| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkGeometry_DEFINED |
| #define SkGeometry_DEFINED |
| |
| #include "SkMatrix.h" |
| #include "SkNx.h" |
| |
| static inline Sk2s from_point(const SkPoint& point) { |
| return Sk2s::Load(&point); |
| } |
| |
| static inline SkPoint to_point(const Sk2s& x) { |
| SkPoint point; |
| x.store(&point); |
| return point; |
| } |
| |
| static Sk2s times_2(const Sk2s& value) { |
| return value + value; |
| } |
| |
| /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
| equation. |
| */ |
| int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); |
| SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); |
| |
| /** Set pt to the point on the src quadratic specified by t. t must be |
| 0 <= t <= 1.0 |
| */ |
| void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); |
| |
| /** Given a src quadratic bezier, chop it at the specified t value, |
| where 0 < t < 1, and return the two new quadratics in dst: |
| dst[0..2] and dst[2..4] |
| */ |
| void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
| |
| /** Given a src quadratic bezier, chop it at the specified t == 1/2, |
| The new quads are returned in dst[0..2] and dst[2..4] |
| */ |
| void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
| |
| /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
| for extrema, and return the number of t-values that are found that represent |
| these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
| function returns 0. |
| Returned count tValues[] |
| 0 ignored |
| 1 0 < tValues[0] < 1 |
| */ |
| int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
| |
| /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
| the resulting beziers are monotonic in Y. This is called by the scan converter. |
| Depending on what is returned, dst[] is treated as follows |
| 0 dst[0..2] is the original quad |
| 1 dst[0..2] and dst[2..4] are the two new quads |
| */ |
| int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
| int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); |
| |
| /** Given 3 points on a quadratic bezier, if the point of maximum |
| curvature exists on the segment, returns the t value for this |
| point along the curve. Otherwise it will return a value of 0. |
| */ |
| SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); |
| |
| /** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
| if the point of maximum curvature exists on the quad segment. |
| Depending on what is returned, dst[] is treated as follows |
| 1 dst[0..2] is the original quad |
| 2 dst[0..2] and dst[2..4] are the two new quads |
| If dst == null, it is ignored and only the count is returned. |
| */ |
| int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
| |
| /** Given 3 points on a quadratic bezier, use degree elevation to |
| convert it into the cubic fitting the same curve. The new cubic |
| curve is returned in dst[0..3]. |
| */ |
| SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Set pt to the point on the src cubic specified by t. t must be |
| 0 <= t <= 1.0 |
| */ |
| void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, |
| SkVector* tangentOrNull, SkVector* curvatureOrNull); |
| |
| /** Given a src cubic bezier, chop it at the specified t value, |
| where 0 < t < 1, and return the two new cubics in dst: |
| dst[0..3] and dst[3..6] |
| */ |
| void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
| |
| /** Given a src cubic bezier, chop it at the specified t values, |
| where 0 < t < 1, and return the new cubics in dst: |
| dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] |
| */ |
| void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], |
| int t_count); |
| |
| /** Given a src cubic bezier, chop it at the specified t == 1/2, |
| The new cubics are returned in dst[0..3] and dst[3..6] |
| */ |
| void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
| |
| /** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
| for extrema, and return the number of t-values that are found that represent |
| these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
| function returns 0. |
| Returned count tValues[] |
| 0 ignored |
| 1 0 < tValues[0] < 1 |
| 2 0 < tValues[0] < tValues[1] < 1 |
| */ |
| int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
