| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkAtomics.h" |
| #include "SkCanvas.h" |
| #include "SkClipStack.h" |
| #include "SkPath.h" |
| #include "SkPathOps.h" |
| #include "SkClipOpPriv.h" |
| |
| #include <new> |
| |
| |
| // 0-2 are reserved for invalid, empty & wide-open |
| static const int32_t kFirstUnreservedGenID = 3; |
| int32_t SkClipStack::gGenID = kFirstUnreservedGenID; |
| |
| SkClipStack::Element::Element(const Element& that) { |
| switch (that.getType()) { |
| case kEmpty_Type: |
| fRRect.setEmpty(); |
| fPath.reset(); |
| break; |
| case kRect_Type: // Rect uses rrect |
| case kRRect_Type: |
| fPath.reset(); |
| fRRect = that.fRRect; |
| break; |
| case kPath_Type: |
| fPath.set(that.getPath()); |
| break; |
| } |
| |
| fSaveCount = that.fSaveCount; |
| fOp = that.fOp; |
| fType = that.fType; |
| fDoAA = that.fDoAA; |
| fFiniteBoundType = that.fFiniteBoundType; |
| fFiniteBound = that.fFiniteBound; |
| fIsIntersectionOfRects = that.fIsIntersectionOfRects; |
| fGenID = that.fGenID; |
| } |
| |
| bool SkClipStack::Element::operator== (const Element& element) const { |
| if (this == &element) { |
| return true; |
| } |
| if (fOp != element.fOp || |
| fType != element.fType || |
| fDoAA != element.fDoAA || |
| fSaveCount != element.fSaveCount) { |
| return false; |
| } |
| switch (fType) { |
| case kPath_Type: |
| return this->getPath() == element.getPath(); |
| case kRRect_Type: |
| return fRRect == element.fRRect; |
| case kRect_Type: |
| return this->getRect() == element.getRect(); |
| case kEmpty_Type: |
| return true; |
| default: |
| SkDEBUGFAIL("Unexpected type."); |
| return false; |
| } |
| } |
| |
| void SkClipStack::Element::invertShapeFillType() { |
| switch (fType) { |
| case kRect_Type: |
| fPath.init(); |
| fPath.get()->addRect(this->getRect()); |
| fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); |
| fType = kPath_Type; |
| break; |
| case kRRect_Type: |
| fPath.init(); |
| fPath.get()->addRRect(fRRect); |
| fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType); |
| fType = kPath_Type; |
| break; |
| case kPath_Type: |
| fPath.get()->toggleInverseFillType(); |
| break; |
| case kEmpty_Type: |
| // Should this set to an empty, inverse filled path? |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkClipOp op, |
| bool doAA) { |
| if (!path.isInverseFillType()) { |
| SkRect r; |
| if (path.isRect(&r)) { |
| this->initRect(saveCount, r, op, doAA); |
| return; |
| } |
| SkRect ovalRect; |
| if (path.isOval(&ovalRect)) { |
| SkRRect rrect; |
| rrect.setOval(ovalRect); |
| this->initRRect(saveCount, rrect, op, doAA); |
| return; |
| } |
| } |
| fPath.set(path); |
| fPath.get()->setIsVolatile(true); |
| fType = kPath_Type; |
| this->initCommon(saveCount, op, doAA); |
| } |
| |
| void SkClipStack::Element::asPath(SkPath* path) const { |
| switch (fType) { |
| case kEmpty_Type: |
| path->reset(); |
| path->setIsVolatile(true); |
| break; |
| case kRect_Type: |
| path->reset(); |
| path->addRect(this->getRect()); |
| path->setIsVolatile(true); |
| break; |
| case kRRect_Type: |
| path->reset(); |
| path->addRRect(fRRect); |
| path->setIsVolatile(true); |
| break; |
| case kPath_Type: |
| *path = *fPath.get(); |
| break; |
| } |
| path->setIsVolatile(true); |
| } |
| |
| void SkClipStack::Element::setEmpty() { |
| fType = kEmpty_Type; |
| fFiniteBound.setEmpty(); |
| fFiniteBoundType = kNormal_BoundsType; |
| fIsIntersectionOfRects = false; |
| fRRect.setEmpty(); |
| fPath.reset(); |
| fGenID = kEmptyGenID; |
| SkDEBUGCODE(this->checkEmpty();) |
| } |
| |
| void SkClipStack::Element::checkEmpty() const { |
| SkASSERT(fFiniteBound.isEmpty()); |
| SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
| SkASSERT(!fIsIntersectionOfRects); |
| SkASSERT(kEmptyGenID == fGenID); |
| SkASSERT(fRRect.isEmpty()); |
| SkASSERT(!fPath.isValid()); |
| } |
| |
| bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkClipOp op) const { |
| if (kEmpty_Type == fType && |
| (kDifference_SkClipOp == op || kIntersect_SkClipOp == op)) { |
