 0; |
| |
| RegInfo() = default; |
| }; |
| |
| IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; |
| |
| LiveRangeStage getStage(const LiveInterval &VirtReg) const { |
| return ExtraRegInfo[VirtReg.reg].Stage; |
| } |
| |
| void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { |
| ExtraRegInfo.resize(MRI->getNumVirtRegs()); |
| ExtraRegInfo[VirtReg.reg].Stage = Stage; |
| } |
| |
| template<typename Iterator> |
| void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { |
| ExtraRegInfo.resize(MRI->getNumVirtRegs()); |
| for (;Begin != End; ++Begin) { |
| unsigned Reg = *Begin; |
| if (ExtraRegInfo[Reg].Stage == RS_New) |
| ExtraRegInfo[Reg].Stage = NewStage; |
| } |
| } |
| |
| /// Cost of evicting interference. |
| struct EvictionCost { |
| unsigned BrokenHints = 0; ///< Total number of broken hints. |
| float MaxWeight = 0; ///< Maximum spill weight evicted. |
| |
| EvictionCost() = default; |
| |
| bool isMax() const { return BrokenHints == ~0u; } |
| |
| void setMax() { BrokenHints = ~0u; } |
| |
| void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } |
| |
| bool operator<(const EvictionCost &O) const { |
| return std::tie(BrokenHints, MaxWeight) < |
| std::tie(O.BrokenHints, O.MaxWeight); |
| } |
| }; |
| |
| /// EvictionTrack - Keeps track of past evictions in order to optimize region |
| /// split decision. |
| class EvictionTrack { |
| |
| public: |
| using EvictorInfo = |
| std::pair<unsigned /* evictor */, unsigned /* physreg */>; |
| using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; |
| |
| private: |
| /// Each Vreg that has been evicted in the last stage of selectOrSplit will |
| /// be mapped to the evictor Vreg and the PhysReg it was evicted from. |
| EvicteeInfo Evictees; |
| |
| public: |
| /// Clear all eviction information. |
| void clear() { Evictees.clear(); } |
| |
| /// Clear eviction information for the given evictee Vreg. |
| /// E.g. when Vreg get's a new allocation, the old eviction info is no |
| /// longer relevant. |
| /// \param Evictee The evictee Vreg for whom we want to clear collected |
| /// eviction info. |
| void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } |
| |
| /// Track new eviction. |
| /// The Evictor vreg has evicted the Evictee vreg from Physreg. |
| /// \param PhysReg The phisical register Evictee was evicted from. |
| /// \param Evictor The evictor Vreg that evicted Evictee. |
| /// \param Evictee The evictee Vreg. |
| void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { |
| Evictees[Evictee].first = Evictor; |
| Evictees[Evictee].second = PhysReg; |
| } |
| |
| /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. |
| /// \param Evictee The evictee vreg. |
| /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if |
| /// nobody has evicted Evictee from PhysReg. |
| EvictorInfo getEvictor(unsigned Evictee) { |
| if (Evictees.count(Evictee)) { |
| return Evictees[Evictee]; |
| } |
| |
| return EvictorInfo(0, 0); |
| } |
| }; |
| |
| // Keeps track of past evictions in order to optimize region split decision. |
| EvictionTrack LastEvicted; |
| |
| // splitting state. |
| std::unique_ptr<SplitAnalysis> SA; |
| std::unique_ptr<SplitEditor> SE; |
| |
| /// Cached per-block interference maps |
| InterferenceCache IntfCache; |
| |
| /// All basic blocks where the current register has uses. |
| SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; |
| |
| /// Global live range splitting candidate info. |
| struct GlobalSplitCandidate { |
| // Register intended for assignment, or 0. |
| unsigned PhysReg; |
| |
| // SplitKit interval index for this candidate. |
| unsigned IntvIdx; |
| |
| // Interference for PhysReg. |
| InterferenceCache::Cursor Intf; |
| |
| // Bundles where this candidate should be live. |
| BitVector LiveBundles; |
| SmallVector<unsigned, 8> ActiveBlocks; |
| |
| void reset(InterferenceCache &Cache, unsigned Reg) { |
| PhysReg = Reg; |
| IntvIdx = 0; |
| Intf.setPhysReg(Cache, Reg); |
| LiveBundles.clear(); |
| ActiveBlocks.clear(); |
| } |
| |
| // Set B[i] = C for every live bundle where B[i] was NoCand. |
| unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { |
| unsigned Count = 0; |
| for (unsigned i : LiveBundles.set_bits()) |
| if (B[i] == NoCand) { |
| B[i] = C; |
| Count++; |
| } |
| return Count; |
| } |
| }; |
| |
| /// Candidate info for each PhysReg in AllocationOrder. |
| /// This vector never shrinks, but grows to the size of the largest register |
| /// class. |
| SmallVector<GlobalSplitCandidate, 32> GlobalCand; |
| |
| enum : unsigned { NoCand = ~0u }; |
| |
| /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to |
| /// NoCand which indicates the stack interval. |
| SmallVector<unsigned, 32> BundleCand; |
| |
| /// Callee-save register cost, calculated once per machine function. |
| BlockFrequency CSRCost; |
| |
| /// Run or not the local reassignment heuristic. This information is |
| /// obtained from the TargetSubtargetInfo. |
| bool EnableLocalReassign; |
| |
| /// Enable or not the consideration of the cost of local intervals created |
| /// by a split candidate when choosing the best split candidate. |
| bool EnableAdvancedRASplitCost; |
| |
| /// Set of broken hints that may be reconciled later because of eviction. |
| SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; |
| |
| public: |
| RAGreedy(); |
| |
| /// Return the pass name. |
| StringRef getPassName() const override { return "Greedy Register Allocator"; } |
| |
| /// RAGreedy analysis usage. |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| void releaseMemory() override; |
| Spiller &spiller() override { return *SpillerInstance; } |
| void enqueue(LiveInterval *LI) override; |
| LiveInterval *dequeue() override; |
| unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; |
| void aboutToRemoveInterval(LiveInterval &) override; |
| |
| /// Perform register allocation. |
| bool runOnMachineFunction(MachineFunction &mf) override; |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoPHIs); |
| } |
| |
| static char ID; |
| |
| private: |
| unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, |
| SmallVirtRegSet &, unsigned = 0); |
| |
| bool LRE_CanEraseVirtReg(unsigned) override; |
| void LRE_WillShrinkVirtReg(unsigned) override; |
| void LRE_DidCloneVirtReg(unsigned, unsigned) override; |
| void enqueue(PQueue &CurQueue, LiveInterval *LI); |
| LiveInterval *dequeue(PQueue &CurQueue); |
| |
| BlockFrequency calcSpillCost(); |
| bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); |
| void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); |
| void growRegion(GlobalSplitCandidate &Cand); |
| bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, |
| unsigned BBNumber, |
| const AllocationOrder &Order); |
| bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, |
| GlobalSplitCandidate &Cand, unsigned BBNumber, |
| const AllocationOrder &Order); |
| BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, |
| const AllocationOrder &Order, |
| bool *CanCauseEvictionChain); |
| bool calcCompactRegion(GlobalSplitCandidate&); |
| void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); |
| void calcGapWeights(unsigned, SmallVectorImpl<float>&); |
| unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg); |
| bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); |
| bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); |
| bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, |
| SlotIndex Start, SlotIndex End, |
| EvictionCost &MaxCost); |
| unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, |
| LiveInterval &VirtReg, SlotIndex Start, |
| SlotIndex End, float *BestEvictWeight); |
| void evictInterference(LiveInterval&, unsigned, |
| SmallVectorImpl<unsigned>&); |
| bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, |
| SmallLISet &RecoloringCandidates, |
| const SmallVirtRegSet &FixedRegisters); |
| |
| unsigned tryAssign(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&); |
| unsigned tryEvict(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&, unsigned = ~0u); |
| unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&); |
| unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg); |
| /// Calculate cost of region splitting. |
| unsigned calculateRegionSplitCost(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| BlockFrequency &BestCost, |
| unsigned &NumCands, bool IgnoreCSR, |
| bool *CanCauseEvictionChain = nullptr); |
| /// Perform region splitting. |
| unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, |
| bool HasCompact, |
| SmallVectorImpl<unsigned> &NewVRegs); |
| /// Check other options before using a callee-saved register for the first |
| /// time. |
| unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, |
| unsigned PhysReg, unsigned &CostPerUseLimit, |
| SmallVectorImpl<unsigned> &NewVRegs); |
| void initializeCSRCost(); |
| unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&); |
| unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&); |
| unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&); |
| unsigned trySplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<unsigned>&); |
| unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, |
| SmallVectorImpl<unsigned> &, |
| SmallVirtRegSet &, unsigned); |
| bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, |
| SmallVirtRegSet &, unsigned); |
| void tryHintRecoloring(LiveInterval &); |
| void tryHintsRecoloring(); |
| |
| /// Model the information carried by one end of a copy. |
| struct HintInfo { |
| /// The frequency of the copy. |
| BlockFrequency Freq; |
| /// The virtual register or physical register. |
| unsigned Reg; |
| /// Its currently assigned register. |
| /// In case of a physical register Reg == PhysReg. |
| unsigned PhysReg; |
| |
| HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) |
| : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} |
| }; |
| using HintsInfo = SmallVector<HintInfo, 4>; |
| |
| BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); |
| void collectHintInfo(unsigned, HintsInfo &); |
| |
| bool isUnusedCalleeSavedReg(unsigned PhysReg) const; |
| |
| /// Compute and report the number of spills and reloads for a loop. |
| void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, |
| unsigned &FoldedReloads, unsigned &Spills, |
| unsigned &FoldedSpills); |
| |
| /// Report the number of spills and reloads for each loop. |
| void reportNumberOfSplillsReloads() { |
| for (MachineLoop *L : *Loops) { |
| unsigned Reloads, FoldedReloads, Spills, FoldedSpills; |
| reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, |
| FoldedSpills); |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char RAGreedy::ID = 0; |
| char &llvm::RAGreedyID = RAGreedy::ID; |
| |
| INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", |
| "Greedy Register Allocator", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) |
| INITIALIZE_PASS_DEPENDENCY(MachineScheduler) |
| INITIALIZE_PASS_DEPENDENCY(LiveStacks) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(VirtRegMap) |
| INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) |
| INITIALIZE_PASS_DEPENDENCY(EdgeBundles) |
| INITIALIZE_PASS_DEPENDENCY(SpillPlacement) |
| INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) |
| INITIALIZE_PASS_END(RAGreedy, "greedy", |
| "Greedy Register Allocator", false, false) |
| |
| #ifndef NDEBUG |
| const char *const RAGreedy::StageName[] = { |
| "RS_New", |
| "RS_Assign", |
| "RS_Split", |
| "RS_Split2", |
| "RS_Spill", |
| "RS_Memory", |
| "RS_Done" |
| }; |
| #endif |
