| /* |
| * Copyright 2012 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkImageFilter.h" |
| |
| #include "SkCanvas.h" |
| #include "SkColorSpace_Base.h" |
| #include "SkFuzzLogging.h" |
| #include "SkImageFilterCache.h" |
| #include "SkLocalMatrixImageFilter.h" |
| #include "SkMatrixImageFilter.h" |
| #include "SkReadBuffer.h" |
| #include "SkRect.h" |
| #include "SkSpecialImage.h" |
| #include "SkSpecialSurface.h" |
| #include "SkValidationUtils.h" |
| #include "SkWriteBuffer.h" |
| #if SK_SUPPORT_GPU |
| #include "GrContext.h" |
| #include "GrFixedClip.h" |
| #include "GrRenderTargetContext.h" |
| #include "GrTextureProxy.h" |
| #include "SkGr.h" |
| #endif |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkImageFilter::CropRect::toString(SkString* str) const { |
| if (!fFlags) { |
| return; |
| } |
| |
| str->appendf("cropRect ("); |
| if (fFlags & CropRect::kHasLeft_CropEdge) { |
| str->appendf("%.2f, ", fRect.fLeft); |
| } else { |
| str->appendf("X, "); |
| } |
| if (fFlags & CropRect::kHasTop_CropEdge) { |
| str->appendf("%.2f, ", fRect.fTop); |
| } else { |
| str->appendf("X, "); |
| } |
| if (fFlags & CropRect::kHasWidth_CropEdge) { |
| str->appendf("%.2f, ", fRect.width()); |
| } else { |
| str->appendf("X, "); |
| } |
| if (fFlags & CropRect::kHasHeight_CropEdge) { |
| str->appendf("%.2f", fRect.height()); |
| } else { |
| str->appendf("X"); |
| } |
| str->appendf(") "); |
| } |
| #endif |
| |
| void SkImageFilter::CropRect::applyTo(const SkIRect& imageBounds, |
| const SkMatrix& ctm, |
| bool embiggen, |
| SkIRect* cropped) const { |
| *cropped = imageBounds; |
| if (fFlags) { |
| SkRect devCropR; |
| ctm.mapRect(&devCropR, fRect); |
| SkIRect devICropR = devCropR.roundOut(); |
| |
| // Compute the left/top first, in case we need to modify the right/bottom for a missing edge |
| if (fFlags & kHasLeft_CropEdge) { |
| if (embiggen || devICropR.fLeft > cropped->fLeft) { |
| cropped->fLeft = devICropR.fLeft; |
| } |
| } else { |
| devICropR.fRight = cropped->fLeft + devICropR.width(); |
| } |
| if (fFlags & kHasTop_CropEdge) { |
| if (embiggen || devICropR.fTop > cropped->fTop) { |
| cropped->fTop = devICropR.fTop; |
| } |
| } else { |
| devICropR.fBottom = cropped->fTop + devICropR.height(); |
| } |
| if (fFlags & kHasWidth_CropEdge) { |
| if (embiggen || devICropR.fRight < cropped->fRight) { |
| cropped->fRight = devICropR.fRight; |
| } |
| } |
| if (fFlags & kHasHeight_CropEdge) { |
| if (embiggen || devICropR.fBottom < cropped->fBottom) { |
| cropped->fBottom = devICropR.fBottom; |
| } |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static int32_t next_image_filter_unique_id() { |
| static int32_t gImageFilterUniqueID; |
| |
| // Never return 0. |
| int32_t id; |
| do { |
| id = sk_atomic_inc(&gImageFilterUniqueID) + 1; |
| } while (0 == id); |
| return id; |
| } |
| |
| void SkImageFilter::Common::allocInputs(int count) { |
| fInputs.reset(count); |
| } |
| |
| bool SkImageFilter::Common::unflatten(SkReadBuffer& buffer, int expectedCount) { |
| const int count = buffer.readInt(); |
| if (!buffer.validate(count >= 0)) { |
| return false; |
| } |
| if (!buffer.validate(expectedCount < 0 || count == expectedCount)) { |
| return false; |
| } |
| |
| SkFUZZF(("allocInputs: %d\n", count)); |
| this->allocInputs(count); |
| for (int i = 0; i < count; i++) { |
| if (buffer.readBool()) { |
| fInputs[i] = sk_sp<SkImageFilter>(buffer.readImageFilter()); |
