blob: 07679e3a11fde829b5032874663594ce2eaf088b [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkLinearBitmapPipeline.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <tuple>
#include "SkArenaAlloc.h"
#include "SkLinearBitmapPipeline_core.h"
#include "SkLinearBitmapPipeline_matrix.h"
#include "SkLinearBitmapPipeline_tile.h"
#include "SkLinearBitmapPipeline_sample.h"
#include "SkNx.h"
#include "SkOpts.h"
#include "SkPM4f.h"
namespace {
////////////////////////////////////////////////////////////////////////////////////////////////////
// Matrix Stage
// PointProcessor uses a strategy to help complete the work of the different stages. The strategy
// must implement the following methods:
// * processPoints(xs, ys) - must mutate the xs and ys for the stage.
// * maybeProcessSpan(span, next) - This represents a horizontal series of pixels
// to work over.
// span - encapsulation of span.
// next - a pointer to the next stage.
// maybeProcessSpan - returns false if it can not process the span and needs to fallback to
// point lists for processing.
template<typename Strategy, typename Next>
class MatrixStage final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
template <typename... Args>
MatrixStage(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
MatrixStage(Next* next, MatrixStage* stage)
: fNext{next}
, fStrategy{stage->fStrategy} { }
void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointListFew(n, xs, ys);
}
void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointList4(xs, ys);
}
// The span you pass must not be empty.
void pointSpan(Span span) override {
SkASSERT(!span.isEmpty());
if (!fStrategy.maybeProcessSpan(span, fNext)) {
span_fallback(span, this);
}
}
private:
Next* const fNext;
Strategy fStrategy;
};
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using TranslateMatrix = MatrixStage<TranslateMatrixStrategy, Next>;
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using ScaleMatrix = MatrixStage<ScaleMatrixStrategy, Next>;
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using AffineMatrix = MatrixStage<AffineMatrixStrategy, Next>;
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using PerspectiveMatrix = MatrixStage<PerspectiveMatrixStrategy, Next>;
////////////////////////////////////////////////////////////////////////////////////////////////////
// Tile Stage
template<typename XStrategy, typename YStrategy, typename Next>
class CombinedTileStage final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
CombinedTileStage(Next* next, SkISize dimensions)
: fNext{next}
, fXStrategy{dimensions.width()}
, fYStrategy{dimensions.height()}{ }
CombinedTileStage(Next* next, CombinedTileStage* stage)
: fNext{next}
, fXStrategy{stage->fXStrategy}
, fYStrategy{stage->fYStrategy} { }
void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
fXStrategy.tileXPoints(&xs);
fYStrategy.tileYPoints(&ys);
fNext->pointListFew(n, xs, ys);
}
void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
fXStrategy.tileXPoints(&xs);
fYStrategy.tileYPoints(&ys);
fNext->pointList4(xs, ys);
}
// The span you pass must not be empty.
void pointSpan(Span span) override {
SkASSERT(!span.isEmpty());
SkPoint start; SkScalar length; int count;
std::tie(start, length, count) = span;
if (span.count() == 1) {
// DANGER:
// The explicit casts from float to Sk4f are not usually necessary, but are here to
// work around an MSVC 2015u2 c++ code generation bug. This is tracked using skia bug
// 5566.
this->pointListFew(1, Sk4f{span.startX()}, Sk4f{span.startY()});
return;
}
SkScalar x = X(start);
SkScalar y = fYStrategy.tileY(Y(start));
Span yAdjustedSpan{{x, y}, length, count};
if (!fXStrategy.maybeProcessSpan(yAdjustedSpan, fNext)) {
span_fallback(span, this);
}
}
private:
Next* const fNext;
XStrategy fXStrategy;
YStrategy fYStrategy;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Specialized Samplers
// RGBA8888UnitRepeatSrc - A sampler that takes advantage of the fact the the src and destination
// are the same format and do not need in transformations in pixel space. Therefore, there is no
// need to convert them to HiFi pixel format.
class RGBA8888UnitRepeatSrc final : public SkLinearBitmapPipeline::SampleProcessorInterface,
public SkLinearBitmapPipeline::DestinationInterface {
public:
RGBA8888UnitRepeatSrc(const uint32_t* src, int32_t width)
: fSrc{src}, fWidth{width} { }
void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
SkASSERT(fDest + n <= fEnd);
// At this point xs and ys should be >= 0, so trunc is the same as floor.