| |
| // Hysteresis to use when comparing floats. |
| // This helps stabilize decisions based on float comparisons. |
| const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 |
| |
| FunctionPass* llvm::createGreedyRegisterAllocator() { |
| return new RAGreedy(); |
| } |
| |
| RAGreedy::RAGreedy(): MachineFunctionPass(ID) { |
| } |
| |
| void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addPreserved<MachineBlockFrequencyInfo>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addRequired<SlotIndexes>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<LiveDebugVariables>(); |
| AU.addPreserved<LiveDebugVariables>(); |
| AU.addRequired<LiveStacks>(); |
| AU.addPreserved<LiveStacks>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addRequired<VirtRegMap>(); |
| AU.addPreserved<VirtRegMap>(); |
| AU.addRequired<LiveRegMatrix>(); |
| AU.addPreserved<LiveRegMatrix>(); |
| AU.addRequired<EdgeBundles>(); |
| AU.addRequired<SpillPlacement>(); |
| AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LiveRangeEdit delegate methods |
| //===----------------------------------------------------------------------===// |
| |
| bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { |
| LiveInterval &LI = LIS->getInterval(VirtReg); |
| if (VRM->hasPhys(VirtReg)) { |
| Matrix->unassign(LI); |
| aboutToRemoveInterval(LI); |
| return true; |
| } |
| // Unassigned virtreg is probably in the priority queue. |
| // RegAllocBase will erase it after dequeueing. |
| // Nonetheless, clear the live-range so that the debug |
| // dump will show the right state for that VirtReg. |
| LI.clear(); |
| return false; |
| } |
| |
| void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { |
| if (!VRM->hasPhys(VirtReg)) |
| return; |
| |
| // Register is assigned, put it back on the queue for reassignment. |
| LiveInterval &LI = LIS->getInterval(VirtReg); |
| Matrix->unassign(LI); |
| enqueue(&LI); |
| } |
| |
| void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { |
| // Cloning a register we haven't even heard about yet? Just ignore it. |
| if (!ExtraRegInfo.inBounds(Old)) |
| return; |
| |
| // LRE may clone a virtual register because dead code elimination causes it to |
| // be split into connected components. The new components are much smaller |
| // than the original, so they should get a new chance at being assigned. |
| // same stage as the parent. |
| ExtraRegInfo[Old].Stage = RS_Assign; |
| ExtraRegInfo.grow(New); |
| ExtraRegInfo[New] = ExtraRegInfo[Old]; |
| } |
| |
| void RAGreedy::releaseMemory() { |
| SpillerInstance.reset(); |
| ExtraRegInfo.clear(); |
| GlobalCand.clear(); |
| } |
| |
| void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } |
| |
| void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { |
| // Prioritize live ranges by size, assigning larger ranges first. |
| // The queue holds (size, reg) pairs. |
| const unsigned Size = LI->getSize(); |
| const unsigned Reg = LI->reg; |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && |
| "Can only enqueue virtual registers"); |
| unsigned Prio; |
| |
| ExtraRegInfo.grow(Reg); |
| if (ExtraRegInfo[Reg].Stage == RS_New) |
| ExtraRegInfo[Reg].Stage = RS_Assign; |
| |
| if (ExtraRegInfo[Reg].Stage == RS_Split) { |
| // Unsplit ranges that couldn't be allocated immediately are deferred until |
| // everything else has been allocated. |
| Prio = Size; |
| } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { |
| // Memory operand should be considered last. |
| // Change the priority such that Memory operand are assigned in |
| // the reverse order that they came in. |
| // TODO: Make this a member variable and probably do something about hints. |
| static unsigned MemOp = 0; |
| Prio = MemOp++; |
| } else { |
| // Giant live ranges fall back to the global assignment heuristic, which |
| // prevents excessive spilling in pathological cases. |
| bool ReverseLocal = TRI->reverseLocalAssignment(); |
| const TargetRegisterClass &RC = *MRI->getRegClass(Reg); |
| bool ForceGlobal = !ReverseLocal && |
| (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); |
| |
| if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && |
| LIS->intervalIsInOneMBB(*LI)) { |
| // Allocate original local ranges in linear instruction order. Since they |
| // are singly defined, this produces optimal coloring in the absence of |
| // global interference and other constraints. |
| if (!ReverseLocal) |
| Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); |
| else { |
| // Allocating bottom up may allow many short LRGs to be assigned first |
| // to one of the cheap registers. This could be much faster for very |
| // large blocks on targets with many physical registers. |
| Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); |
| } |
| Prio |= RC.AllocationPriority << 24; |
| } else { |
| // Allocate global and split ranges in long->short order. Long ranges that |
| // don't fit should be spilled (or split) ASAP so they don't create |
| // interference. Mark a bit to prioritize global above local ranges. |
| Prio = (1u << 29) + Size; |
| } |
| // Mark a higher bit to prioritize global and local above RS_Split. |
| Prio |= (1u << 31); |
| |
| // Boost ranges that have a physical register hint. |
| if (VRM->hasKnownPreference(Reg)) |
| Prio |= (1u << 30); |
| } |
| // The virtual register number is a tie breaker for same-sized ranges. |
| // Give lower vreg numbers higher priority to assign them first. |
| CurQueue.push(std::make_pair(Prio, ~Reg)); |
| } |
| |
| LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } |
| |
| LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { |
| if (CurQueue.empty()) |
| return nullptr; |
| LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); |
| CurQueue.pop(); |
| return LI; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Direct Assignment |
| //===----------------------------------------------------------------------===// |
| |
| /// tryAssign - Try to assign VirtReg to an available register. |
| unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| Order.rewind(); |
| unsigned PhysReg; |
| while ((PhysReg = Order.next())) |
| if (!Matrix->checkInterference(VirtReg, PhysReg)) |
| break; |
| if (!PhysReg || Order.isHint()) |
| return PhysReg; |
| |
| // PhysReg is available, but there may be a better choice. |
| |
| // If we missed a simple hint, try to cheaply evict interference from the |
| // preferred register. |
| if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) |
| if (Order.isHint(Hint)) { |
| LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); |
| EvictionCost MaxCost; |
| MaxCost.setBrokenHints(1); |
| if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { |
| evictInterference(VirtReg, Hint, NewVRegs); |
| return Hint; |
| } |
| // Record the missed hint, we may be able to recover |
| // at the end if the surrounding allocation changed. |
| SetOfBrokenHints.insert(&VirtReg); |
| } |
| |
| // Try to evict interference from a cheaper alternative. |
| unsigned Cost = TRI->getCostPerUse(PhysReg); |
| |
| // Most registers have 0 additional cost. |
| if (!Cost) |
| return PhysReg; |
| |
| LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " |
| << Cost << '\n'); |
| unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); |
| return CheapReg ? CheapReg : PhysReg; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Interference eviction |
| //===----------------------------------------------------------------------===// |
| |
| unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { |
| AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); |
| unsigned PhysReg; |
| while ((PhysReg = Order.next())) { |
| if (PhysReg == PrevReg) |
| continue; |
| |
| MCRegUnitIterator Units(PhysReg, TRI); |
| for (; Units.isValid(); ++Units) { |
| // Instantiate a "subquery", not to be confused with the Queries array. |
| LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); |
| if (subQ.checkInterference()) |
| break; |
| } |
| // If no units have interference, break out with the current PhysReg. |
| if (!Units.isValid()) |
| break; |
| } |
| if (PhysReg) |
| LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " |
| << printReg(PrevReg, TRI) << " to " |
| << printReg(PhysReg, TRI) << '\n'); |
| return PhysReg; |
| } |
| |
| /// shouldEvict - determine if A should evict the assigned live range B. The |
| /// eviction policy defined by this function together with the allocation order |
| /// defined by enqueue() decides which registers ultimately end up being split |
| /// and spilled. |
| /// |
| /// Cascade numbers are used to prevent infinite loops if this function is a |
| /// cyclic relation. |
| /// |
| /// @param A The live range to be assigned. |
| /// @param IsHint True when A is about to be assigned to its preferred |
| /// register. |
| /// @param B The live range to be evicted. |
| /// @param BreaksHint True when B is already assigned to its preferred register. |
| bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, |
| LiveInterval &B, bool BreaksHint) { |
| bool CanSplit = getStage(B) < RS_Spill; |
| |
| // Be fairly aggressive about following hints as long as the evictee can be |
| // split. |
| if (CanSplit && IsHint && !BreaksHint) |
| return true; |
| |
| if (A.weight > B.weight) { |
| LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); |
| return true; |
| } |
| return false; |
| } |
| |
| /// canEvictInterference - Return true if all interferences between VirtReg and |
| /// PhysReg can be evicted. |
| /// |
| /// @param VirtReg Live range that is about to be assigned. |
| /// @param PhysReg Desired register for assignment. |
| /// @param IsHint True when PhysReg is VirtReg's preferred register. |
| /// @param MaxCost Only look for cheaper candidates and update with new cost |
| /// when returning true. |
| /// @returns True when interference can be evicted cheaper than MaxCost. |
| bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, |
| bool IsHint, EvictionCost &MaxCost) { |
| // It is only possible to evict virtual register interference. |
| if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) |
| return false; |
| |
| bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); |
| |
| // Find VirtReg's cascade number. This will be unassigned if VirtReg was never |
| // involved in an eviction before. If a cascade number was assigned, deny |
| // evicting anything with the same or a newer cascade number. This prevents |
| // infinite eviction loops. |
| // |
| // This works out so a register without a cascade number is allowed to evict |
| // anything, and it can be evicted by anything. |
| unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; |
| if (!Cascade) |
| Cascade = NextCascade; |
| |
| EvictionCost Cost; |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); |
| // If there is 10 or more interferences, chances are one is heavier. |
| if (Q.collectInterferingVRegs(10) >= 10) |
| return false; |
| |
| // Check if any interfering live range is heavier than MaxWeight. |
| for (unsigned i = Q.interferingVRegs().size(); i; --i) { |
| LiveInterval *Intf = Q.interferingVRegs()[i - 1]; |
| assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && |
| "Only expecting virtual register interference from query"); |
| // Never evict spill products. They cannot split or spill. |
| if (getStage(*Intf) == RS_Done) |
| return false; |
| // Once a live range becomes small enough, it is urgent that we find a |
| // register for it. This is indicated by an infinite spill weight. These |