| } |
| if (!buffer.isValid()) { |
| return false; |
| } |
| } |
| SkRect rect; |
| buffer.readRect(&rect); |
| if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) { |
| return false; |
| } |
| |
| uint32_t flags = buffer.readUInt(); |
| fCropRect = CropRect(rect, flags); |
| return buffer.isValid(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void SkImageFilter::init(sk_sp<SkImageFilter> const* inputs, |
| int inputCount, |
| const CropRect* cropRect) { |
| fCropRect = cropRect ? *cropRect : CropRect(SkRect(), 0x0); |
| |
| fInputs.reset(inputCount); |
| |
| for (int i = 0; i < inputCount; ++i) { |
| if (!inputs[i] || inputs[i]->usesSrcInput()) { |
| fUsesSrcInput = true; |
| } |
| fInputs[i] = inputs[i]; |
| } |
| } |
| |
| SkImageFilter::SkImageFilter(sk_sp<SkImageFilter> const* inputs, |
| int inputCount, |
| const CropRect* cropRect) |
| : fUsesSrcInput(false) |
| , fUniqueID(next_image_filter_unique_id()) { |
| this->init(inputs, inputCount, cropRect); |
| } |
| |
| SkImageFilter::~SkImageFilter() { |
| SkImageFilterCache::Get()->purgeByKeys(fCacheKeys.begin(), fCacheKeys.count()); |
| } |
| |
| SkImageFilter::SkImageFilter(int inputCount, SkReadBuffer& buffer) |
| : fUsesSrcInput(false) |
| , fCropRect(SkRect(), 0x0) |
| , fUniqueID(next_image_filter_unique_id()) { |
| Common common; |
| if (common.unflatten(buffer, inputCount)) { |
| this->init(common.inputs(), common.inputCount(), &common.cropRect()); |
| } |
| } |
| |
| void SkImageFilter::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeInt(fInputs.count()); |
| for (int i = 0; i < fInputs.count(); i++) { |
| SkImageFilter* input = this->getInput(i); |
| buffer.writeBool(input != nullptr); |
| if (input != nullptr) { |
| buffer.writeFlattenable(input); |
| } |
| } |
| buffer.writeRect(fCropRect.rect()); |
| buffer.writeUInt(fCropRect.flags()); |
| } |
| |
| sk_sp<SkSpecialImage> SkImageFilter::filterImage(SkSpecialImage* src, const Context& context, |
| SkIPoint* offset) const { |
| SkASSERT(src && offset); |
| |
| uint32_t srcGenID = fUsesSrcInput ? src->uniqueID() : 0; |
| const SkIRect srcSubset = fUsesSrcInput ? src->subset() : SkIRect::MakeWH(0, 0); |
| SkImageFilterCacheKey key(fUniqueID, context.ctm(), context.clipBounds(), srcGenID, srcSubset); |
| if (context.cache()) { |
| sk_sp<SkSpecialImage> result = context.cache()->get(key, offset); |
| if (result) { |
| return result; |
| } |
| } |
| |
| sk_sp<SkSpecialImage> result(this->onFilterImage(src, context, offset)); |
| |
| #if SK_SUPPORT_GPU |
| if (src->isTextureBacked() && result && !result->isTextureBacked()) { |
| // Keep the result on the GPU - this is still required for some |
| // image filters that don't support GPU in all cases |
| GrContext* context = src->getContext(); |
| result = result->makeTextureImage(context); |
| } |
| #endif |
| |
| if (result && context.cache()) { |
| context.cache()->set(key, result.get(), *offset, this); |
| SkAutoMutexAcquire mutex(fMutex); |
| fCacheKeys.push_back(key); |
| } |
| |
| return result; |
| } |
| |
| void SkImageFilter::removeKey(const SkImageFilterCacheKey& key) const { |
| SkAutoMutexAcquire mutex(fMutex); |
| for (int i = 0; i < fCacheKeys.count(); i++) { |
| if (fCacheKeys[i] == key) { |
| fCacheKeys.removeShuffle(i); |
| break; |
| } |
| } |
| #ifdef SK_DEBUG |
| for (int i = 0; i < fCacheKeys.count(); i++) { |