Sk4i iXs = SkNx_cast<int>(xs);
Sk4i iYs = SkNx_cast<int>(ys);
if (n >= 1) *fDest++ = *this->pixelAddress(iXs[0], iYs[0]);
if (n >= 2) *fDest++ = *this->pixelAddress(iXs[1], iYs[1]);
if (n >= 3) *fDest++ = *this->pixelAddress(iXs[2], iYs[2]);
}
void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
SkASSERT(fDest + 4 <= fEnd);
Sk4i iXs = SkNx_cast<int>(xs);
Sk4i iYs = SkNx_cast<int>(ys);
*fDest++ = *this->pixelAddress(iXs[0], iYs[0]);
*fDest++ = *this->pixelAddress(iXs[1], iYs[1]);
*fDest++ = *this->pixelAddress(iXs[2], iYs[2]);
*fDest++ = *this->pixelAddress(iXs[3], iYs[3]);
}
void pointSpan(Span span) override {
SkASSERT(fDest + span.count() <= fEnd);
if (span.length() != 0.0f) {
int32_t x = SkScalarTruncToInt(span.startX());
int32_t y = SkScalarTruncToInt(span.startY());
const uint32_t* src = this->pixelAddress(x, y);
memmove(fDest, src, span.count() * sizeof(uint32_t));
fDest += span.count();
}
}
void repeatSpan(Span span, int32_t repeatCount) override {
SkASSERT(fDest + span.count() * repeatCount <= fEnd);
int32_t x = SkScalarTruncToInt(span.startX());
int32_t y = SkScalarTruncToInt(span.startY());
const uint32_t* src = this->pixelAddress(x, y);
uint32_t* dest = fDest;
while (repeatCount --> 0) {
memmove(dest, src, span.count() * sizeof(uint32_t));
dest += span.count();
}
fDest = dest;
}
void setDestination(void* dst, int count) override {
fDest = static_cast<uint32_t*>(dst);
fEnd = fDest + count;
}
private:
const uint32_t* pixelAddress(int32_t x, int32_t y) {
return &fSrc[fWidth * y + x];
}
const uint32_t* const fSrc;
const int32_t fWidth;
uint32_t* fDest;
uint32_t* fEnd;
};
// RGBA8888UnitRepeatSrc - A sampler that takes advantage of the fact the the src and destination
// are the same format and do not need in transformations in pixel space. Therefore, there is no
// need to convert them to HiFi pixel format.
class RGBA8888UnitRepeatSrcOver final : public SkLinearBitmapPipeline::SampleProcessorInterface,
public SkLinearBitmapPipeline::DestinationInterface {
public:
RGBA8888UnitRepeatSrcOver(const uint32_t* src, int32_t width)
: fSrc{src}, fWidth{width} { }
void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
SkASSERT(fDest + n <= fEnd);
// At this point xs and ys should be >= 0, so trunc is the same as floor.
Sk4i iXs = SkNx_cast<int>(xs);
Sk4i iYs = SkNx_cast<int>(ys);
if (n >= 1) blendPixelAt(iXs[0], iYs[0]);
if (n >= 2) blendPixelAt(iXs[1], iYs[1]);
if (n >= 3) blendPixelAt(iXs[2], iYs[2]);
}
void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
SkASSERT(fDest + 4 <= fEnd);
Sk4i iXs = SkNx_cast<int>(xs);
Sk4i iYs = SkNx_cast<int>(ys);
blendPixelAt(iXs[0], iYs[0]);
blendPixelAt(iXs[1], iYs[1]);
blendPixelAt(iXs[2], iYs[2]);
blendPixelAt(iXs[3], iYs[3]);
}
void pointSpan(Span span) override {
if (span.length() != 0.0f) {
this->repeatSpan(span, 1);
}
}
void repeatSpan(Span span, int32_t repeatCount) override {
SkASSERT(fDest + span.count() * repeatCount <= fEnd);
SkASSERT(span.count() > 0);
SkASSERT(repeatCount > 0);
int32_t x = (int32_t)span.startX();
int32_t y = (int32_t)span.startY();
const uint32_t* beginSpan = this->pixelAddress(x, y);
SkOpts::srcover_srgb_srgb(fDest, beginSpan, span.count() * repeatCount, span.count());
fDest += span.count() * repeatCount;
SkASSERT(fDest <= fEnd);
}
void setDestination(void* dst, int count) override {
SkASSERT(count > 0);
fDest = static_cast<uint32_t*>(dst);
fEnd = fDest + count;
}
private:
const uint32_t* pixelAddress(int32_t x, int32_t y) {
return &fSrc[fWidth * y + x];
}
void blendPixelAt(int32_t x, int32_t y) {
const uint32_t* src = this->pixelAddress(x, y);
SkOpts::srcover_srgb_srgb(fDest, src, 1, 1);
fDest += 1;
}
const uint32_t* const fSrc;
const int32_t fWidth;
uint32_t* fDest;
uint32_t* fEnd;
};
using Blender = SkLinearBitmapPipeline::BlendProcessorInterface;
////////////////////////////////////////////////////////////////////////////////////////////////////
// Pixel Blender Stage
template <SkAlphaType alphaType>
class SrcFPPixel final : public Blender {
public:
SrcFPPixel(float postAlpha) : fPostAlpha{postAlpha} { }
SrcFPPixel(const SrcFPPixel& Blender) : fPostAlpha(Blender.fPostAlpha) {}