| // urgent live ranges get to evict almost anything. |
| // |
| // Also allow urgent evictions of unspillable ranges from a strictly |
| // larger allocation order. |
| bool Urgent = !VirtReg.isSpillable() && |
| (Intf->isSpillable() || |
| RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < |
| RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); |
| // Only evict older cascades or live ranges without a cascade. |
| unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; |
| if (Cascade <= IntfCascade) { |
| if (!Urgent) |
| return false; |
| // We permit breaking cascades for urgent evictions. It should be the |
| // last resort, though, so make it really expensive. |
| Cost.BrokenHints += 10; |
| } |
| // Would this break a satisfied hint? |
| bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); |
| // Update eviction cost. |
| Cost.BrokenHints += BreaksHint; |
| Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); |
| // Abort if this would be too expensive. |
| if (!(Cost < MaxCost)) |
| return false; |
| if (Urgent) |
| continue; |
| // Apply the eviction policy for non-urgent evictions. |
| if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) |
| return false; |
| // If !MaxCost.isMax(), then we're just looking for a cheap register. |
| // Evicting another local live range in this case could lead to suboptimal |
| // coloring. |
| if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && |
| (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { |
| return false; |
| } |
| } |
| } |
| MaxCost = Cost; |
| return true; |
| } |
| |
| /// Return true if all interferences between VirtReg and PhysReg between |
| /// Start and End can be evicted. |
| /// |
| /// \param VirtReg Live range that is about to be assigned. |
| /// \param PhysReg Desired register for assignment. |
| /// \param Start Start of range to look for interferences. |
| /// \param End End of range to look for interferences. |
| /// \param MaxCost Only look for cheaper candidates and update with new cost |
| /// when returning true. |
| /// \return True when interference can be evicted cheaper than MaxCost. |
| bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, |
| unsigned PhysReg, SlotIndex Start, |
| SlotIndex End, |
| EvictionCost &MaxCost) { |
| EvictionCost Cost; |
| |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); |
| |
| // Check if any interfering live range is heavier than MaxWeight. |
| for (unsigned i = Q.interferingVRegs().size(); i; --i) { |
| LiveInterval *Intf = Q.interferingVRegs()[i - 1]; |
| |
| // Check if interference overlast the segment in interest. |
| if (!Intf->overlaps(Start, End)) |
| continue; |
| |
| // Cannot evict non virtual reg interference. |
| if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) |
| return false; |
| // Never evict spill products. They cannot split or spill. |
| if (getStage(*Intf) == RS_Done) |
| return false; |
| |
| // Would this break a satisfied hint? |
| bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); |
| // Update eviction cost. |
| Cost.BrokenHints += BreaksHint; |
| Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); |
| // Abort if this would be too expensive. |
| if (!(Cost < MaxCost)) |
| return false; |
| } |
| } |
| |
| if (Cost.MaxWeight == 0) |
| return false; |
| |
| MaxCost = Cost; |
| return true; |
| } |
| |
| /// Return the physical register that will be best |
| /// candidate for eviction by a local split interval that will be created |
| /// between Start and End. |
| /// |
| /// \param Order The allocation order |
| /// \param VirtReg Live range that is about to be assigned. |
| /// \param Start Start of range to look for interferences |
| /// \param End End of range to look for interferences |
| /// \param BestEvictweight The eviction cost of that eviction |
| /// \return The PhysReg which is the best candidate for eviction and the |
| /// eviction cost in BestEvictweight |
| unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, |
| LiveInterval &VirtReg, |
| SlotIndex Start, SlotIndex End, |
| float *BestEvictweight) { |
| EvictionCost BestEvictCost; |
| BestEvictCost.setMax(); |
| BestEvictCost.MaxWeight = VirtReg.weight; |
| unsigned BestEvicteePhys = 0; |
| |
| // Go over all physical registers and find the best candidate for eviction |
| for (auto PhysReg : Order.getOrder()) { |
| |
| if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, |
| BestEvictCost)) |
| continue; |
| |
| // Best so far. |
| BestEvicteePhys = PhysReg; |
| } |
| *BestEvictweight = BestEvictCost.MaxWeight; |
| return BestEvicteePhys; |
| } |
| |
| /// evictInterference - Evict any interferring registers that prevent VirtReg |
| /// from being assigned to Physreg. This assumes that canEvictInterference |
| /// returned true. |
| void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| // Make sure that VirtReg has a cascade number, and assign that cascade |
| // number to every evicted register. These live ranges than then only be |
| // evicted by a newer cascade, preventing infinite loops. |
| unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; |
| if (!Cascade) |
| Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; |
| |
| LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) |
| << " interference: Cascade " << Cascade << '\n'); |
| |
| // Collect all interfering virtregs first. |
| SmallVector<LiveInterval*, 8> Intfs; |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); |
| // We usually have the interfering VRegs cached so collectInterferingVRegs() |
| // should be fast, we may need to recalculate if when different physregs |
| // overlap the same register unit so we had different SubRanges queried |
| // against it. |
| Q.collectInterferingVRegs(); |
| ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); |
| Intfs.append(IVR.begin(), IVR.end()); |
| } |
| |
| // Evict them second. This will invalidate the queries. |
| for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { |
| LiveInterval *Intf = Intfs[i]; |
| // The same VirtReg may be present in multiple RegUnits. Skip duplicates. |
| if (!VRM->hasPhys(Intf->reg)) |
| continue; |
| |
| LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); |
| |
| Matrix->unassign(*Intf); |
| assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || |
| VirtReg.isSpillable() < Intf->isSpillable()) && |
| "Cannot decrease cascade number, illegal eviction"); |
| ExtraRegInfo[Intf->reg].Cascade = Cascade; |
| ++NumEvicted; |
| NewVRegs.push_back(Intf->reg); |
| } |
| } |
| |
| /// Returns true if the given \p PhysReg is a callee saved register and has not |
| /// been used for allocation yet. |
| bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { |
| unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); |
| if (CSR == 0) |
| return false; |
| |
| return !Matrix->isPhysRegUsed(PhysReg); |
| } |
| |
| /// tryEvict - Try to evict all interferences for a physreg. |
| /// @param VirtReg Currently unassigned virtual register. |
| /// @param Order Physregs to try. |
| /// @return Physreg to assign VirtReg, or 0. |
| unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs, |
| unsigned CostPerUseLimit) { |
| NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, |
| TimePassesIsEnabled); |
| |
| // Keep track of the cheapest interference seen so far. |
| EvictionCost BestCost; |
| BestCost.setMax(); |
| unsigned BestPhys = 0; |
| unsigned OrderLimit = Order.getOrder().size(); |
| |
| // When we are just looking for a reduced cost per use, don't break any |
| // hints, and only evict smaller spill weights. |
| if (CostPerUseLimit < ~0u) { |
| BestCost.BrokenHints = 0; |
| BestCost.MaxWeight = VirtReg.weight; |
| |
| // Check of any registers in RC are below CostPerUseLimit. |
| const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); |
| unsigned MinCost = RegClassInfo.getMinCost(RC); |
| if (MinCost >= CostPerUseLimit) { |
| LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " |
| << MinCost << ", no cheaper registers to be found.\n"); |
| return 0; |
| } |
| |
| // It is normal for register classes to have a long tail of registers with |
| // the same cost. We don't need to look at them if they're too expensive. |
| if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { |
| OrderLimit = RegClassInfo.getLastCostChange(RC); |
| LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit |
| << " regs.\n"); |
| } |
| } |
| |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next(OrderLimit)) { |
| if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) |
| continue; |
| // The first use of a callee-saved register in a function has cost 1. |
| // Don't start using a CSR when the CostPerUseLimit is low. |
| if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { |
| LLVM_DEBUG( |
| dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " |
| << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) |
| << '\n'); |
| continue; |
| } |
| |
| if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) |
| continue; |
| |
| // Best so far. |
| BestPhys = PhysReg; |
| |
| // Stop if the hint can be used. |
| if (Order.isHint()) |
| break; |
| } |
| |
| if (!BestPhys) |
| return 0; |
| |
| evictInterference(VirtReg, BestPhys, NewVRegs); |
| return BestPhys; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Region Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// addSplitConstraints - Fill out the SplitConstraints vector based on the |
| /// interference pattern in Physreg and its aliases. Add the constraints to |
| /// SpillPlacement and return the static cost of this split in Cost, assuming |
| /// that all preferences in SplitConstraints are met. |
| /// Return false if there are no bundles with positive bias. |
| bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, |
| BlockFrequency &Cost) { |
| ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); |
| |
| // Reset interference dependent info. |
| SplitConstraints.resize(UseBlocks.size()); |
| BlockFrequency StaticCost = 0; |
| for (unsigned i = 0; i != UseBlocks.size(); ++i) { |
| const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; |
| SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; |
| |
| BC.Number = BI.MBB->getNumber(); |
| Intf.moveToBlock(BC.Number); |
| BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; |
| BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; |
| BC.ChangesValue = BI.FirstDef.isValid(); |
| |
| if (!Intf.hasInterference()) |
| continue; |
| |
| // Number of spill code instructions to insert. |
| unsigned Ins = 0; |
| |
| // Interference for the live-in value. |
| if (BI.LiveIn) { |
| if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { |
| BC.Entry = SpillPlacement::MustSpill; |
| ++Ins; |
| } else if (Intf.first() < BI.FirstInstr) { |
| BC.Entry = SpillPlacement::PrefSpill; |
| ++Ins; |
| } else if (Intf.first() < BI.LastInstr) { |
| ++Ins; |
| } |
| } |
| |
| // Interference for the live-out value. |
| if (BI.LiveOut) { |
| if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { |
| BC.Exit = SpillPlacement::MustSpill; |
| ++Ins; |
| } else if (Intf.last() > BI.LastInstr) { |
| BC.Exit = SpillPlacement::PrefSpill; |
| ++Ins; |
| } else if (Intf.last() > BI.FirstInstr) { |
| ++Ins; |
| } |
| } |
| |
| // Accumulate the total frequency of inserted spill code. |
| while (Ins--) |
| StaticCost += SpillPlacer->getBlockFrequency(BC.Number); |
| } |
| Cost = StaticCost; |
| |
| // Add constraints for use-blocks. Note that these are the only constraints |
| // that may add a positive bias, it is downhill from here. |