| return true; |
| } |
| // Only clips within the same save/restore frame (as captured by |
| // the save count) can be merged |
| return fSaveCount == saveCount && |
| kIntersect_SkClipOp == op && |
| (kIntersect_SkClipOp == fOp || kReplace_SkClipOp == fOp); |
| } |
| |
| bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
| SkASSERT(kRect_Type == fType); |
| |
| if (fDoAA == newAA) { |
| // if the AA setting is the same there is no issue |
| return true; |
| } |
| |
| if (!SkRect::Intersects(this->getRect(), newR)) { |
| // The calling code will correctly set the result to the empty clip |
| return true; |
| } |
| |
| if (this->getRect().contains(newR)) { |
| // if the new rect carves out a portion of the old one there is no |
| // issue |
| return true; |
| } |
| |
| // So either the two overlap in some complex manner or newR contains oldR. |
| // In the first, case the edges will require different AA. In the second, |
| // the AA setting that would be carried forward is incorrect (e.g., oldR |
| // is AA while newR is BW but since newR contains oldR, oldR will be |
| // drawn BW) since the new AA setting will predominate. |
| return false; |
| } |
| |
| // a mirror of combineBoundsRevDiff |
| void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // In this case the only pixels that can remain set |
| // are inside the current clip rect since the extensions |
| // to infinity of both clips cancel out and whatever |
| // is outside of the current clip is removed |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // In this case the current op is finite so the only pixels |
| // that aren't set are whatever isn't set in the previous |
| // clip and whatever this clip carves out |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_InvCur_FillCombo: |
| // In this case everything outside of this clip's bound |
| // is erased, so the only pixels that can remain set |
| // occur w/in the intersection of the two finite bounds |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kEmptyGenID; |
| } |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| // The most conservative result bound is that of the |
| // prior clip. This could be wildly incorrect if the |
| // second clip either exactly matches the first clip |
| // (which should yield the empty set) or reduces the |
| // size of the prior bound (e.g., if the second clip |
| // exactly matched the bottom half of the prior clip). |
| // We ignore these two possibilities. |
| fFiniteBound = prevFinite; |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination"); |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_Cur_FillCombo: // fall through |
| case kPrev_InvCur_FillCombo: |
| // With only one of the clips inverted the result will always |
| // extend to infinity. The only pixels that may be un-writeable |
| // lie within the union of the two finite bounds |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that can survive are within the |
| // union of the two bounding boxes since the extensions |
| // to infinity of both clips cancel out |
| // fall through! |
| case kPrev_Cur_FillCombo: |
| // The most conservative bound for xor is the |
| // union of the two bounds. If the two clips exactly overlapped |
| // the xor could yield the empty set. Similarly the xor |
| // could reduce the size of the original clip's bound (e.g., |
| // if the second clip exactly matched the bottom half of the |
| // first clip). We ignore these two cases. |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsIntersection |
| void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kWideOpenGenID; |
| } |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // The only pixels that won't be drawable are inside |
| // the prior clip's finite bound |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_InvCur_FillCombo: |
| // The only pixels that won't be drawable are inside |
| // this clip's finite bound |
| break; |
| case kPrev_Cur_FillCombo: |