void SK_VECTORCALL blendPixel(Sk4f pixel) override {
SkASSERT(fDst + 1 <= fEnd );
this->srcPixel(fDst, pixel, 0);
fDst += 1;
}
void SK_VECTORCALL blend4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) override {
SkASSERT(fDst + 4 <= fEnd);
SkPM4f* dst = fDst;
this->srcPixel(dst, p0, 0);
this->srcPixel(dst, p1, 1);
this->srcPixel(dst, p2, 2);
this->srcPixel(dst, p3, 3);
fDst += 4;
}
void setDestination(void* dst, int count) override {
fDst = static_cast<SkPM4f*>(dst);
fEnd = fDst + count;
}
private:
void SK_VECTORCALL srcPixel(SkPM4f* dst, Sk4f pixel, int index) {
check_pixel(pixel);
Sk4f newPixel = pixel;
if (alphaType == kUnpremul_SkAlphaType) {
newPixel = Premultiply(pixel);
}
newPixel = newPixel * fPostAlpha;
newPixel.store(dst + index);
}
static Sk4f SK_VECTORCALL Premultiply(Sk4f pixel) {
float alpha = pixel[3];
return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
}
SkPM4f* fDst;
SkPM4f* fEnd;
float fPostAlpha;
};
} // namespace
////////////////////////////////////////////////////////////////////////////////////////////////////
// SkLinearBitmapPipeline
SkLinearBitmapPipeline::~SkLinearBitmapPipeline() {}
SkLinearBitmapPipeline::SkLinearBitmapPipeline(
const SkMatrix& inverse,
SkFilterQuality filterQuality,
SkShader::TileMode xTile, SkShader::TileMode yTile,
SkColor paintColor,
const SkPixmap& srcPixmap,
SkArenaAlloc* allocator)
{
SkISize dimensions = srcPixmap.info().dimensions();
const SkImageInfo& srcImageInfo = srcPixmap.info();
SkMatrix adjustedInverse = inverse;
if (filterQuality == kNone_SkFilterQuality) {
if (inverse.getScaleX() >= 0.0f) {
adjustedInverse.setTranslateX(
nextafterf(inverse.getTranslateX(), std::floor(inverse.getTranslateX())));
}
if (inverse.getScaleY() >= 0.0f) {
adjustedInverse.setTranslateY(
nextafterf(inverse.getTranslateY(), std::floor(inverse.getTranslateY())));
}
}
SkScalar dx = adjustedInverse.getScaleX();
// If it is an index 8 color type, the sampler converts to unpremul for better fidelity.
SkAlphaType alphaType = srcImageInfo.alphaType();
float postAlpha = SkColorGetA(paintColor) * (1.0f / 255.0f);
// As the stages are built, the chooser function may skip a stage. For example, with the
// identity matrix, the matrix stage is skipped, and the tilerStage is the first stage.
auto blenderStage = this->chooseBlenderForShading(alphaType, postAlpha, allocator);
auto samplerStage = this->chooseSampler(
blenderStage, filterQuality, xTile, yTile, srcPixmap, paintColor, allocator);
auto tilerStage = this->chooseTiler(
samplerStage, dimensions, xTile, yTile, filterQuality, dx, allocator);
fFirstStage = this->chooseMatrix(tilerStage, adjustedInverse, allocator);
fLastStage = blenderStage;
}
SkLinearBitmapPipeline::SkLinearBitmapPipeline(
const SkLinearBitmapPipeline& pipeline,
const SkPixmap& srcPixmap,
SkBlendMode mode,
const SkImageInfo& dstInfo,
SkArenaAlloc* allocator)
{
SkASSERT(mode == SkBlendMode::kSrc || mode == SkBlendMode::kSrcOver);
SkASSERT(srcPixmap.info().colorType() == dstInfo.colorType()
&& srcPixmap.info().colorType() == kRGBA_8888_SkColorType);
SampleProcessorInterface* sampleStage;
if (mode == SkBlendMode::kSrc) {
auto sampler = allocator->make<RGBA8888UnitRepeatSrc>(
srcPixmap.writable_addr32(0, 0), srcPixmap.rowBytes() / 4);
sampleStage = sampler;
fLastStage = sampler;
} else {
auto sampler = allocator->make<RGBA8888UnitRepeatSrcOver>(
srcPixmap.writable_addr32(0, 0), srcPixmap.rowBytes() / 4);
sampleStage = sampler;
fLastStage = sampler;
}
auto tilerStage = pipeline.fTileStageCloner(sampleStage, allocator);
auto matrixStage = pipeline.fMatrixStageCloner(tilerStage, allocator);
fFirstStage = matrixStage;
}
void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) {
SkASSERT(count > 0);
this->blitSpan(x, y, dst, count);
}
void SkLinearBitmapPipeline::blitSpan(int x, int y, void* dst, int count) {
SkASSERT(count > 0);
fLastStage->setDestination(dst, count);
// The count and length arguments start out in a precise relation in order to keep the
// math correct through the different stages. Count is the number of pixel to produce.