| SpillPlacer->addConstraints(SplitConstraints); |
| return SpillPlacer->scanActiveBundles(); |
| } |
| |
| /// addThroughConstraints - Add constraints and links to SpillPlacer from the |
| /// live-through blocks in Blocks. |
| void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, |
| ArrayRef<unsigned> Blocks) { |
| const unsigned GroupSize = 8; |
| SpillPlacement::BlockConstraint BCS[GroupSize]; |
| unsigned TBS[GroupSize]; |
| unsigned B = 0, T = 0; |
| |
| for (unsigned i = 0; i != Blocks.size(); ++i) { |
| unsigned Number = Blocks[i]; |
| Intf.moveToBlock(Number); |
| |
| if (!Intf.hasInterference()) { |
| assert(T < GroupSize && "Array overflow"); |
| TBS[T] = Number; |
| if (++T == GroupSize) { |
| SpillPlacer->addLinks(makeArrayRef(TBS, T)); |
| T = 0; |
| } |
| continue; |
| } |
| |
| assert(B < GroupSize && "Array overflow"); |
| BCS[B].Number = Number; |
| |
| // Interference for the live-in value. |
| if (Intf.first() <= Indexes->getMBBStartIdx(Number)) |
| BCS[B].Entry = SpillPlacement::MustSpill; |
| else |
| BCS[B].Entry = SpillPlacement::PrefSpill; |
| |
| // Interference for the live-out value. |
| if (Intf.last() >= SA->getLastSplitPoint(Number)) |
| BCS[B].Exit = SpillPlacement::MustSpill; |
| else |
| BCS[B].Exit = SpillPlacement::PrefSpill; |
| |
| if (++B == GroupSize) { |
| SpillPlacer->addConstraints(makeArrayRef(BCS, B)); |
| B = 0; |
| } |
| } |
| |
| SpillPlacer->addConstraints(makeArrayRef(BCS, B)); |
| SpillPlacer->addLinks(makeArrayRef(TBS, T)); |
| } |
| |
| void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { |
| // Keep track of through blocks that have not been added to SpillPlacer. |
| BitVector Todo = SA->getThroughBlocks(); |
| SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; |
| unsigned AddedTo = 0; |
| #ifndef NDEBUG |
| unsigned Visited = 0; |
| #endif |
| |
| while (true) { |
| ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); |
| // Find new through blocks in the periphery of PrefRegBundles. |
| for (int i = 0, e = NewBundles.size(); i != e; ++i) { |
| unsigned Bundle = NewBundles[i]; |
| // Look at all blocks connected to Bundle in the full graph. |
| ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); |
| for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); |
| I != E; ++I) { |
| unsigned Block = *I; |
| if (!Todo.test(Block)) |
| continue; |
| Todo.reset(Block); |
| // This is a new through block. Add it to SpillPlacer later. |
| ActiveBlocks.push_back(Block); |
| #ifndef NDEBUG |
| ++Visited; |
| #endif |
| } |
| } |
| // Any new blocks to add? |
| if (ActiveBlocks.size() == AddedTo) |
| break; |
| |
| // Compute through constraints from the interference, or assume that all |
| // through blocks prefer spilling when forming compact regions. |
| auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); |
| if (Cand.PhysReg) |
| addThroughConstraints(Cand.Intf, NewBlocks); |
| else |
| // Provide a strong negative bias on through blocks to prevent unwanted |
| // liveness on loop backedges. |
| SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); |
| AddedTo = ActiveBlocks.size(); |
| |
| // Perhaps iterating can enable more bundles? |
| SpillPlacer->iterate(); |
| } |
| LLVM_DEBUG(dbgs() << ", v=" << Visited); |
| } |
| |
| /// calcCompactRegion - Compute the set of edge bundles that should be live |
| /// when splitting the current live range into compact regions. Compact |
| /// regions can be computed without looking at interference. They are the |
| /// regions formed by removing all the live-through blocks from the live range. |
| /// |
| /// Returns false if the current live range is already compact, or if the |
| /// compact regions would form single block regions anyway. |
| bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { |
| // Without any through blocks, the live range is already compact. |
| if (!SA->getNumThroughBlocks()) |
| return false; |
| |
| // Compact regions don't correspond to any physreg. |
| Cand.reset(IntfCache, 0); |
| |
| LLVM_DEBUG(dbgs() << "Compact region bundles"); |
| |
| // Use the spill placer to determine the live bundles. GrowRegion pretends |
| // that all the through blocks have interference when PhysReg is unset. |
| SpillPlacer->prepare(Cand.LiveBundles); |
| |
| // The static split cost will be zero since Cand.Intf reports no interference. |
| BlockFrequency Cost; |
| if (!addSplitConstraints(Cand.Intf, Cost)) { |
| LLVM_DEBUG(dbgs() << ", none.\n"); |
| return false; |
| } |
| |
| growRegion(Cand); |
| SpillPlacer->finish(); |
| |
| if (!Cand.LiveBundles.any()) { |
| LLVM_DEBUG(dbgs() << ", none.\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG({ |
| for (int i : Cand.LiveBundles.set_bits()) |
| dbgs() << " EB#" << i; |
| dbgs() << ".\n"; |
| }); |
| return true; |
| } |
| |
| /// calcSpillCost - Compute how expensive it would be to split the live range in |
| /// SA around all use blocks instead of forming bundle regions. |
| BlockFrequency RAGreedy::calcSpillCost() { |
| BlockFrequency Cost = 0; |
| ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); |
| for (unsigned i = 0; i != UseBlocks.size(); ++i) { |
| const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; |
| unsigned Number = BI.MBB->getNumber(); |
| // We normally only need one spill instruction - a load or a store. |
| Cost += SpillPlacer->getBlockFrequency(Number); |
| |
| // Unless the value is redefined in the block. |
| if (BI.LiveIn && BI.LiveOut && BI.FirstDef) |
| Cost += SpillPlacer->getBlockFrequency(Number); |
| } |
| return Cost; |
| } |
| |
| /// Check if splitting Evictee will create a local split interval in |
| /// basic block number BBNumber that may cause a bad eviction chain. This is |
| /// intended to prevent bad eviction sequences like: |
| /// movl %ebp, 8(%esp) # 4-byte Spill |
| /// movl %ecx, %ebp |
| /// movl %ebx, %ecx |
| /// movl %edi, %ebx |
| /// movl %edx, %edi |
| /// cltd |
| /// idivl %esi |
| /// movl %edi, %edx |
| /// movl %ebx, %edi |
| /// movl %ecx, %ebx |
| /// movl %ebp, %ecx |
| /// movl 16(%esp), %ebp # 4 - byte Reload |
| /// |
| /// Such sequences are created in 2 scenarios: |
| /// |
| /// Scenario #1: |
| /// %0 is evicted from physreg0 by %1. |
| /// Evictee %0 is intended for region splitting with split candidate |
| /// physreg0 (the reg %0 was evicted from). |
| /// Region splitting creates a local interval because of interference with the |
| /// evictor %1 (normally region splitting creates 2 interval, the "by reg" |
| /// and "by stack" intervals and local interval created when interference |
| /// occurs). |
| /// One of the split intervals ends up evicting %2 from physreg1. |
| /// Evictee %2 is intended for region splitting with split candidate |
| /// physreg1. |
| /// One of the split intervals ends up evicting %3 from physreg2, etc. |
| /// |
| /// Scenario #2 |
| /// %0 is evicted from physreg0 by %1. |
| /// %2 is evicted from physreg2 by %3 etc. |
| /// Evictee %0 is intended for region splitting with split candidate |
| /// physreg1. |
| /// Region splitting creates a local interval because of interference with the |
| /// evictor %1. |
| /// One of the split intervals ends up evicting back original evictor %1 |
| /// from physreg0 (the reg %0 was evicted from). |
| /// Another evictee %2 is intended for region splitting with split candidate |
| /// physreg1. |
| /// One of the split intervals ends up evicting %3 from physreg2, etc. |
| /// |
| /// \param Evictee The register considered to be split. |
| /// \param Cand The split candidate that determines the physical register |
| /// we are splitting for and the interferences. |
| /// \param BBNumber The number of a BB for which the region split process will |
| /// create a local split interval. |
| /// \param Order The physical registers that may get evicted by a split |
| /// artifact of Evictee. |
| /// \return True if splitting Evictee may cause a bad eviction chain, false |
| /// otherwise. |
| bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, |
| GlobalSplitCandidate &Cand, |
| unsigned BBNumber, |
| const AllocationOrder &Order) { |
| EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); |
| unsigned Evictor = VregEvictorInfo.first; |
| unsigned PhysReg = VregEvictorInfo.second; |
| |
| // No actual evictor. |
| if (!Evictor || !PhysReg) |
| return false; |
| |
| float MaxWeight = 0; |
| unsigned FutureEvictedPhysReg = |
| getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), |
| Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); |
| |
| // The bad eviction chain occurs when either the split candidate is the |
| // evicting reg or one of the split artifact will evict the evicting reg. |
| if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) |
| return false; |
| |
| Cand.Intf.moveToBlock(BBNumber); |
| |
| // Check to see if the Evictor contains interference (with Evictee) in the |
| // given BB. If so, this interference caused the eviction of Evictee from |
| // PhysReg. This suggest that we will create a local interval during the |
| // region split to avoid this interference This local interval may cause a bad |
| // eviction chain. |
| if (!LIS->hasInterval(Evictor)) |
| return false; |
| LiveInterval &EvictorLI = LIS->getInterval(Evictor); |
| if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) |
| return false; |
| |
| // Now, check to see if the local interval we will create is going to be |
| // expensive enough to evict somebody If so, this may cause a bad eviction |
| // chain. |
| VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); |
| float splitArtifactWeight = |
| VRAI.futureWeight(LIS->getInterval(Evictee), |
| Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); |
| if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) |
| return false; |
| |
| return true; |
| } |
| |
| /// Check if splitting VirtRegToSplit will create a local split interval |
| /// in basic block number BBNumber that may cause a spill. |
| /// |
| /// \param VirtRegToSplit The register considered to be split. |
| /// \param Cand The split candidate that determines the physical |
| /// register we are splitting for and the interferences. |
| /// \param BBNumber The number of a BB for which the region split process |
| /// will create a local split interval. |
| /// \param Order The physical registers that may get evicted by a |
| /// split artifact of VirtRegToSplit. |
| /// \return True if splitting VirtRegToSplit may cause a spill, false |
| /// otherwise. |
| bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, |
| GlobalSplitCandidate &Cand, |
| unsigned BBNumber, |
| const AllocationOrder &Order) { |
| Cand.Intf.moveToBlock(BBNumber); |
| |
| // Check if the local interval will find a non interfereing assignment. |
| for (auto PhysReg : Order.getOrder()) { |
| if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), |
| Cand.Intf.last(), PhysReg)) |
| return false; |
| } |
| |
| // Check if the local interval will evict a cheaper interval. |
| float CheapestEvictWeight = 0; |
| unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( |
| Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), |
| Cand.Intf.last(), &CheapestEvictWeight); |
| |
| // Have we found an interval that can be evicted? |
| if (FutureEvictedPhysReg) { |
| VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); |
| float splitArtifactWeight = |
| VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), |
| Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); |
| // Will the weight of the local interval be higher than the cheapest evictee |