| fFiniteBound.join(prevFinite); |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsUnion |
| void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that aren't writable in this case |
| // occur in the union of the two finite bounds |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // In this case the only pixels that will remain writeable |
| // are within the current clip |
| break; |
| case kPrev_InvCur_FillCombo: |
| // In this case the only pixels that will remain writeable |
| // are with the previous clip |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| this->setEmpty(); |
| } |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsDiff |
| void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that can survive are in the |
| // previous bound since the extensions to infinity in |
| // both clips cancel out |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| this->setEmpty(); |
| } else { |
| fFiniteBoundType = kNormal_BoundsType; |
| } |
| break; |
| case kPrev_InvCur_FillCombo: |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| // Fall through - as with the kDifference_Op case, the |
| // most conservative result bound is the bound of the |
| // current clip. The prior clip could reduce the size of this |
| // bound (as in the kDifference_Op case) but we are ignoring |
| // those cases. |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination"); |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
| // We set this first here but we may overwrite it later if we determine that the clip is |
| // either wide-open or empty. |
| fGenID = GetNextGenID(); |
| |
| // First, optimistically update the current Element's bound information |
| // with the current clip's bound |
| fIsIntersectionOfRects = false; |
| switch (fType) { |
| case kRect_Type: |
| fFiniteBound = this->getRect(); |
| fFiniteBoundType = kNormal_BoundsType; |
| |
| if (kReplace_SkClipOp == fOp || |
| (kIntersect_SkClipOp == fOp && nullptr == prior) || |
| (kIntersect_SkClipOp == fOp && prior->fIsIntersectionOfRects && |
| prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) { |
| fIsIntersectionOfRects = true; |
| } |
| break; |
| case kRRect_Type: |
| fFiniteBound = fRRect.getBounds(); |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPath_Type: |
| fFiniteBound = fPath.get()->getBounds(); |
| |
| if (fPath.get()->isInverseFillType()) { |
| fFiniteBoundType = kInsideOut_BoundsType; |
| } else { |
| fFiniteBoundType = kNormal_BoundsType; |
| } |
| break; |
| case kEmpty_Type: |
| SkDEBUGFAIL("We shouldn't get here with an empty element."); |
| break; |
| } |
| |
| if (!fDoAA) { |
| fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f), |
| SkScalarRoundToScalar(fFiniteBound.fTop), |
| SkScalarRoundToScalar(fFiniteBound.fRight), |
| SkScalarRoundToScalar(fFiniteBound.fBottom)); |
| } |
| |
| // Now determine the previous Element's bound information taking into |
| // account that there may be no previous clip |
| SkRect prevFinite; |
| SkClipStack::BoundsType prevType; |
| |
| if (nullptr == prior) { |
| // no prior clip means the entire plane is writable |
| prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
| prevType = kInsideOut_BoundsType; |
| } else { |
| prevFinite = prior->fFiniteBound; |
| prevType = prior->fFiniteBoundType; |
| } |
| |
| FillCombo combination = kPrev_Cur_FillCombo; |
| if (kInsideOut_BoundsType == fFiniteBoundType) { |
| combination = (FillCombo) (combination | 0x01); |
| } |
| if (kInsideOut_BoundsType == prevType) { |
| combination = (FillCombo) (combination | 0x02); |
| } |
| |
| SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
| kInvPrev_Cur_FillCombo == combination || |
| kPrev_InvCur_FillCombo == combination || |
| kPrev_Cur_FillCombo == combination); |
| |
| // Now integrate with clip with the prior clips |
| switch (fOp) { |
| case kDifference_SkClipOp: |
| this->combineBoundsDiff(combination, prevFinite); |
| break; |
| case kXOR_SkClipOp: |
| this->combineBoundsXOR(combination, prevFinite); |
| break; |