| if (fCacheKeys[i] == key) { |
| SkASSERT(false); |
| } |
| } |
| #endif |
| } |
| |
| SkIRect SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm, |
| MapDirection direction) const { |
| if (kReverse_MapDirection == direction) { |
| SkIRect bounds = this->onFilterNodeBounds(src, ctm, direction); |
| return this->onFilterBounds(bounds, ctm, direction); |
| } else { |
| SkIRect bounds = this->onFilterBounds(src, ctm, direction); |
| bounds = this->onFilterNodeBounds(bounds, ctm, direction); |
| SkIRect dst; |
| this->getCropRect().applyTo(bounds, ctm, this->affectsTransparentBlack(), &dst); |
| return dst; |
| } |
| } |
| |
| SkRect SkImageFilter::computeFastBounds(const SkRect& src) const { |
| if (0 == this->countInputs()) { |
| return src; |
| } |
| SkRect combinedBounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src; |
| for (int i = 1; i < this->countInputs(); i++) { |
| SkImageFilter* input = this->getInput(i); |
| if (input) { |
| combinedBounds.join(input->computeFastBounds(src)); |
| } else { |
| combinedBounds.join(src); |
| } |
| } |
| return combinedBounds; |
| } |
| |
| bool SkImageFilter::canComputeFastBounds() const { |
| if (this->affectsTransparentBlack()) { |
| return false; |
| } |
| for (int i = 0; i < this->countInputs(); i++) { |
| SkImageFilter* input = this->getInput(i); |
| if (input && !input->canComputeFastBounds()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #if SK_SUPPORT_GPU |
| sk_sp<SkSpecialImage> SkImageFilter::DrawWithFP(GrContext* context, |
| sk_sp<GrFragmentProcessor> fp, |
| const SkIRect& bounds, |
| const OutputProperties& outputProperties) { |
| GrPaint paint; |
| paint.addColorFragmentProcessor(std::move(fp)); |
| paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| sk_sp<SkColorSpace> colorSpace = sk_ref_sp(outputProperties.colorSpace()); |
| GrPixelConfig config = GrRenderableConfigForColorSpace(colorSpace.get()); |
| sk_sp<GrRenderTargetContext> renderTargetContext(context->makeDeferredRenderTargetContext( |
| SkBackingFit::kApprox, bounds.width(), bounds.height(), config, std::move(colorSpace))); |
| if (!renderTargetContext) { |
| return nullptr; |
| } |
| paint.setGammaCorrect(renderTargetContext->isGammaCorrect()); |
| |
| SkIRect dstIRect = SkIRect::MakeWH(bounds.width(), bounds.height()); |
| SkRect srcRect = SkRect::Make(bounds); |
| SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height()); |
| GrFixedClip clip(dstIRect); |
| renderTargetContext->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), dstRect, |
| srcRect); |
| |
| return SkSpecialImage::MakeDeferredFromGpu(context, dstIRect, |
| kNeedNewImageUniqueID_SpecialImage, |
| renderTargetContext->asTextureProxyRef(), |
| renderTargetContext->refColorSpace()); |
| } |
| #endif |
| |
| bool SkImageFilter::asAColorFilter(SkColorFilter** filterPtr) const { |
| SkASSERT(nullptr != filterPtr); |
| if (!this->isColorFilterNode(filterPtr)) { |
| return false; |
| } |
| if (nullptr != this->getInput(0) || (*filterPtr)->affectsTransparentBlack()) { |
| (*filterPtr)->unref(); |
| return false; |
| } |
| return true; |
| } |
| |
| bool SkImageFilter::canHandleComplexCTM() const { |
| if (!this->onCanHandleComplexCTM()) { |
| return false; |
| } |
| const int count = this->countInputs(); |
| for (int i = 0; i < count; ++i) { |
| SkImageFilter* input = this->getInput(i); |
