| /* Copyright (c) 2007-2008 CSIRO | 
 |    Copyright (c) 2007-2008 Xiph.Org Foundation | 
 |    Written by Jean-Marc Valin */ | 
 | /* | 
 |    Redistribution and use in source and binary forms, with or without | 
 |    modification, are permitted provided that the following conditions | 
 |    are met: | 
 |  | 
 |    - Redistributions of source code must retain the above copyright | 
 |    notice, this list of conditions and the following disclaimer. | 
 |  | 
 |    - Redistributions in binary form must reproduce the above copyright | 
 |    notice, this list of conditions and the following disclaimer in the | 
 |    documentation and/or other materials provided with the distribution. | 
 |  | 
 |    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | 
 |    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
 |    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
 |    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
 |    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
 |    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
 |    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
 |    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | */ | 
 |  | 
 | /* This is a simple MDCT implementation that uses a N/4 complex FFT | 
 |    to do most of the work. It should be relatively straightforward to | 
 |    plug in pretty much and FFT here. | 
 |  | 
 |    This replaces the Vorbis FFT (and uses the exact same API), which | 
 |    was a bit too messy and that was ending up duplicating code | 
 |    (might as well use the same FFT everywhere). | 
 |  | 
 |    The algorithm is similar to (and inspired from) Fabrice Bellard's | 
 |    MDCT implementation in FFMPEG, but has differences in signs, ordering | 
 |    and scaling in many places. | 
 | */ | 
 |  | 
 | #ifndef SKIP_CONFIG_H | 
 | #ifdef HAVE_CONFIG_H | 
 | #include "config.h" | 
 | #endif | 
 | #endif | 
 |  | 
 | #include "mdct.h" | 
 | #include "kiss_fft.h" | 
 | #include "_kiss_fft_guts.h" | 
 | #include <math.h> | 
 | #include "os_support.h" | 
 | #include "mathops.h" | 
 | #include "stack_alloc.h" | 
 |  | 
 | #if defined(MIPSr1_ASM) | 
 | #include "mips/mdct_mipsr1.h" | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef CUSTOM_MODES | 
 |  | 
 | int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch) | 
 | { | 
 |    int i; | 
 |    kiss_twiddle_scalar *trig; | 
 |    int shift; | 
 |    int N2=N>>1; | 
 |    l->n = N; | 
 |    l->maxshift = maxshift; | 
 |    for (i=0;i<=maxshift;i++) | 
 |    { | 
 |       if (i==0) | 
 |          l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch); | 
 |       else | 
 |          l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch); | 
 | #ifndef ENABLE_TI_DSPLIB55 | 
 |       if (l->kfft[i]==NULL) | 
 |          return 0; | 
 | #endif | 
 |    } | 
 |    l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(kiss_twiddle_scalar)); | 
 |    if (l->trig==NULL) | 
 |      return 0; | 
 |    for (shift=0;shift<=maxshift;shift++) | 
 |    { | 
 |       /* We have enough points that sine isn't necessary */ | 
 | #if defined(FIXED_POINT) | 
 | #if 1 | 
 |       for (i=0;i<N2;i++) | 
 |          trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2+16384),N)); | 
 | #else | 
 |       for (i=0;i<N2;i++) | 
 |          trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*cos(2*M_PI*(i+.125)/N)))); | 
 | #endif | 
 | #else | 
 |       for (i=0;i<N2;i++) | 
 |          trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N); | 
 | #endif | 
 |       trig += N2; | 
 |       N2 >>= 1; | 
 |       N >>= 1; | 
 |    } | 
 |    return 1; | 
 | } | 
 |  | 
 | void clt_mdct_clear(mdct_lookup *l, int arch) | 
 | { | 
 |    int i; | 
 |    for (i=0;i<=l->maxshift;i++) | 
 |       opus_fft_free(l->kfft[i], arch); | 
 |    opus_free((kiss_twiddle_scalar*)l->trig); | 
 | } | 
 |  | 
 | #endif /* CUSTOM_MODES */ | 
 |  | 
 | /* Forward MDCT trashes the input array */ | 
 | #ifndef OVERRIDE_clt_mdct_forward | 
 | void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out, | 
 |       const opus_val16 *window, int overlap, int shift, int stride, int arch) | 