| case kUnion_SkClipOp: |
| this->combineBoundsUnion(combination, prevFinite); |
| break; |
| case kIntersect_SkClipOp: |
| this->combineBoundsIntersection(combination, prevFinite); |
| break; |
| case kReverseDifference_SkClipOp: |
| this->combineBoundsRevDiff(combination, prevFinite); |
| break; |
| case kReplace_SkClipOp: |
| // Replace just ignores everything prior |
| // The current clip's bound information is already filled in |
| // so nothing to do |
| break; |
| default: |
| SkDebugf("SkClipOp error\n"); |
| SkASSERT(0); |
| break; |
| } |
| } |
| |
| // This constant determines how many Element's are allocated together as a block in |
| // the deque. As such it needs to balance allocating too much memory vs. |
| // incurring allocation/deallocation thrashing. It should roughly correspond to |
| // the deepest save/restore stack we expect to see. |
| static const int kDefaultElementAllocCnt = 8; |
| |
| SkClipStack::SkClipStack() |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| } |
| |
| SkClipStack::SkClipStack(void* storage, size_t size) |
| : fDeque(sizeof(Element), storage, size, kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| } |
| |
| SkClipStack::SkClipStack(const SkClipStack& b) |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
| *this = b; |
| } |
| |
| SkClipStack::~SkClipStack() { |
| reset(); |
| } |
| |
| SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
| if (this == &b) { |
| return *this; |
| } |
| reset(); |
| |
| fSaveCount = b.fSaveCount; |
| SkDeque::F2BIter recIter(b.fDeque); |
| for (const Element* element = (const Element*)recIter.next(); |
| element != nullptr; |
| element = (const Element*)recIter.next()) { |
| new (fDeque.push_back()) Element(*element); |
| } |
| |
| return *this; |
| } |
| |
| bool SkClipStack::operator==(const SkClipStack& b) const { |
| if (this->getTopmostGenID() == b.getTopmostGenID()) { |
| return true; |
| } |
| if (fSaveCount != b.fSaveCount || |
| fDeque.count() != b.fDeque.count()) { |
| return false; |
| } |
| SkDeque::F2BIter myIter(fDeque); |
| SkDeque::F2BIter bIter(b.fDeque); |
| const Element* myElement = (const Element*)myIter.next(); |
| const Element* bElement = (const Element*)bIter.next(); |
| |
| while (myElement != nullptr && bElement != nullptr) { |
| if (*myElement != *bElement) { |
| return false; |
| } |
| myElement = (const Element*)myIter.next(); |
| bElement = (const Element*)bIter.next(); |
| } |
| return myElement == nullptr && bElement == nullptr; |
| } |
| |
| void SkClipStack::reset() { |
| // We used a placement new for each object in fDeque, so we're responsible |
| // for calling the destructor on each of them as well. |
| while (!fDeque.empty()) { |
| Element* element = (Element*)fDeque.back(); |
| element->~Element(); |
| fDeque.pop_back(); |
| } |
| |
| fSaveCount = 0; |
| } |
| |
| void SkClipStack::save() { |
| fSaveCount += 1; |
| } |
| |
| void SkClipStack::restore() { |
| fSaveCount -= 1; |
| restoreTo(fSaveCount); |
| } |
| |
| void SkClipStack::restoreTo(int saveCount) { |
| while (!fDeque.empty()) { |
| Element* element = (Element*)fDeque.back(); |
| if (element->fSaveCount <= saveCount) { |
| break; |
| } |
| element->~Element(); |
| fDeque.pop_back(); |
| } |
| } |
| |
| SkRect SkClipStack::bounds(const SkIRect& deviceBounds) const { |
| // TODO: optimize this. |
| SkRect r; |
| SkClipStack::BoundsType bounds; |
| this->getBounds(&r, &bounds); |
| if (bounds == SkClipStack::kInsideOut_BoundsType) { |
| return SkRect::Make(deviceBounds); |
| } |
| return r.intersect(SkRect::Make(deviceBounds)) ? r : SkRect::MakeEmpty(); |
| } |
| |
| // TODO: optimize this. |
| bool SkClipStack::isEmpty(const SkIRect& r) const { return this->bounds(r).isEmpty(); } |
| |
| void SkClipStack::getBounds(SkRect* canvFiniteBound, |
| BoundsType* boundType, |
| bool* isIntersectionOfRects) const { |
| SkASSERT(canvFiniteBound && boundType); |
| |
| Element* element = (Element*)fDeque.back(); |
| |
| if (nullptr == element) { |
