| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkFDot6_DEFINED |
| #define SkFDot6_DEFINED |
| |
| #include "SkFixed.h" |
| #include "SkScalar.h" |
| #include "SkMath.h" |
| |
| typedef int32_t SkFDot6; |
| |
| /* This uses the magic number approach suggested here: |
| * http://stereopsis.com/sree/fpu2006.html and used in |
| * _cairo_fixed_from_double. It does banker's rounding |
| * (i.e. round to nearest even) |
| */ |
| inline SkFDot6 SkScalarRoundToFDot6(SkScalar x, int shift = 0) |
| { |
| union { |
| double fDouble; |
| int32_t fBits[2]; |
| } tmp; |
| int fractionalBits = 6 + shift; |
| double magic = (1LL << (52 - (fractionalBits))) * 1.5; |
| |
| tmp.fDouble = SkScalarToDouble(x) + magic; |
| #ifdef SK_CPU_BENDIAN |
| return tmp.fBits[1]; |
| #else |
| return tmp.fBits[0]; |
| #endif |
| } |
| |
| #define SK_FDot6One (64) |
| #define SK_FDot6Half (32) |
| |
| #ifdef SK_DEBUG |
| inline SkFDot6 SkIntToFDot6(S16CPU x) { |
| SkASSERT(SkToS16(x) == x); |
| return x << 6; |
| } |
| #else |
| #define SkIntToFDot6(x) ((x) << 6) |
| #endif |
| |
| #define SkFDot6Floor(x) ((x) >> 6) |
| #define SkFDot6Ceil(x) (((x) + 63) >> 6) |
| #define SkFDot6Round(x) (((x) + 32) >> 6) |
| |
| #define SkFixedToFDot6(x) ((x) >> 10) |
| |
| inline SkFixed SkFDot6ToFixed(SkFDot6 x) { |
| SkASSERT((SkLeftShift(x, 10) >> 10) == x); |
| |
| return SkLeftShift(x, 10); |
| } |
| |
| #define SkScalarToFDot6(x) (SkFDot6)((x) * 64) |
| #define SkFDot6ToScalar(x) ((SkScalar)(x) * 0.015625f) |
| #define SkFDot6ToFloat SkFDot6ToScalar |
| |
| inline SkFixed SkFDot6Div(SkFDot6 a, SkFDot6 b) { |
| SkASSERT(b != 0); |
| |
| if (a == (int16_t)a) { |
| return SkLeftShift(a, 16) / b; |
| } else { |
| return SkFixedDiv(a, b); |
| } |
| } |
| |
| #include "SkFDot6Constants.h" |
| |
| class QuickFDot6Inverse { |
| public: |
| inline static SkFixed Lookup(SkFDot6 x) { |
| SkASSERT(SkAbs32(x) < kInverseTableSize); |
| return gFDot6INVERSE[kInverseTableSize + x]; |
| } |
| }; |
| |
| static inline SkFixed QuickSkFDot6Div(SkFDot6 a, SkFDot6 b) { |
| const int kMinBits = 3; // abs(b) should be at least (1 << kMinBits) for quick division |
| const int kMaxBits = 31; // Number of bits available in signed int |
| // Given abs(b) <= (1 << kMinBits), the inverse of abs(b) is at most 1 << (22 - kMinBits) in |
| // SkFixed format. Hence abs(a) should be less than kMaxAbsA |
| const int kMaxAbsA = 1 << (kMaxBits - (22 - kMinBits)); |
| SkFDot6 abs_a = SkAbs32(a); |
| SkFDot6 abs_b = SkAbs32(b); |
| if (abs_b >= (1 << kMinBits) && abs_b < kInverseTableSize && abs_a < kMaxAbsA) { |
| SkASSERT((int64_t)a * QuickFDot6Inverse::Lookup(b) <= SK_MaxS32 |
| && (int64_t)a * QuickFDot6Inverse::Lookup(b) >= SK_MinS32); |
| SkFixed ourAnswer = (a * QuickFDot6Inverse::Lookup(b)) >> 6; |
| #ifdef SK_DEBUG |
| SkFixed directAnswer = SkFDot6Div(a, b); |
| SkASSERT( |
| (directAnswer == 0 && ourAnswer == 0) || |
| SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10 |
| ); |
| #endif |
| return ourAnswer; |
| } else { |
| return SkFDot6Div(a, b); |
| } |
| } |
| |
| #endif |