 | { | 
 |    int i; | 
 |    int N, N2, N4; | 
 |    VARDECL(kiss_fft_scalar, f); | 
 |    VARDECL(kiss_fft_cpx, f2); | 
 |    const kiss_fft_state *st = l->kfft[shift]; | 
 |    const kiss_twiddle_scalar *trig; | 
 |    opus_val16 scale; | 
 | #ifdef FIXED_POINT | 
 |    /* Allows us to scale with MULT16_32_Q16(), which is faster than | 
 |       MULT16_32_Q15() on ARM. */ | 
 |    int scale_shift = st->scale_shift-1; | 
 | #endif | 
 |    SAVE_STACK; | 
 |    (void)arch; | 
 |    scale = st->scale; | 
 |  | 
 |    N = l->n; | 
 |    trig = l->trig; | 
 |    for (i=0;i<shift;i++) | 
 |    { | 
 |       N >>= 1; | 
 |       trig += N; | 
 |    } | 
 |    N2 = N>>1; | 
 |    N4 = N>>2; | 
 |  | 
 |    ALLOC(f, N2, kiss_fft_scalar); | 
 |    ALLOC(f2, N4, kiss_fft_cpx); | 
 |  | 
 |    /* Consider the input to be composed of four blocks: [a, b, c, d] */ | 
 |    /* Window, shuffle, fold */ | 
 |    { | 
 |       /* Temp pointers to make it really clear to the compiler what we're doing */ | 
 |       const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1); | 
 |       const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1); | 
 |       kiss_fft_scalar * OPUS_RESTRICT yp = f; | 
 |       const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1); | 
 |       const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1; | 
 |       for(i=0;i<((overlap+3)>>2);i++) | 
 |       { | 
 |          /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/ | 
 |          *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2); | 
 |          *yp++ = MULT16_32_Q15(*wp1, *xp1)    - MULT16_32_Q15(*wp2, xp2[-N2]); | 
 |          xp1+=2; | 
 |          xp2-=2; | 
 |          wp1+=2; | 
 |          wp2-=2; | 
 |       } | 
 |       wp1 = window; | 
 |       wp2 = window+overlap-1; | 
 |       for(;i<N4-((overlap+3)>>2);i++) | 
 |       { | 
 |          /* Real part arranged as a-bR, Imag part arranged as -c-dR */ | 
 |          *yp++ = *xp2; | 
 |          *yp++ = *xp1; | 
 |          xp1+=2; | 
 |          xp2-=2; | 
 |       } | 
 |       for(;i<N4;i++) | 
 |       { | 
 |          /* Real part arranged as a-bR, Imag part arranged as -c-dR */ | 
 |          *yp++ =  -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2); | 
 |          *yp++ = MULT16_32_Q15(*wp2, *xp1)     + MULT16_32_Q15(*wp1, xp2[N2]); | 
 |          xp1+=2; | 
 |          xp2-=2; | 
 |          wp1+=2; | 
 |          wp2-=2; | 
 |       } | 
 |    } | 
 |    /* Pre-rotation */ | 
 |    { | 
 |       kiss_fft_scalar * OPUS_RESTRICT yp = f; | 
 |       const kiss_twiddle_scalar *t = &trig[0]; | 
 |       for(i=0;i<N4;i++) | 
 |       { | 
 |          kiss_fft_cpx yc; | 
 |          kiss_twiddle_scalar t0, t1; | 
 |          kiss_fft_scalar re, im, yr, yi; | 
 |          t0 = t[i]; | 
 |          t1 = t[N4+i]; | 
 |          re = *yp++; | 
 |          im = *yp++; | 
 |          yr = S_MUL(re,t0)  -  S_MUL(im,t1); | 
 |          yi = S_MUL(im,t0)  +  S_MUL(re,t1); | 
 |          yc.r = yr; | 
 |          yc.i = yi; | 
 |          yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift); | 
 |          yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift); | 
 |          f2[st->bitrev[i]] = yc; | 
 |       } | 
 |    } | 
 |  | 
 |    /* N/4 complex FFT, does not downscale anymore */ | 
 |    opus_fft_impl(st, f2); | 
 |  | 
 |    /* Post-rotate */ | 
 |    { | 
 |       /* Temp pointers to make it really clear to the compiler what we're doing */ | 
 |       const kiss_fft_cpx * OPUS_RESTRICT fp = f2; | 
 |       kiss_fft_scalar * OPUS_RESTRICT yp1 = out; | 
 |       kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1); | 
 |       const kiss_twiddle_scalar *t = &trig[0]; | 
 |       /* Temp pointers to make it really clear to the compiler what we're doing */ | 
 |       for(i=0;i<N4;i++) | 
 |       { | 
 |          kiss_fft_scalar yr, yi; | 
 |          yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]); | 
 |          yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]); | 
 |          *yp1 = yr; | 
 |          *yp2 = yi; | 
 |          fp++; | 
 |          yp1 += 2*stride; | 
 |          yp2 -= 2*stride; | 