| // weight? If so it will evict it and will not cause a spill. |
| if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) |
| return false; |
| } |
| |
| // The local interval is not able to find non interferencing assignment and |
| // not able to evict a less worthy interval, therfore, it can cause a spill. |
| return true; |
| } |
| |
| /// calcGlobalSplitCost - Return the global split cost of following the split |
| /// pattern in LiveBundles. This cost should be added to the local cost of the |
| /// interference pattern in SplitConstraints. |
| /// |
| BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, |
| const AllocationOrder &Order, |
| bool *CanCauseEvictionChain) { |
| BlockFrequency GlobalCost = 0; |
| const BitVector &LiveBundles = Cand.LiveBundles; |
| unsigned VirtRegToSplit = SA->getParent().reg; |
| ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); |
| for (unsigned i = 0; i != UseBlocks.size(); ++i) { |
| const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; |
| SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; |
| bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; |
| bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; |
| unsigned Ins = 0; |
| |
| Cand.Intf.moveToBlock(BC.Number); |
| // Check wheather a local interval is going to be created during the region |
| // split. Calculate adavanced spilt cost (cost of local intervals) if option |
| // is enabled. |
| if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && |
| BI.LiveOut && RegIn && RegOut) { |
| |
| if (CanCauseEvictionChain && |
| splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { |
| // This interference causes our eviction from this assignment, we might |
| // evict somebody else and eventually someone will spill, add that cost. |
| // See splitCanCauseEvictionChain for detailed description of scenarios. |
| GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); |
| GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); |
| |
| *CanCauseEvictionChain = true; |
| |
| } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, |
| Order)) { |
| // This interference causes local interval to spill, add that cost. |
| GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); |
| GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); |
| } |
| } |
| |
| if (BI.LiveIn) |
| Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); |
| if (BI.LiveOut) |
| Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); |
| while (Ins--) |
| GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); |
| } |
| |
| for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { |
| unsigned Number = Cand.ActiveBlocks[i]; |
| bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; |
| bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; |
| if (!RegIn && !RegOut) |
| continue; |
| if (RegIn && RegOut) { |
| // We need double spill code if this block has interference. |
| Cand.Intf.moveToBlock(Number); |
| if (Cand.Intf.hasInterference()) { |
| GlobalCost += SpillPlacer->getBlockFrequency(Number); |
| GlobalCost += SpillPlacer->getBlockFrequency(Number); |
| |
| // Check wheather a local interval is going to be created during the |
| // region split. |
| if (EnableAdvancedRASplitCost && CanCauseEvictionChain && |
| splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { |
| // This interference cause our eviction from this assignment, we might |
| // evict somebody else, add that cost. |
| // See splitCanCauseEvictionChain for detailed description of |
| // scenarios. |
| GlobalCost += SpillPlacer->getBlockFrequency(Number); |
| GlobalCost += SpillPlacer->getBlockFrequency(Number); |
| |
| *CanCauseEvictionChain = true; |
| } |
| } |
| continue; |
| } |
| // live-in / stack-out or stack-in live-out. |
| GlobalCost += SpillPlacer->getBlockFrequency(Number); |
| } |
| return GlobalCost; |
| } |
| |
| /// splitAroundRegion - Split the current live range around the regions |
| /// determined by BundleCand and GlobalCand. |
| /// |
| /// Before calling this function, GlobalCand and BundleCand must be initialized |
| /// so each bundle is assigned to a valid candidate, or NoCand for the |
| /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor |
| /// objects must be initialized for the current live range, and intervals |
| /// created for the used candidates. |
| /// |
| /// @param LREdit The LiveRangeEdit object handling the current split. |
| /// @param UsedCands List of used GlobalCand entries. Every BundleCand value |
| /// must appear in this list. |
| void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, |
| ArrayRef<unsigned> UsedCands) { |
| // These are the intervals created for new global ranges. We may create more |
| // intervals for local ranges. |
| const unsigned NumGlobalIntvs = LREdit.size(); |
| LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs |
| << " globals.\n"); |
| assert(NumGlobalIntvs && "No global intervals configured"); |
| |
| // Isolate even single instructions when dealing with a proper sub-class. |
| // That guarantees register class inflation for the stack interval because it |
| // is all copies. |
| unsigned Reg = SA->getParent().reg; |
| bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); |
| |
| // First handle all the blocks with uses. |
| ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); |
| for (unsigned i = 0; i != UseBlocks.size(); ++i) { |
| const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; |
| unsigned Number = BI.MBB->getNumber(); |
| unsigned IntvIn = 0, IntvOut = 0; |
| SlotIndex IntfIn, IntfOut; |
| if (BI.LiveIn) { |
| unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; |
| if (CandIn != NoCand) { |
| GlobalSplitCandidate &Cand = GlobalCand[CandIn]; |
| IntvIn = Cand.IntvIdx; |
| Cand.Intf.moveToBlock(Number); |
| IntfIn = Cand.Intf.first(); |
| } |
| } |
| if (BI.LiveOut) { |
| unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; |
| if (CandOut != NoCand) { |
| GlobalSplitCandidate &Cand = GlobalCand[CandOut]; |
| IntvOut = Cand.IntvIdx; |
| Cand.Intf.moveToBlock(Number); |
| IntfOut = Cand.Intf.last(); |
| } |
| } |
| |
| // Create separate intervals for isolated blocks with multiple uses. |
| if (!IntvIn && !IntvOut) { |
| LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); |
| if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) |
| SE->splitSingleBlock(BI); |
| continue; |
| } |
| |
| if (IntvIn && IntvOut) |
| SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); |
| else if (IntvIn) |
| SE->splitRegInBlock(BI, IntvIn, IntfIn); |
| else |
| SE->splitRegOutBlock(BI, IntvOut, IntfOut); |
| } |
| |
| // Handle live-through blocks. The relevant live-through blocks are stored in |
| // the ActiveBlocks list with each candidate. We need to filter out |
| // duplicates. |
| BitVector Todo = SA->getThroughBlocks(); |
| for (unsigned c = 0; c != UsedCands.size(); ++c) { |
| ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| unsigned Number = Blocks[i]; |
| if (!Todo.test(Number)) |
| continue; |
| Todo.reset(Number); |
| |
| unsigned IntvIn = 0, IntvOut = 0; |
| SlotIndex IntfIn, IntfOut; |
| |
| unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; |
| if (CandIn != NoCand) { |
| GlobalSplitCandidate &Cand = GlobalCand[CandIn]; |
| IntvIn = Cand.IntvIdx; |
| Cand.Intf.moveToBlock(Number); |
| IntfIn = Cand.Intf.first(); |
| } |
| |
| unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; |
| if (CandOut != NoCand) { |
| GlobalSplitCandidate &Cand = GlobalCand[CandOut]; |
| IntvOut = Cand.IntvIdx; |
| Cand.Intf.moveToBlock(Number); |
| IntfOut = Cand.Intf.last(); |
| } |
| if (!IntvIn && !IntvOut) |
| continue; |
| SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); |
| } |
| } |
| |
| ++NumGlobalSplits; |
| |
| SmallVector<unsigned, 8> IntvMap; |
| SE->finish(&IntvMap); |
| DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); |
| |
| ExtraRegInfo.resize(MRI->getNumVirtRegs()); |
| unsigned OrigBlocks = SA->getNumLiveBlocks(); |
| |
| // Sort out the new intervals created by splitting. We get four kinds: |
| // - Remainder intervals should not be split again. |
| // - Candidate intervals can be assigned to Cand.PhysReg. |
| // - Block-local splits are candidates for local splitting. |
| // - DCE leftovers should go back on the queue. |
| for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { |
| LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); |
| |
| // Ignore old intervals from DCE. |
| if (getStage(Reg) != RS_New) |
| continue; |
| |
| // Remainder interval. Don't try splitting again, spill if it doesn't |
| // allocate. |
| if (IntvMap[i] == 0) { |
| setStage(Reg, RS_Spill); |
| continue; |
| } |
| |
| // Global intervals. Allow repeated splitting as long as the number of live |
| // blocks is strictly decreasing. |
| if (IntvMap[i] < NumGlobalIntvs) { |
| if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { |
| LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks |
| << " blocks as original.\n"); |
| // Don't allow repeated splitting as a safe guard against looping. |
| setStage(Reg, RS_Split2); |
| } |
| continue; |
| } |
| |
| // Other intervals are treated as new. This includes local intervals created |
| // for blocks with multiple uses, and anything created by DCE. |
| } |
| |
| if (VerifyEnabled) |
| MF->verify(this, "After splitting live range around region"); |
| } |
| |
| // Global split has high compile time cost especially for large live range. |
| // Return false for the case here where the potential benefit will never |
| // worth the cost. |
| unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) { |
| MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg); |
| if (MI && TII->isTriviallyReMaterializable(*MI, AA) && |
| VirtReg.size() > HugeSizeForSplit) |
| return false; |
| return true; |
| } |
| |
| unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| if (!isSplitBenefitWorthCost(VirtReg)) |
| return 0; |
| unsigned NumCands = 0; |
| BlockFrequency SpillCost = calcSpillCost(); |
| BlockFrequency BestCost; |
| |
| // Check if we can split this live range around a compact region. |
| bool HasCompact = calcCompactRegion(GlobalCand.front()); |
| if (HasCompact) { |
| // Yes, keep GlobalCand[0] as the compact region candidate. |
| NumCands = 1; |
| BestCost = BlockFrequency::getMaxFrequency(); |
| } else { |
| // No benefit from the compact region, our fallback will be per-block |
| // splitting. Make sure we find a solution that is cheaper than spilling. |
| BestCost = SpillCost; |
| LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; |
| MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); |
| } |
| |
| bool CanCauseEvictionChain = false; |
| unsigned BestCand = |
| calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, |
| false /*IgnoreCSR*/, &CanCauseEvictionChain); |
| |
| // Split candidates with compact regions can cause a bad eviction sequence. |
| // See splitCanCauseEvictionChain for detailed description of scenarios. |
| // To avoid it, we need to comapre the cost with the spill cost and not the |
| // current max frequency. |
| if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && |
| CanCauseEvictionChain) { |
| return 0; |
| } |
| |
| // No solutions found, fall back to single block splitting. |
| if (!HasCompact && BestCand == NoCand) |
| return 0; |
| |
| return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); |
| } |
| |
| unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| BlockFrequency &BestCost, |