| SkScalar tValues[2]); |
| |
| /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
| the resulting beziers are monotonic in Y. This is called by the scan converter. |
| Depending on what is returned, dst[] is treated as follows |
| 0 dst[0..3] is the original cubic |
| 1 dst[0..3] and dst[3..6] are the two new cubics |
| 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
| If dst == null, it is ignored and only the count is returned. |
| */ |
| int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
| int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); |
| |
| /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
| inflection points. |
| */ |
| int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
| |
| /** Return 1 for no chop, 2 for having chopped the cubic at a single |
| inflection point, 3 for having chopped at 2 inflection points. |
| dst will hold the resulting 1, 2, or 3 cubics. |
| */ |
| int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
| |
| int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
| int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
| SkScalar tValues[3] = nullptr); |
| |
| bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]); |
| bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]); |
| |
| enum class SkCubicType { |
| kSerpentine, |
| kLoop, |
| kLocalCusp, // Cusp at a non-infinite parameter value with an inflection at t=infinity. |
| kCuspAtInfinity, // Cusp with a cusp at t=infinity and a local inflection. |
| kQuadratic, |
| kLineOrPoint |
| }; |
| |
| /** Returns the cubic classification. |
| |
| t[],s[] are set to the two homogeneous parameter values at which points the lines L & M |
| intersect with K, sorted from smallest to largest and oriented so positive values of the |
| implicit are on the "left" side. For a serpentine curve they are the inflection points. For a |
| loop they are the double point. For a local cusp, they are both equal and denote the cusp point. |
| For a cusp at an infinite parameter value, one will be the local inflection point and the other |
| +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a |
| parameter value of +inf (t,s = 1,0). |
| |
| d[] is filled with the cubic inflection function coefficients. See "Resolution Independent |
| Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: |
| |
| https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| */ |
| SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, |
| double d[4] = nullptr); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| enum SkRotationDirection { |
| kCW_SkRotationDirection, |
| kCCW_SkRotationDirection |
| }; |
| |
| struct SkConic { |
| SkConic() {} |
| SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { |
| fPts[0] = p0; |
| fPts[1] = p1; |
| fPts[2] = p2; |
| fW = w; |
| } |
| SkConic(const SkPoint pts[3], SkScalar w) { |
| memcpy(fPts, pts, sizeof(fPts)); |
| fW = w; |
| } |
| |
| SkPoint fPts[3]; |
| SkScalar fW; |
| |
| void set(const SkPoint pts[3], SkScalar w) { |
| memcpy(fPts, pts, 3 * sizeof(SkPoint)); |
| fW = w; |
| } |
| |
| void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { |
| fPts[0] = p0; |
| fPts[1] = p1; |
| fPts[2] = p2; |
| fW = w; |
| } |
| |
| /** |
| * Given a t-value [0...1] return its position and/or tangent. |
| * If pos is not null, return its position at the t-value. |
| * If tangent is not null, return its tangent at the t-value. NOTE the |
| * tangent value's length is arbitrary, and only its direction should |
| * be used. |
| */ |
| void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; |
| bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const; |
| void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const; |
| void chop(SkConic dst[2]) const; |
| |
| SkPoint evalAt(SkScalar t) const; |
| SkVector evalTangentAt(SkScalar t) const; |
| |
| void computeAsQuadError(SkVector* err) const; |
| bool asQuadTol(SkScalar tol) const; |
| |
| /** |
| * return the power-of-2 number of quads needed to approximate this conic |
| * with a sequence of quads. Will be >= 0. |
| */ |
| int computeQuadPOW2(SkScalar tol) const; |
| |
| /** |
| * Chop this conic into N quads, stored continguously in pts[], where |
| * N = 1 << pow2. The amount of storage needed is (1 + 2 * N) |
| */ |
| int SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; |