| // the clip is wide open - the infinite plane w/ no pixels un-writeable |
| canvFiniteBound->setEmpty(); |
| *boundType = kInsideOut_BoundsType; |
| if (isIntersectionOfRects) { |
| *isIntersectionOfRects = false; |
| } |
| return; |
| } |
| |
| *canvFiniteBound = element->fFiniteBound; |
| *boundType = element->fFiniteBoundType; |
| if (isIntersectionOfRects) { |
| *isIntersectionOfRects = element->fIsIntersectionOfRects; |
| } |
| } |
| |
| bool SkClipStack::internalQuickContains(const SkRect& rect) const { |
| |
| Iter iter(*this, Iter::kTop_IterStart); |
| const Element* element = iter.prev(); |
| while (element != nullptr) { |
| if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp()) |
| return false; |
| if (element->isInverseFilled()) { |
| // Part of 'rect' could be trimmed off by the inverse-filled clip element |
| if (SkRect::Intersects(element->getBounds(), rect)) { |
| return false; |
| } |
| } else { |
| if (!element->contains(rect)) { |
| return false; |
| } |
| } |
| if (kReplace_SkClipOp == element->getOp()) { |
| break; |
| } |
| element = iter.prev(); |
| } |
| return true; |
| } |
| |
| bool SkClipStack::internalQuickContains(const SkRRect& rrect) const { |
| |
| Iter iter(*this, Iter::kTop_IterStart); |
| const Element* element = iter.prev(); |
| while (element != nullptr) { |
| if (kIntersect_SkClipOp != element->getOp() && kReplace_SkClipOp != element->getOp()) |
| return false; |
| if (element->isInverseFilled()) { |
| // Part of 'rrect' could be trimmed off by the inverse-filled clip element |
| if (SkRect::Intersects(element->getBounds(), rrect.getBounds())) { |
| return false; |
| } |
| } else { |
| if (!element->contains(rrect)) { |
| return false; |
| } |
| } |
| if (kReplace_SkClipOp == element->getOp()) { |
| break; |
| } |
| element = iter.prev(); |
| } |
| return true; |
| } |
| |
| bool SkClipStack::asPath(SkPath *path) const { |
| bool isAA = false; |
| |
| path->reset(); |
| path->setFillType(SkPath::kInverseEvenOdd_FillType); |
| |
| SkClipStack::Iter iter(*this, SkClipStack::Iter::kBottom_IterStart); |
| while (const SkClipStack::Element* element = iter.next()) { |
| SkPath operand; |
| if (element->getType() != SkClipStack::Element::kEmpty_Type) { |
| element->asPath(&operand); |
| } |
| |
| SkClipOp elementOp = element->getOp(); |
| if (elementOp == kReplace_SkClipOp) { |
| *path = operand; |
| } else { |
| Op(*path, operand, (SkPathOp)elementOp, path); |
| } |
| |
| // if the prev and curr clips disagree about aa -vs- not, favor the aa request. |
| // perhaps we need an API change to avoid this sort of mixed-signals about |
| // clipping. |
| isAA = (isAA || element->isAA()); |
| } |
| |
| return isAA; |
| } |
| |
| void SkClipStack::pushElement(const Element& element) { |
| // Use reverse iterator instead of back because Rect path may need previous |
| SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| Element* prior = (Element*) iter.prev(); |
| |
| if (prior) { |
| if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { |
| switch (prior->fType) { |
| case Element::kEmpty_Type: |
| SkDEBUGCODE(prior->checkEmpty();) |
| return; |
| case Element::kRect_Type: |
| if (Element::kRect_Type == element.getType()) { |
| if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) { |
| SkRect isectRect; |
| if (!isectRect.intersect(prior->getRect(), element.getRect())) { |
| prior->setEmpty(); |
| return; |
| } |
| |
| prior->fRRect.setRect(isectRect); |
| prior->fDoAA = element.isAA(); |
| Element* priorPrior = (Element*) iter.prev(); |
| prior->updateBoundAndGenID(priorPrior); |
| return; |
| } |
| break; |
| } |
| // fallthrough |
| default: |
| if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { |
| prior->setEmpty(); |
| return; |
| } |
| break; |
| } |
| } else if (kReplace_SkClipOp == element.getOp()) { |
| this->restoreTo(fSaveCount - 1); |
| prior = (Element*) fDeque.back(); |
| } |
| } |
| Element* newElement = new (fDeque.push_back()) Element(element); |
| newElement->updateBoundAndGenID(prior); |
| } |