| unsigned &NumCands, bool IgnoreCSR, |
| bool *CanCauseEvictionChain) { |
| unsigned BestCand = NoCand; |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next()) { |
| if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) |
| continue; |
| |
| // Discard bad candidates before we run out of interference cache cursors. |
| // This will only affect register classes with a lot of registers (>32). |
| if (NumCands == IntfCache.getMaxCursors()) { |
| unsigned WorstCount = ~0u; |
| unsigned Worst = 0; |
| for (unsigned i = 0; i != NumCands; ++i) { |
| if (i == BestCand || !GlobalCand[i].PhysReg) |
| continue; |
| unsigned Count = GlobalCand[i].LiveBundles.count(); |
| if (Count < WorstCount) { |
| Worst = i; |
| WorstCount = Count; |
| } |
| } |
| --NumCands; |
| GlobalCand[Worst] = GlobalCand[NumCands]; |
| if (BestCand == NumCands) |
| BestCand = Worst; |
| } |
| |
| if (GlobalCand.size() <= NumCands) |
| GlobalCand.resize(NumCands+1); |
| GlobalSplitCandidate &Cand = GlobalCand[NumCands]; |
| Cand.reset(IntfCache, PhysReg); |
| |
| SpillPlacer->prepare(Cand.LiveBundles); |
| BlockFrequency Cost; |
| if (!addSplitConstraints(Cand.Intf, Cost)) { |
| LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); |
| continue; |
| } |
| LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; |
| MBFI->printBlockFreq(dbgs(), Cost)); |
| if (Cost >= BestCost) { |
| LLVM_DEBUG({ |
| if (BestCand == NoCand) |
| dbgs() << " worse than no bundles\n"; |
| else |
| dbgs() << " worse than " |
| << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; |
| }); |
| continue; |
| } |
| growRegion(Cand); |
| |
| SpillPlacer->finish(); |
| |
| // No live bundles, defer to splitSingleBlocks(). |
| if (!Cand.LiveBundles.any()) { |
| LLVM_DEBUG(dbgs() << " no bundles.\n"); |
| continue; |
| } |
| |
| bool HasEvictionChain = false; |
| Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); |
| LLVM_DEBUG({ |
| dbgs() << ", total = "; |
| MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; |
| for (int i : Cand.LiveBundles.set_bits()) |
| dbgs() << " EB#" << i; |
| dbgs() << ".\n"; |
| }); |
| if (Cost < BestCost) { |
| BestCand = NumCands; |
| BestCost = Cost; |
| // See splitCanCauseEvictionChain for detailed description of bad |
| // eviction chain scenarios. |
| if (CanCauseEvictionChain) |
| *CanCauseEvictionChain = HasEvictionChain; |
| } |
| ++NumCands; |
| } |
| |
| if (CanCauseEvictionChain && BestCand != NoCand) { |
| // See splitCanCauseEvictionChain for detailed description of bad |
| // eviction chain scenarios. |
| LLVM_DEBUG(dbgs() << "Best split candidate of vreg " |
| << printReg(VirtReg.reg, TRI) << " may "); |
| if (!(*CanCauseEvictionChain)) |
| LLVM_DEBUG(dbgs() << "not "); |
| LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); |
| } |
| |
| return BestCand; |
| } |
| |
| unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, |
| bool HasCompact, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| SmallVector<unsigned, 8> UsedCands; |
| // Prepare split editor. |
| LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); |
| SE->reset(LREdit, SplitSpillMode); |
| |
| // Assign all edge bundles to the preferred candidate, or NoCand. |
| BundleCand.assign(Bundles->getNumBundles(), NoCand); |
| |
| // Assign bundles for the best candidate region. |
| if (BestCand != NoCand) { |
| GlobalSplitCandidate &Cand = GlobalCand[BestCand]; |
| if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { |
| UsedCands.push_back(BestCand); |
| Cand.IntvIdx = SE->openIntv(); |
| LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " |
| << B << " bundles, intv " << Cand.IntvIdx << ".\n"); |
| (void)B; |
| } |
| } |
| |
| // Assign bundles for the compact region. |
| if (HasCompact) { |
| GlobalSplitCandidate &Cand = GlobalCand.front(); |
| assert(!Cand.PhysReg && "Compact region has no physreg"); |
| if (unsigned B = Cand.getBundles(BundleCand, 0)) { |
| UsedCands.push_back(0); |
| Cand.IntvIdx = SE->openIntv(); |
| LLVM_DEBUG(dbgs() << "Split for compact region in " << B |
| << " bundles, intv " << Cand.IntvIdx << ".\n"); |
| (void)B; |
| } |
| } |
| |
| splitAroundRegion(LREdit, UsedCands); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Per-Block Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// tryBlockSplit - Split a global live range around every block with uses. This |
| /// creates a lot of local live ranges, that will be split by tryLocalSplit if |
| /// they don't allocate. |
| unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); |
| unsigned Reg = VirtReg.reg; |
| bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); |
| LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); |
| SE->reset(LREdit, SplitSpillMode); |
| ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); |
| for (unsigned i = 0; i != UseBlocks.size(); ++i) { |
| const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; |
| if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) |
| SE->splitSingleBlock(BI); |
| } |
| // No blocks were split. |
| if (LREdit.empty()) |
| return 0; |
| |
| // We did split for some blocks. |
| SmallVector<unsigned, 8> IntvMap; |
| SE->finish(&IntvMap); |
| |
| // Tell LiveDebugVariables about the new ranges. |
| DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); |
| |
| ExtraRegInfo.resize(MRI->getNumVirtRegs()); |
| |
| // Sort out the new intervals created by splitting. The remainder interval |
| // goes straight to spilling, the new local ranges get to stay RS_New. |
| for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { |
| LiveInterval &LI = LIS->getInterval(LREdit.get(i)); |
| if (getStage(LI) == RS_New && IntvMap[i] == 0) |
| setStage(LI, RS_Spill); |
| } |
| |
| if (VerifyEnabled) |
| MF->verify(this, "After splitting live range around basic blocks"); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Per-Instruction Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// Get the number of allocatable registers that match the constraints of \p Reg |
| /// on \p MI and that are also in \p SuperRC. |
| static unsigned getNumAllocatableRegsForConstraints( |
| const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, |
| const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, |
| const RegisterClassInfo &RCI) { |
| assert(SuperRC && "Invalid register class"); |
| |
| const TargetRegisterClass *ConstrainedRC = |
| MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, |
| /* ExploreBundle */ true); |
| if (!ConstrainedRC) |
| return 0; |
| return RCI.getNumAllocatableRegs(ConstrainedRC); |
| } |
| |
| /// tryInstructionSplit - Split a live range around individual instructions. |
| /// This is normally not worthwhile since the spiller is doing essentially the |
| /// same thing. However, when the live range is in a constrained register |
| /// class, it may help to insert copies such that parts of the live range can |
| /// be moved to a larger register class. |
| /// |
| /// This is similar to spilling to a larger register class. |
| unsigned |
| RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); |
| // There is no point to this if there are no larger sub-classes. |
| if (!RegClassInfo.isProperSubClass(CurRC)) |
| return 0; |
| |
| // Always enable split spill mode, since we're effectively spilling to a |
| // register. |
| LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); |
| SE->reset(LREdit, SplitEditor::SM_Size); |
| |
| ArrayRef<SlotIndex> Uses = SA->getUseSlots(); |
| if (Uses.size() <= 1) |
| return 0; |
| |
| LLVM_DEBUG(dbgs() << "Split around " << Uses.size() |
| << " individual instrs.\n"); |
| |
| const TargetRegisterClass *SuperRC = |
| TRI->getLargestLegalSuperClass(CurRC, *MF); |
| unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); |
| // Split around every non-copy instruction if this split will relax |
| // the constraints on the virtual register. |
| // Otherwise, splitting just inserts uncoalescable copies that do not help |
| // the allocation. |
| for (unsigned i = 0; i != Uses.size(); ++i) { |
| if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) |
| if (MI->isFullCopy() || |
| SuperRCNumAllocatableRegs == |
| getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, |
| TRI, RCI)) { |
| LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); |
| continue; |
| } |
| SE->openIntv(); |
| SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); |
| SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); |
| SE->useIntv(SegStart, SegStop); |
| } |
| |
| if (LREdit.empty()) { |
| LLVM_DEBUG(dbgs() << "All uses were copies.\n"); |
| return 0; |
| } |
| |
| SmallVector<unsigned, 8> IntvMap; |
| SE->finish(&IntvMap); |
| DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); |
| ExtraRegInfo.resize(MRI->getNumVirtRegs()); |
| |
| // Assign all new registers to RS_Spill. This was the last chance. |
| setStage(LREdit.begin(), LREdit.end(), RS_Spill); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Local Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// calcGapWeights - Compute the maximum spill weight that needs to be evicted |
| /// in order to use PhysReg between two entries in SA->UseSlots. |
| /// |
| /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. |
| /// |
| void RAGreedy::calcGapWeights(unsigned PhysReg, |
| SmallVectorImpl<float> &GapWeight) { |
| assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); |
| const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); |
| ArrayRef<SlotIndex> Uses = SA->getUseSlots(); |
| const unsigned NumGaps = Uses.size()-1; |
| |
| // Start and end points for the interference check. |
| SlotIndex StartIdx = |
| BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; |
| SlotIndex StopIdx = |
| BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; |
| |
| GapWeight.assign(NumGaps, 0.0f); |
| |
| // Add interference from each overlapping register. |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) |
| .checkInterference()) |
| continue; |
| |
| // We know that VirtReg is a continuous interval from FirstInstr to |
| // LastInstr, so we don't need InterferenceQuery. |
| // |
| // Interference that overlaps an instruction is counted in both gaps |
| // surrounding the instruction. The exception is interference before |
| // StartIdx and after StopIdx. |
| // |
| LiveIntervalUnion::SegmentIter IntI = |
| Matrix->getLiveUnions()[*Units] .find(StartIdx); |
| for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { |
| // Skip the gaps before IntI. |
| while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) |
| if (++Gap == NumGaps) |
| break; |
| if (Gap == NumGaps) |
| break; |
| |
| // Update the gaps covered by IntI. |
| const float weight = IntI.value()->weight; |
| for (; Gap != NumGaps; ++Gap) { |
| GapWeight[Gap] = std::max(GapWeight[Gap], weight); |
| if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) |
| break; |
| } |
| if (Gap == NumGaps) |
| break; |
| } |
| } |
| |
| // Add fixed interference. |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| const LiveRange &LR = LIS->getRegUnit(*Units); |
| LiveRange::const_iterator I = LR.find(StartIdx); |
| LiveRange::const_iterator E = LR.end(); |
| |
| // Same loop as above. Mark any overlapped gaps as HUGE_VALF. |
| for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { |
| while (Uses[Gap+1].getBoundaryIndex() < I->start) |
| if (++Gap == NumGaps) |
| break; |
| if (Gap == NumGaps) |
| break; |
| |
| for (; Gap != NumGaps; ++Gap) { |
| GapWeight[Gap] = huge_valf; |
| if (Uses[Gap+1].getBaseIndex() >= I->end) |
| break; |
| } |
| if (Gap == NumGaps) |