 |       } | 
 |    } | 
 |    RESTORE_STACK; | 
 | } | 
 | #endif /* OVERRIDE_clt_mdct_forward */ | 
 |  | 
 | #ifndef OVERRIDE_clt_mdct_backward | 
 | void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out, | 
 |       const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride, int arch) | 
 | { | 
 |    int i; | 
 |    int N, N2, N4; | 
 |    const kiss_twiddle_scalar *trig; | 
 |    (void) arch; | 
 |  | 
 |    N = l->n; | 
 |    trig = l->trig; | 
 |    for (i=0;i<shift;i++) | 
 |    { | 
 |       N >>= 1; | 
 |       trig += N; | 
 |    } | 
 |    N2 = N>>1; | 
 |    N4 = N>>2; | 
 |  | 
 |    /* Pre-rotate */ | 
 |    { | 
 |       /* Temp pointers to make it really clear to the compiler what we're doing */ | 
 |       const kiss_fft_scalar * OPUS_RESTRICT xp1 = in; | 
 |       const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1); | 
 |       kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1); | 
 |       const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0]; | 
 |       const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev; | 
 |       for(i=0;i<N4;i++) | 
 |       { | 
 |          int rev; | 
 |          kiss_fft_scalar yr, yi; | 
 |          rev = *bitrev++; | 
 |          yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i])); | 
 |          yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i])); | 
 |          /* We swap real and imag because we use an FFT instead of an IFFT. */ | 
 |          yp[2*rev+1] = yr; | 
 |          yp[2*rev] = yi; | 
 |          /* Storing the pre-rotation directly in the bitrev order. */ | 
 |          xp1+=2*stride; | 
 |          xp2-=2*stride; | 
 |       } | 
 |    } | 
 |  | 
 |    opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1))); | 
 |  | 
 |    /* Post-rotate and de-shuffle from both ends of the buffer at once to make | 
 |       it in-place. */ | 
 |    { | 
 |       kiss_fft_scalar * yp0 = out+(overlap>>1); | 
 |       kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2; | 
 |       const kiss_twiddle_scalar *t = &trig[0]; | 
 |       /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the | 
 |          middle pair will be computed twice. */ | 
 |       for(i=0;i<(N4+1)>>1;i++) | 
 |       { | 
 |          kiss_fft_scalar re, im, yr, yi; | 
 |          kiss_twiddle_scalar t0, t1; | 
 |          /* We swap real and imag because we're using an FFT instead of an IFFT. */ | 
 |          re = yp0[1]; | 
 |          im = yp0[0]; | 
 |          t0 = t[i]; | 
 |          t1 = t[N4+i]; | 
 |          /* We'd scale up by 2 here, but instead it's done when mixing the windows */ | 
 |          yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1)); | 
 |          yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0)); | 
 |          /* We swap real and imag because we're using an FFT instead of an IFFT. */ | 
 |          re = yp1[1]; | 
 |          im = yp1[0]; | 
 |          yp0[0] = yr; | 
 |          yp1[1] = yi; | 
 |  | 
 |          t0 = t[(N4-i-1)]; | 
 |          t1 = t[(N2-i-1)]; | 
 |          /* We'd scale up by 2 here, but instead it's done when mixing the windows */ | 
 |          yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1)); | 
 |          yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0)); | 
 |          yp1[0] = yr; | 
 |          yp0[1] = yi; | 
 |          yp0 += 2; | 
 |          yp1 -= 2; | 
 |       } | 
 |    } | 
 |  | 
 |    /* Mirror on both sides for TDAC */ | 
 |    { | 
 |       kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1; | 
 |       kiss_fft_scalar * OPUS_RESTRICT yp1 = out; | 
 |       const opus_val16 * OPUS_RESTRICT wp1 = window; | 
 |       const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1; | 
 |  | 
 |       for(i = 0; i < overlap/2; i++) | 
 |       { | 
 |          kiss_fft_scalar x1, x2; | 
 |          x1 = *xp1; | 
 |          x2 = *yp1; | 
 |          *yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1)); | 
 |          *xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1)); | 
 |          wp1++; | 
 |          wp2--; | 
 |       } | 
 |    } | 
 | } | 
 | #endif /* OVERRIDE_clt_mdct_backward */ |