| if (input && !input->canHandleComplexCTM()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool SkImageFilter::applyCropRect(const Context& ctx, const SkIRect& srcBounds, |
| SkIRect* dstBounds) const { |
| SkIRect temp = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection); |
| fCropRect.applyTo(temp, ctx.ctm(), this->affectsTransparentBlack(), dstBounds); |
| // Intersect against the clip bounds, in case the crop rect has |
| // grown the bounds beyond the original clip. This can happen for |
| // example in tiling, where the clip is much smaller than the filtered |
| // primitive. If we didn't do this, we would be processing the filter |
| // at the full crop rect size in every tile. |
| return dstBounds->intersect(ctx.clipBounds()); |
| } |
| |
| #if SK_SUPPORT_GPU |
| sk_sp<SkSpecialImage> SkImageFilter::ImageToColorSpace(SkSpecialImage* src, |
| const OutputProperties& outProps) { |
| // There are several conditions that determine if we actually need to convert the source to the |
| // destination's color space. Rather than duplicate that logic here, just try to make an xform |
| // object. If that produces something, then both are tagged, and the source is in a different |
| // gamut than the dest. There is some overhead to making the xform, but those are cached, and |
| // if we get one back, that means we're about to use it during the conversion anyway. |
| sk_sp<GrColorSpaceXform> colorSpaceXform = GrColorSpaceXform::Make(src->getColorSpace(), |
| outProps.colorSpace()); |
| |
| if (!colorSpaceXform) { |
| // No xform needed, just return the original image |
| return sk_ref_sp(src); |
| } |
| |
| sk_sp<SkSpecialSurface> surf(src->makeSurface(outProps, |
| SkISize::Make(src->width(), src->height()))); |
| if (!surf) { |
| return sk_ref_sp(src); |
| } |
| |
| SkCanvas* canvas = surf->getCanvas(); |
| SkASSERT(canvas); |
| SkPaint p; |
| p.setBlendMode(SkBlendMode::kSrc); |
| src->draw(canvas, 0, 0, &p); |
| return surf->makeImageSnapshot(); |
| } |
| #endif |
| |
| // Return a larger (newWidth x newHeight) copy of 'src' with black padding |
| // around it. |
| static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src, |
| const SkImageFilter::OutputProperties& outProps, |
| int newWidth, int newHeight, int offX, int offY) { |
| // We would like to operate in the source's color space (so that we return an "identical" |
| // image, other than the padding. To achieve that, we'd create new output properties: |
| // |
| // SkImageFilter::OutputProperties outProps(src->getColorSpace()); |
| // |
| // That fails in at least two ways. For formats that are texturable but not renderable (like |
| // F16 on some ES implementations), we can't create a surface to do the work. For sRGB, images |
| // may be tagged with an sRGB color space (which leads to an sRGB config in makeSurface). But |
| // the actual config of that sRGB image on a device with no sRGB support is non-sRGB. |
| // |
| // Rather than try to special case these situations, we execute the image padding in the |
| // destination color space. This should not affect the output of the DAG in (almost) any case, |
| // because the result of this call is going to be used as an input, where it would have been |
| // switched to the destination space anyway. The one exception would be a filter that expected |
| // to consume unclamped F16 data, but the padded version of the image is pre-clamped to 8888. |