| break; |
| } |
| } |
| } |
| |
| /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only |
| /// basic block. |
| /// |
| unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); |
| const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); |
| |
| // Note that it is possible to have an interval that is live-in or live-out |
| // while only covering a single block - A phi-def can use undef values from |
| // predecessors, and the block could be a single-block loop. |
| // We don't bother doing anything clever about such a case, we simply assume |
| // that the interval is continuous from FirstInstr to LastInstr. We should |
| // make sure that we don't do anything illegal to such an interval, though. |
| |
| ArrayRef<SlotIndex> Uses = SA->getUseSlots(); |
| if (Uses.size() <= 2) |
| return 0; |
| const unsigned NumGaps = Uses.size()-1; |
| |
| LLVM_DEBUG({ |
| dbgs() << "tryLocalSplit: "; |
| for (unsigned i = 0, e = Uses.size(); i != e; ++i) |
| dbgs() << ' ' << Uses[i]; |
| dbgs() << '\n'; |
| }); |
| |
| // If VirtReg is live across any register mask operands, compute a list of |
| // gaps with register masks. |
| SmallVector<unsigned, 8> RegMaskGaps; |
| if (Matrix->checkRegMaskInterference(VirtReg)) { |
| // Get regmask slots for the whole block. |
| ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); |
| LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); |
| // Constrain to VirtReg's live range. |
| unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), |
| Uses.front().getRegSlot()) - RMS.begin(); |
| unsigned re = RMS.size(); |
| for (unsigned i = 0; i != NumGaps && ri != re; ++i) { |
| // Look for Uses[i] <= RMS <= Uses[i+1]. |
| assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); |
| if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) |
| continue; |
| // Skip a regmask on the same instruction as the last use. It doesn't |
| // overlap the live range. |
| if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) |
| break; |
| LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' |
| << Uses[i + 1]); |
| RegMaskGaps.push_back(i); |
| // Advance ri to the next gap. A regmask on one of the uses counts in |
| // both gaps. |
| while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) |
| ++ri; |
| } |
| LLVM_DEBUG(dbgs() << '\n'); |
| } |
| |
| // Since we allow local split results to be split again, there is a risk of |
| // creating infinite loops. It is tempting to require that the new live |
| // ranges have less instructions than the original. That would guarantee |
| // convergence, but it is too strict. A live range with 3 instructions can be |
| // split 2+3 (including the COPY), and we want to allow that. |
| // |
| // Instead we use these rules: |
| // |
| // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the |
| // noop split, of course). |
| // 2. Require progress be made for ranges with getStage() == RS_Split2. All |
| // the new ranges must have fewer instructions than before the split. |
| // 3. New ranges with the same number of instructions are marked RS_Split2, |
| // smaller ranges are marked RS_New. |
| // |
| // These rules allow a 3 -> 2+3 split once, which we need. They also prevent |
| // excessive splitting and infinite loops. |
| // |
| bool ProgressRequired = getStage(VirtReg) >= RS_Split2; |
| |
| // Best split candidate. |
| unsigned BestBefore = NumGaps; |
| unsigned BestAfter = 0; |
| float BestDiff = 0; |
| |
| const float blockFreq = |
| SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * |
| (1.0f / MBFI->getEntryFreq()); |
| SmallVector<float, 8> GapWeight; |
| |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next()) { |
| // Keep track of the largest spill weight that would need to be evicted in |
| // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. |
| calcGapWeights(PhysReg, GapWeight); |
| |
| // Remove any gaps with regmask clobbers. |
| if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) |
| for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) |
| GapWeight[RegMaskGaps[i]] = huge_valf; |
| |
| // Try to find the best sequence of gaps to close. |
| // The new spill weight must be larger than any gap interference. |
| |
| // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. |
| unsigned SplitBefore = 0, SplitAfter = 1; |
| |
| // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). |
| // It is the spill weight that needs to be evicted. |
| float MaxGap = GapWeight[0]; |
| |
| while (true) { |
| // Live before/after split? |
| const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; |
| const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; |
| |
| LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] |
| << '-' << Uses[SplitAfter] << " i=" << MaxGap); |
| |
| // Stop before the interval gets so big we wouldn't be making progress. |
| if (!LiveBefore && !LiveAfter) { |
| LLVM_DEBUG(dbgs() << " all\n"); |
| break; |
| } |
| // Should the interval be extended or shrunk? |
| bool Shrink = true; |
| |
| // How many gaps would the new range have? |
| unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; |
| |
| // Legally, without causing looping? |
| bool Legal = !ProgressRequired || NewGaps < NumGaps; |
| |
| if (Legal && MaxGap < huge_valf) { |
| // Estimate the new spill weight. Each instruction reads or writes the |
| // register. Conservatively assume there are no read-modify-write |
| // instructions. |
| // |
| // Try to guess the size of the new interval. |
| const float EstWeight = normalizeSpillWeight( |
| blockFreq * (NewGaps + 1), |
| Uses[SplitBefore].distance(Uses[SplitAfter]) + |
| (LiveBefore + LiveAfter) * SlotIndex::InstrDist, |
| 1); |
| // Would this split be possible to allocate? |
| // Never allocate all gaps, we wouldn't be making progress. |
| LLVM_DEBUG(dbgs() << " w=" << EstWeight); |
| if (EstWeight * Hysteresis >= MaxGap) { |
| Shrink = false; |
| float Diff = EstWeight - MaxGap; |
| if (Diff > BestDiff) { |
| LLVM_DEBUG(dbgs() << " (best)"); |
| BestDiff = Hysteresis * Diff; |
| BestBefore = SplitBefore; |
| BestAfter = SplitAfter; |
| } |
| } |
| } |
| |
| // Try to shrink. |
| if (Shrink) { |
| if (++SplitBefore < SplitAfter) { |
| LLVM_DEBUG(dbgs() << " shrink\n"); |
| // Recompute the max when necessary. |
| if (GapWeight[SplitBefore - 1] >= MaxGap) { |
| MaxGap = GapWeight[SplitBefore]; |
| for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) |
| MaxGap = std::max(MaxGap, GapWeight[i]); |
| } |
| continue; |
| } |
| MaxGap = 0; |
| } |
| |
| // Try to extend the interval. |
| if (SplitAfter >= NumGaps) { |
| LLVM_DEBUG(dbgs() << " end\n"); |
| break; |
| } |
| |
| LLVM_DEBUG(dbgs() << " extend\n"); |
| MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); |
| } |
| } |
| |
| // Didn't find any candidates? |
| if (BestBefore == NumGaps) |
| return 0; |
| |
| LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' |
| << Uses[BestAfter] << ", " << BestDiff << ", " |
| << (BestAfter - BestBefore + 1) << " instrs\n"); |
| |
| LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); |
| SE->reset(LREdit); |
| |
| SE->openIntv(); |
| SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); |
| SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); |
| SE->useIntv(SegStart, SegStop); |
| SmallVector<unsigned, 8> IntvMap; |
| SE->finish(&IntvMap); |
| DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); |
| |
| // If the new range has the same number of instructions as before, mark it as |
| // RS_Split2 so the next split will be forced to make progress. Otherwise, |
| // leave the new intervals as RS_New so they can compete. |
| bool LiveBefore = BestBefore != 0 || BI.LiveIn; |
| bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; |
| unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; |
| if (NewGaps >= NumGaps) { |
| LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); |
| assert(!ProgressRequired && "Didn't make progress when it was required."); |
| for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) |
| if (IntvMap[i] == 1) { |
| setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); |
| LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); |
| } |
| LLVM_DEBUG(dbgs() << '\n'); |
| } |
| ++NumLocalSplits; |
| |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Live Range Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// trySplit - Try to split VirtReg or one of its interferences, making it |
| /// assignable. |
| /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. |
| unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<unsigned>&NewVRegs) { |
| // Ranges must be Split2 or less. |
| if (getStage(VirtReg) >= RS_Spill) |
| return 0; |
| |
| // Local intervals are handled separately. |
| if (LIS->intervalIsInOneMBB(VirtReg)) { |
| NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, |
| TimerGroupDescription, TimePassesIsEnabled); |
| SA->analyze(&VirtReg); |
| unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); |
| if (PhysReg || !NewVRegs.empty()) |
| return PhysReg; |
| return tryInstructionSplit(VirtReg, Order, NewVRegs); |
| } |
| |
| NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, |
| TimerGroupDescription, TimePassesIsEnabled); |
| |
| SA->analyze(&VirtReg); |
| |
| // FIXME: SplitAnalysis may repair broken live ranges coming from the |
| // coalescer. That may cause the range to become allocatable which means that |
| // tryRegionSplit won't be making progress. This check should be replaced with |
| // an assertion when the coalescer is fixed. |
| if (SA->didRepairRange()) { |
| // VirtReg has changed, so all cached queries are invalid. |
| Matrix->invalidateVirtRegs(); |
| if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) |
| return PhysReg; |
| } |
| |
| // First try to split around a region spanning multiple blocks. RS_Split2 |
| // ranges already made dubious progress with region splitting, so they go |
| // straight to single block splitting. |
| if (getStage(VirtReg) < RS_Split2) { |
| unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); |
| if (PhysReg || !NewVRegs.empty()) |
| return PhysReg; |
| } |
| |
| // Then isolate blocks. |
| return tryBlockSplit(VirtReg, Order, NewVRegs); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Last Chance Recoloring |
| //===----------------------------------------------------------------------===// |
| |
| /// Return true if \p reg has any tied def operand. |
| static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { |
| for (const MachineOperand &MO : MRI->def_operands(reg)) |
| if (MO.isTied()) |
| return true; |
| |
| return false; |
| } |
| |
| /// mayRecolorAllInterferences - Check if the virtual registers that |
| /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be |
| /// recolored to free \p PhysReg. |
| /// When true is returned, \p RecoloringCandidates has been augmented with all |
| /// the live intervals that need to be recolored in order to free \p PhysReg |
| /// for \p VirtReg. |
| /// \p FixedRegisters contains all the virtual registers that cannot be |
| /// recolored. |
| bool |
| RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, |
| SmallLISet &RecoloringCandidates, |
| const SmallVirtRegSet &FixedRegisters) { |
| const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); |
| |
| for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
| LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); |
| // If there is LastChanceRecoloringMaxInterference or more interferences, |
| // chances are one would not be recolorable. |