| |
| void SkClipStack::clipRRect(const SkRRect& rrect, const SkMatrix& matrix, SkClipOp op, |
| bool doAA) { |
| SkRRect transformedRRect; |
| if (rrect.transform(matrix, &transformedRRect)) { |
| Element element(fSaveCount, transformedRRect, op, doAA); |
| this->pushElement(element); |
| if (this->hasClipRestriction(op)) { |
| Element element(fSaveCount, fClipRestrictionRect, kIntersect_SkClipOp, false); |
| this->pushElement(element); |
| } |
| return; |
| } |
| SkPath path; |
| path.addRRect(rrect); |
| path.setIsVolatile(true); |
| this->clipPath(path, matrix, op, doAA); |
| } |
| |
| void SkClipStack::clipRect(const SkRect& rect, const SkMatrix& matrix, SkClipOp op, |
| bool doAA) { |
| if (matrix.rectStaysRect()) { |
| SkRect devRect; |
| matrix.mapRect(&devRect, rect); |
| if (this->hasClipRestriction(op)) { |
| if (!devRect.intersect(fClipRestrictionRect)) { |
| devRect.setEmpty(); |
| } |
| } |
| Element element(fSaveCount, devRect, op, doAA); |
| this->pushElement(element); |
| return; |
| } |
| SkPath path; |
| path.addRect(rect); |
| path.setIsVolatile(true); |
| this->clipPath(path, matrix, op, doAA); |
| } |
| |
| void SkClipStack::clipPath(const SkPath& path, const SkMatrix& matrix, SkClipOp op, |
| bool doAA) { |
| SkPath devPath; |
| path.transform(matrix, &devPath); |
| Element element(fSaveCount, devPath, op, doAA); |
| this->pushElement(element); |
| if (this->hasClipRestriction(op)) { |
| Element element(fSaveCount, fClipRestrictionRect, kIntersect_SkClipOp, false); |
| this->pushElement(element); |
| } |
| } |
| |
| void SkClipStack::clipEmpty() { |
| Element* element = (Element*) fDeque.back(); |
| |
| if (element && element->canBeIntersectedInPlace(fSaveCount, kIntersect_SkClipOp)) { |
| element->setEmpty(); |
| } |
| new (fDeque.push_back()) Element(fSaveCount); |
| |
| ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkClipStack::Iter::Iter() : fStack(nullptr) { |
| } |
| |
| SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
| : fStack(&stack) { |
| this->reset(stack, startLoc); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::next() { |
| return (const SkClipStack::Element*)fIter.next(); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::prev() { |
| return (const SkClipStack::Element*)fIter.prev(); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkClipOp op) { |
| |
| if (nullptr == fStack) { |
| return nullptr; |
| } |
| |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
| |
| const SkClipStack::Element* element = nullptr; |
| |
| for (element = (const SkClipStack::Element*) fIter.prev(); |
| element; |
| element = (const SkClipStack::Element*) fIter.prev()) { |
| |
| if (op == element->fOp) { |
| // The Deque's iterator is actually one pace ahead of the |
| // returned value. So while "element" is the element we want to |
| // return, the iterator is actually pointing at (and will |
| // return on the next "next" or "prev" call) the element |
| // in front of it in the deque. Bump the iterator forward a |
| // step so we get the expected result. |
| if (nullptr == fIter.next()) { |
| // The reverse iterator has run off the front of the deque |
| // (i.e., the "op" clip is the first clip) and can't |
| // recover. Reset the iterator to start at the front. |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| } |
| break; |
| } |
| } |
| |
| if (nullptr == element) { |
| // There were no "op" clips |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| } |
| |
| return this->next(); |
| } |
| |
| void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
| fStack = &stack; |
| fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
| } |
| |
| // helper method |
| void SkClipStack::getConservativeBounds(int offsetX, |
| int offsetY, |
| int maxWidth, |
| int maxHeight, |
| SkRect* devBounds, |
| bool* isIntersectionOfRects) const { |
| SkASSERT(devBounds); |
| |
| devBounds->setLTRB(0, 0, |
| SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
| |
| SkRect temp; |
| SkClipStack::BoundsType boundType; |