| // We can revisit this logic if that ever becomes an actual problem. |
| sk_sp<SkSpecialSurface> surf(src->makeSurface(outProps, SkISize::Make(newWidth, newHeight))); |
| if (!surf) { |
| return nullptr; |
| } |
| |
| SkCanvas* canvas = surf->getCanvas(); |
| SkASSERT(canvas); |
| |
| canvas->clear(0x0); |
| |
| src->draw(canvas, offX, offY, nullptr); |
| |
| return surf->makeImageSnapshot(); |
| } |
| |
| sk_sp<SkSpecialImage> SkImageFilter::applyCropRect(const Context& ctx, |
| SkSpecialImage* src, |
| SkIPoint* srcOffset, |
| SkIRect* bounds) const { |
| const SkIRect srcBounds = SkIRect::MakeXYWH(srcOffset->x(), srcOffset->y(), |
| src->width(), src->height()); |
| |
| SkIRect dstBounds = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection); |
| fCropRect.applyTo(dstBounds, ctx.ctm(), this->affectsTransparentBlack(), bounds); |
| if (!bounds->intersect(ctx.clipBounds())) { |
| return nullptr; |
| } |
| |
| if (srcBounds.contains(*bounds)) { |
| return sk_sp<SkSpecialImage>(SkRef(src)); |
| } else { |
| sk_sp<SkSpecialImage> img(pad_image(src, ctx.outputProperties(), |
| bounds->width(), bounds->height(), |
| srcOffset->x() - bounds->x(), |
| srcOffset->y() - bounds->y())); |
| *srcOffset = SkIPoint::Make(bounds->x(), bounds->y()); |
| return img; |
| } |
| } |
| |
| SkIRect SkImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, |
| MapDirection direction) const { |
| if (this->countInputs() < 1) { |
| return src; |
| } |
| |
| SkIRect totalBounds; |
| for (int i = 0; i < this->countInputs(); ++i) { |
| SkImageFilter* filter = this->getInput(i); |
| SkIRect rect = filter ? filter->filterBounds(src, ctm, direction) : src; |
| if (0 == i) { |
| totalBounds = rect; |
| } else { |
| totalBounds.join(rect); |
| } |
| } |
| |
| return totalBounds; |
| } |
| |
| SkIRect SkImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix&, MapDirection) const { |
| return src; |
| } |
| |
| |
| SkImageFilter::Context SkImageFilter::mapContext(const Context& ctx) const { |
| SkIRect clipBounds = this->onFilterNodeBounds(ctx.clipBounds(), ctx.ctm(), |
| MapDirection::kReverse_MapDirection); |
| return Context(ctx.ctm(), clipBounds, ctx.cache(), ctx.outputProperties()); |
| } |
| |
| sk_sp<SkImageFilter> SkImageFilter::MakeMatrixFilter(const SkMatrix& matrix, |
| SkFilterQuality filterQuality, |
| sk_sp<SkImageFilter> input) { |
| return SkMatrixImageFilter::Make(matrix, filterQuality, std::move(input)); |
| } |
| |
| sk_sp<SkImageFilter> SkImageFilter::makeWithLocalMatrix(const SkMatrix& matrix) const { |
| // SkLocalMatrixImageFilter takes SkImage* in its factory, but logically that parameter |
| // is *always* treated as a const ptr. Hence the const-cast here. |
| // |
| SkImageFilter* nonConstThis = const_cast<SkImageFilter*>(this); |
| return SkLocalMatrixImageFilter::Make(matrix, sk_ref_sp<SkImageFilter>(nonConstThis)); |
| } |
| |
| sk_sp<SkSpecialImage> SkImageFilter::filterInput(int index, |
| SkSpecialImage* src, |
| const Context& ctx, |
| SkIPoint* offset) const { |
| SkImageFilter* input = this->getInput(index); |
| if (!input) { |
| return sk_sp<SkSpecialImage>(SkRef(src)); |
| } |
| |
| sk_sp<SkSpecialImage> result(input->filterImage(src, this->mapContext(ctx), offset)); |
| |
| SkASSERT(!result || src->isTextureBacked() == result->isTextureBacked()); |
| |
| return result; |
| } |
| |
| void SkImageFilter::PurgeCache() { |
| SkImageFilterCache::Get()->purge(); |
| } |