| if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= |
| LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { |
| LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); |
| CutOffInfo |= CO_Interf; |
| return false; |
| } |
| for (unsigned i = Q.interferingVRegs().size(); i; --i) { |
| LiveInterval *Intf = Q.interferingVRegs()[i - 1]; |
| // If Intf is done and sit on the same register class as VirtReg, |
| // it would not be recolorable as it is in the same state as VirtReg. |
| // However, if VirtReg has tied defs and Intf doesn't, then |
| // there is still a point in examining if it can be recolorable. |
| if (((getStage(*Intf) == RS_Done && |
| MRI->getRegClass(Intf->reg) == CurRC) && |
| !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || |
| FixedRegisters.count(Intf->reg)) { |
| LLVM_DEBUG( |
| dbgs() << "Early abort: the interference is not recolorable.\n"); |
| return false; |
| } |
| RecoloringCandidates.insert(Intf); |
| } |
| } |
| return true; |
| } |
| |
| /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring |
| /// its interferences. |
| /// Last chance recoloring chooses a color for \p VirtReg and recolors every |
| /// virtual register that was using it. The recoloring process may recursively |
| /// use the last chance recoloring. Therefore, when a virtual register has been |
| /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot |
| /// be last-chance-recolored again during this recoloring "session". |
| /// E.g., |
| /// Let |
| /// vA can use {R1, R2 } |
| /// vB can use { R2, R3} |
| /// vC can use {R1 } |
| /// Where vA, vB, and vC cannot be split anymore (they are reloads for |
| /// instance) and they all interfere. |
| /// |
| /// vA is assigned R1 |
| /// vB is assigned R2 |
| /// vC tries to evict vA but vA is already done. |
| /// Regular register allocation fails. |
| /// |
| /// Last chance recoloring kicks in: |
| /// vC does as if vA was evicted => vC uses R1. |
| /// vC is marked as fixed. |
| /// vA needs to find a color. |
| /// None are available. |
| /// vA cannot evict vC: vC is a fixed virtual register now. |
| /// vA does as if vB was evicted => vA uses R2. |
| /// vB needs to find a color. |
| /// R3 is available. |
| /// Recoloring => vC = R1, vA = R2, vB = R3 |
| /// |
| /// \p Order defines the preferred allocation order for \p VirtReg. |
| /// \p NewRegs will contain any new virtual register that have been created |
| /// (split, spill) during the process and that must be assigned. |
| /// \p FixedRegisters contains all the virtual registers that cannot be |
| /// recolored. |
| /// \p Depth gives the current depth of the last chance recoloring. |
| /// \return a physical register that can be used for VirtReg or ~0u if none |
| /// exists. |
| unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| SmallVectorImpl<unsigned> &NewVRegs, |
| SmallVirtRegSet &FixedRegisters, |
| unsigned Depth) { |
| LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); |
| // Ranges must be Done. |
| assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && |
| "Last chance recoloring should really be last chance"); |
| // Set the max depth to LastChanceRecoloringMaxDepth. |
| // We may want to reconsider that if we end up with a too large search space |
| // for target with hundreds of registers. |
| // Indeed, in that case we may want to cut the search space earlier. |
| if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { |
| LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); |
| CutOffInfo |= CO_Depth; |
| return ~0u; |
| } |
| |
| // Set of Live intervals that will need to be recolored. |
| SmallLISet RecoloringCandidates; |
| // Record the original mapping virtual register to physical register in case |
| // the recoloring fails. |
| DenseMap<unsigned, unsigned> VirtRegToPhysReg; |
| // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in |
| // this recoloring "session". |
| FixedRegisters.insert(VirtReg.reg); |
| SmallVector<unsigned, 4> CurrentNewVRegs; |
| |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next()) { |
| LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " |
| << printReg(PhysReg, TRI) << '\n'); |
| RecoloringCandidates.clear(); |
| VirtRegToPhysReg.clear(); |
| CurrentNewVRegs.clear(); |
| |
| // It is only possible to recolor virtual register interference. |
| if (Matrix->checkInterference(VirtReg, PhysReg) > |
| LiveRegMatrix::IK_VirtReg) { |
| LLVM_DEBUG( |
| dbgs() << "Some interferences are not with virtual registers.\n"); |
| |
| continue; |
| } |
| |
| // Early give up on this PhysReg if it is obvious we cannot recolor all |
| // the interferences. |
| if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, |
| FixedRegisters)) { |
| LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); |
| continue; |
| } |
| |
| // RecoloringCandidates contains all the virtual registers that interfer |
| // with VirtReg on PhysReg (or one of its aliases). |
| // Enqueue them for recoloring and perform the actual recoloring. |
| PQueue RecoloringQueue; |
| for (SmallLISet::iterator It = RecoloringCandidates.begin(), |
| EndIt = RecoloringCandidates.end(); |
| It != EndIt; ++It) { |
| unsigned ItVirtReg = (*It)->reg; |
| enqueue(RecoloringQueue, *It); |
| assert(VRM->hasPhys(ItVirtReg) && |
| "Interferences are supposed to be with allocated variables"); |
| |
| // Record the current allocation. |
| VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); |
| // unset the related struct. |
| Matrix->unassign(**It); |
| } |
| |
| // Do as if VirtReg was assigned to PhysReg so that the underlying |
| // recoloring has the right information about the interferes and |
| // available colors. |
| Matrix->assign(VirtReg, PhysReg); |
| |
| // Save the current recoloring state. |
| // If we cannot recolor all the interferences, we will have to start again |
| // at this point for the next physical register. |
| SmallVirtRegSet SaveFixedRegisters(FixedRegisters); |
| if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, |
| FixedRegisters, Depth)) { |
| // Push the queued vregs into the main queue. |
| for (unsigned NewVReg : CurrentNewVRegs) |
| NewVRegs.push_back(NewVReg); |
| // Do not mess up with the global assignment process. |
| // I.e., VirtReg must be unassigned. |
| Matrix->unassign(VirtReg); |
| return PhysReg; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " |
| << printReg(PhysReg, TRI) << '\n'); |
| |
| // The recoloring attempt failed, undo the changes. |
| FixedRegisters = SaveFixedRegisters; |
| Matrix->unassign(VirtReg); |
| |
| // For a newly created vreg which is also in RecoloringCandidates, |
| // don't add it to NewVRegs because its physical register will be restored |
| // below. Other vregs in CurrentNewVRegs are created by calling |
| // selectOrSplit and should be added into NewVRegs. |
| for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), |
| End = CurrentNewVRegs.end(); |
| Next != End; ++Next) { |
| if (RecoloringCandidates.count(&LIS->getInterval(*Next))) |
| continue; |
| NewVRegs.push_back(*Next); |
| } |
| |
| for (SmallLISet::iterator It = RecoloringCandidates.begin(), |
| EndIt = RecoloringCandidates.end(); |
| It != EndIt; ++It) { |
| unsigned ItVirtReg = (*It)->reg; |
| if (VRM->hasPhys(ItVirtReg)) |
| Matrix->unassign(**It); |
| unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; |
| Matrix->assign(**It, ItPhysReg); |
| } |
| } |
| |
| // Last chance recoloring did not worked either, give up. |
| return ~0u; |
| } |
| |
| /// tryRecoloringCandidates - Try to assign a new color to every register |
| /// in \RecoloringQueue. |
| /// \p NewRegs will contain any new virtual register created during the |
| /// recoloring process. |
| /// \p FixedRegisters[in/out] contains all the registers that have been |
| /// recolored. |
| /// \return true if all virtual registers in RecoloringQueue were successfully |
| /// recolored, false otherwise. |
| bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, |
| SmallVectorImpl<unsigned> &NewVRegs, |
| SmallVirtRegSet &FixedRegisters, |
| unsigned Depth) { |
| while (!RecoloringQueue.empty()) { |
| LiveInterval *LI = dequeue(RecoloringQueue); |
| LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); |
| unsigned PhysReg; |
| PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); |
| // When splitting happens, the live-range may actually be empty. |
| // In that case, this is okay to continue the recoloring even |
| // if we did not find an alternative color for it. Indeed, |
| // there will not be anything to color for LI in the end. |
| if (PhysReg == ~0u || (!PhysReg && !LI->empty())) |
| return false; |
| |
| if (!PhysReg) { |
| assert(LI->empty() && "Only empty live-range do not require a register"); |
| LLVM_DEBUG(dbgs() << "Recoloring of " << *LI |
| << " succeeded. Empty LI.\n"); |
| continue; |
| } |
| LLVM_DEBUG(dbgs() << "Recoloring of " << *LI |
| << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); |
| |
| Matrix->assign(*LI, PhysReg); |
| FixedRegisters.insert(LI->reg); |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main Entry Point |
| //===----------------------------------------------------------------------===// |
| |
| unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| CutOffInfo = CO_None; |
| LLVMContext &Ctx = MF->getFunction().getContext(); |
| SmallVirtRegSet FixedRegisters; |
| unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); |
| if (Reg == ~0U && (CutOffInfo != CO_None)) { |
| uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); |
| if (CutOffEncountered == CO_Depth) |
| Ctx.emitError("register allocation failed: maximum depth for recoloring " |
| "reached. Use -fexhaustive-register-search to skip " |
| "cutoffs"); |
| else if (CutOffEncountered == CO_Interf) |
| Ctx.emitError("register allocation failed: maximum interference for " |
| "recoloring reached. Use -fexhaustive-register-search " |
| "to skip cutoffs"); |
| else if (CutOffEncountered == (CO_Depth | CO_Interf)) |
| Ctx.emitError("register allocation failed: maximum interference and " |
| "depth for recoloring reached. Use " |
| "-fexhaustive-register-search to skip cutoffs"); |
| } |
| return Reg; |
| } |
| |
| /// Using a CSR for the first time has a cost because it causes push|pop |
| /// to be added to prologue|epilogue. Splitting a cold section of the live |
| /// range can have lower cost than using the CSR for the first time; |
| /// Spilling a live range in the cold path can have lower cost than using |
| /// the CSR for the first time. Returns the physical register if we decide |
| /// to use the CSR; otherwise return 0. |
| unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| unsigned PhysReg, |
| unsigned &CostPerUseLimit, |
| SmallVectorImpl<unsigned> &NewVRegs) { |
| if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { |
| // We choose spill over using the CSR for the first time if the spill cost |
| // is lower than CSRCost. |
| SA->analyze(&VirtReg); |
| if (calcSpillCost() >= CSRCost) |
| return PhysReg; |
| |
| // We are going to spill, set CostPerUseLimit to 1 to make sure that |
| // we will not use a callee-saved register in tryEvict. |
| CostPerUseLimit = 1; |
| return 0; |
| } |
| if (getStage(VirtReg) < RS_Split) { |
| // We choose pre-splitting over using the CSR for the first time if |
| // the cost of splitting is lower than CSRCost. |
| SA->analyze(&VirtReg); |
| unsigned NumCands = 0; |
| BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. |
| unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, |
|