| |
| bool findXExtrema(SkScalar* t) const; |
| bool findYExtrema(SkScalar* t) const; |
| bool chopAtXExtrema(SkConic dst[2]) const; |
| bool chopAtYExtrema(SkConic dst[2]) const; |
| |
| void computeTightBounds(SkRect* bounds) const; |
| void computeFastBounds(SkRect* bounds) const; |
| |
| /** Find the parameter value where the conic takes on its maximum curvature. |
| * |
| * @param t output scalar for max curvature. Will be unchanged if |
| * max curvature outside 0..1 range. |
| * |
| * @return true if max curvature found inside 0..1 range, false otherwise |
| */ |
| // bool findMaxCurvature(SkScalar* t) const; // unimplemented |
| |
| static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&); |
| |
| enum { |
| kMaxConicsForArc = 5 |
| }; |
| static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection, |
| const SkMatrix*, SkConic conics[kMaxConicsForArc]); |
| }; |
| |
| // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members |
| namespace { |
| |
| /** |
| * use for : eval(t) == A * t^2 + B * t + C |
| */ |
| struct SkQuadCoeff { |
| SkQuadCoeff() {} |
| |
| SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C) |
| : fA(A) |
| , fB(B) |
| , fC(C) |
| { |
| } |
| |
| SkQuadCoeff(const SkPoint src[3]) { |
| fC = from_point(src[0]); |
| Sk2s P1 = from_point(src[1]); |
| Sk2s P2 = from_point(src[2]); |
| fB = times_2(P1 - fC); |
| fA = P2 - times_2(P1) + fC; |
| } |
| |
| Sk2s eval(SkScalar t) { |
| Sk2s tt(t); |
| return eval(tt); |
| } |
| |
| Sk2s eval(const Sk2s& tt) { |
| return (fA * tt + fB) * tt + fC; |
| } |
| |
| Sk2s fA; |
| Sk2s fB; |
| Sk2s fC; |
| }; |
| |
| struct SkConicCoeff { |
| SkConicCoeff(const SkConic& conic) { |
| Sk2s p0 = from_point(conic.fPts[0]); |
| Sk2s p1 = from_point(conic.fPts[1]); |
| Sk2s p2 = from_point(conic.fPts[2]); |
| Sk2s ww(conic.fW); |
| |
| Sk2s p1w = p1 * ww; |
| fNumer.fC = p0; |
| fNumer.fA = p2 - times_2(p1w) + p0; |
| fNumer.fB = times_2(p1w - p0); |
| |
| fDenom.fC = Sk2s(1); |
| fDenom.fB = times_2(ww - fDenom.fC); |
| fDenom.fA = Sk2s(0) - fDenom.fB; |
| } |
| |
| Sk2s eval(SkScalar t) { |
| Sk2s tt(t); |
| Sk2s numer = fNumer.eval(tt); |
| Sk2s denom = fDenom.eval(tt); |
| return numer / denom; |
| } |
| |
| SkQuadCoeff fNumer; |
| SkQuadCoeff fDenom; |
| }; |
| |
| struct SkCubicCoeff { |
| SkCubicCoeff(const SkPoint src[4]) { |
| Sk2s P0 = from_point(src[0]); |
| Sk2s P1 = from_point(src[1]); |
| Sk2s P2 = from_point(src[2]); |
| Sk2s P3 = from_point(src[3]); |
| Sk2s three(3); |
| fA = P3 + three * (P1 - P2) - P0; |
| fB = three * (P2 - times_2(P1) + P0); |
| fC = three * (P1 - P0); |
| fD = P0; |
| } |
| |
| Sk2s eval(SkScalar t) { |
| Sk2s tt(t); |
| return eval(tt); |
| } |
| |
| Sk2s eval(const Sk2s& t) { |
| return ((fA * t + fB) * t + fC) * t + fD; |
| } |
| |
| Sk2s fA; |
| Sk2s fB; |
| Sk2s fC; |
| Sk2s fD; |
| }; |
| |
| } |
| |
| #include "SkTemplates.h" |
| |
| /** |
| * Help class to allocate storage for approximating a conic with N quads. |
| */ |
| class SkAutoConicToQuads { |
| public: |
| SkAutoConicToQuads() : fQuadCount(0) {} |
| |
| /** |
| * Given a conic and a tolerance, return the array of points for the |
| * approximating quad(s). Call countQuads() to know the number of quads |
| * represented in these points. |
| * |
| * The quads are allocated to share end-points. e.g. if there are 4 quads, |
| * there will be 9 points allocated as follows |
| * quad[0] == pts[0..2] |
| * quad[1] == pts[2..4] |
| * quad[2] == pts[4..6] |
| * quad[3] == pts[6..8] |
| */ |
| const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { |
| int pow2 = conic.computeQuadPOW2(tol); |
| fQuadCount = 1 << pow2; |
| SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); |
| fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2); |
| return pts; |
| } |
| |
| const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, |
| SkScalar tol) { |
| SkConic conic; |
| conic.set(pts, weight); |
| return computeQuads(conic, tol); |
| } |
| |
| int countQuads() const { return fQuadCount; } |
| |
| private: |
| enum { |
| kQuadCount = 8, // should handle most conics |
| kPointCount = 1 + 2 * kQuadCount, |
| }; |
| SkAutoSTMalloc<kPointCount, SkPoint> fStorage; |
| int fQuadCount; // #quads for current usage |
| }; |
| |
| #endif |