| |
| // temp starts off in canvas space here |
| this->getBounds(&temp, &boundType, isIntersectionOfRects); |
| if (SkClipStack::kInsideOut_BoundsType == boundType) { |
| return; |
| } |
| |
| // but is converted to device space here |
| temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
| |
| if (!devBounds->intersect(temp)) { |
| devBounds->setEmpty(); |
| } |
| } |
| |
| bool SkClipStack::isRRect(const SkRect& bounds, SkRRect* rrect, bool* aa) const { |
| // We limit to 5 elements. This means the back element will be bounds checked at most 4 times if |
| // it is an rrect. |
| int cnt = fDeque.count(); |
| if (!cnt || cnt > 5) { |
| return false; |
| } |
| const Element* back = static_cast<const Element*>(fDeque.back()); |
| if (back->getType() != SkClipStack::Element::kRect_Type && |
| back->getType() != SkClipStack::Element::kRRect_Type) { |
| return false; |
| } |
| if (back->getOp() == kReplace_SkClipOp) { |
| *rrect = back->asRRect(); |
| *aa = back->isAA(); |
| return true; |
| } |
| |
| if (back->getOp() == kIntersect_SkClipOp) { |
| SkRect backBounds; |
| if (!backBounds.intersect(bounds, back->asRRect().rect())) { |
| return false; |
| } |
| if (cnt > 1) { |
| SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| SkAssertResult(static_cast<const Element*>(iter.prev()) == back); |
| while (const Element* prior = (const Element*)iter.prev()) { |
| if ((prior->getOp() != kIntersect_SkClipOp && |
| prior->getOp() != kReplace_SkClipOp) || |
| !prior->contains(backBounds)) { |
| return false; |
| } |
| if (prior->getOp() == kReplace_SkClipOp) { |
| break; |
| } |
| } |
| } |
| *rrect = back->asRRect(); |
| *aa = back->isAA(); |
| return true; |
| } |
| return false; |
| } |
| |
| uint32_t SkClipStack::GetNextGenID() { |
| uint32_t id; |
| do { |
| id = static_cast<uint32_t>(sk_atomic_inc(&gGenID)); |
| } while (id < kFirstUnreservedGenID); |
| return id; |
| } |
| |
| uint32_t SkClipStack::getTopmostGenID() const { |
| if (fDeque.empty()) { |
| return kWideOpenGenID; |
| } |
| |
| const Element* back = static_cast<const Element*>(fDeque.back()); |
| if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) { |
| return kWideOpenGenID; |
| } |
| |
| return back->getGenID(); |
| } |
| |
| #ifdef SK_DEBUG |
| void SkClipStack::Element::dump() const { |
| static const char* kTypeStrings[] = { |
| "empty", |
| "rect", |
| "rrect", |
| "path" |
| }; |
| static_assert(0 == kEmpty_Type, "type_str"); |
| static_assert(1 == kRect_Type, "type_str"); |
| static_assert(2 == kRRect_Type, "type_str"); |
| static_assert(3 == kPath_Type, "type_str"); |
| static_assert(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, "type_str"); |
| |
| static const char* kOpStrings[] = { |
| "difference", |
| "intersect", |
| "union", |
| "xor", |
| "reverse-difference", |
| "replace", |
| }; |
| static_assert(0 == static_cast<int>(kDifference_SkClipOp), "op_str"); |
| static_assert(1 == static_cast<int>(kIntersect_SkClipOp), "op_str"); |
| static_assert(2 == static_cast<int>(kUnion_SkClipOp), "op_str"); |
| static_assert(3 == static_cast<int>(kXOR_SkClipOp), "op_str"); |
| static_assert(4 == static_cast<int>(kReverseDifference_SkClipOp), "op_str"); |
| static_assert(5 == static_cast<int>(kReplace_SkClipOp), "op_str"); |
| static_assert(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, "op_str"); |
| |
| SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[fType], |
| kOpStrings[static_cast<int>(fOp)], (fDoAA ? "yes" : "no"), fSaveCount); |
| switch (fType) { |
| case kEmpty_Type: |
| SkDebugf("\n"); |
| break; |
| case kRect_Type: |
| this->getRect().dump(); |
| SkDebugf("\n"); |
| break; |
| case kRRect_Type: |
| this->getRRect().dump(); |
| SkDebugf("\n"); |
| break; |
| case kPath_Type: |
| this->getPath().dump(nullptr, true, false); |
| break; |
| } |
| } |
| |
| void SkClipStack::dump() const { |
| B2TIter iter(*this); |
| const Element* e; |
| while ((e = iter.next())) { |
| e->dump(); |
| SkDebugf("\n"); |
| } |
| } |
| #endif |