// Since the code samples at pixel centers, length is the distance from the center of the
// first pixel to the center of the last pixel. This implies that length is count-1.
fFirstStage->pointSpan(Span{{x + 0.5f, y + 0.5f}, count - 1.0f, count});
}
SkLinearBitmapPipeline::PointProcessorInterface*
SkLinearBitmapPipeline::chooseMatrix(
PointProcessorInterface* next,
const SkMatrix& inverse,
SkArenaAlloc* allocator)
{
if (inverse.hasPerspective()) {
auto matrixStage = allocator->make<PerspectiveMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()},
SkVector{inverse.getSkewX(), inverse.getSkewY()},
SkVector{inverse.getPerspX(), inverse.getPerspY()},
inverse.get(SkMatrix::kMPersp2));
fMatrixStageCloner =
[matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
return memory->make<PerspectiveMatrix<>>(cloneNext, matrixStage);
};
return matrixStage;
} else if (inverse.getSkewX() != 0.0f || inverse.getSkewY() != 0.0f) {
auto matrixStage = allocator->make<AffineMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()},
SkVector{inverse.getSkewX(), inverse.getSkewY()});
fMatrixStageCloner =
[matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
return memory->make<AffineMatrix<>>(cloneNext, matrixStage);
};
return matrixStage;
} else if (inverse.getScaleX() != 1.0f || inverse.getScaleY() != 1.0f) {
auto matrixStage = allocator->make<ScaleMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()});
fMatrixStageCloner =
[matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
return memory->make<ScaleMatrix<>>(cloneNext, matrixStage);
};
return matrixStage;
} else if (inverse.getTranslateX() != 0.0f || inverse.getTranslateY() != 0.0f) {
auto matrixStage = allocator->make<TranslateMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()});
fMatrixStageCloner =
[matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
return memory->make<TranslateMatrix<>>(cloneNext, matrixStage);
};
return matrixStage;
} else {
fMatrixStageCloner = [](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
return cloneNext;
};
return next;
}
}
template <typename Tiler>
SkLinearBitmapPipeline::PointProcessorInterface* SkLinearBitmapPipeline::createTiler(
SampleProcessorInterface* next,
SkISize dimensions,
SkArenaAlloc* allocator)
{
auto tilerStage = allocator->make<Tiler>(next, dimensions);
fTileStageCloner =
[tilerStage](SampleProcessorInterface* cloneNext,
SkArenaAlloc* memory) -> PointProcessorInterface* {
return memory->make<Tiler>(cloneNext, tilerStage);
};
return tilerStage;
}
template <typename XStrategy>
SkLinearBitmapPipeline::PointProcessorInterface* SkLinearBitmapPipeline::chooseTilerYMode(
SampleProcessorInterface* next,
SkShader::TileMode yMode,
SkISize dimensions,
SkArenaAlloc* allocator)
{
switch (yMode) {
case SkShader::kClamp_TileMode: {
using Tiler = CombinedTileStage<XStrategy, YClampStrategy, SampleProcessorInterface>;
return this->createTiler<Tiler>(next, dimensions, allocator);
}
case SkShader::kRepeat_TileMode: {
using Tiler = CombinedTileStage<XStrategy, YRepeatStrategy, SampleProcessorInterface>;
return this->createTiler<Tiler>(next, dimensions, allocator);
}
case SkShader::kMirror_TileMode: {
using Tiler = CombinedTileStage<XStrategy, YMirrorStrategy, SampleProcessorInterface>;
return this->createTiler<Tiler>(next, dimensions, allocator);
}
}
// Should never get here.
SkFAIL("Not all Y tile cases covered.");
return nullptr;
}
SkLinearBitmapPipeline::PointProcessorInterface* SkLinearBitmapPipeline::chooseTiler(
SampleProcessorInterface* next,
SkISize dimensions,
SkShader::TileMode xMode,
SkShader::TileMode yMode,
SkFilterQuality filterQuality,
SkScalar dx,
SkArenaAlloc* allocator)
{
switch (xMode) {
case SkShader::kClamp_TileMode:
return this->chooseTilerYMode<XClampStrategy>(next, yMode, dimensions, allocator);
case SkShader::kRepeat_TileMode:
if (dx == 1.0f && filterQuality == kNone_SkFilterQuality) {
return this->chooseTilerYMode<XRepeatUnitScaleStrategy>(
next, yMode, dimensions, allocator);
} else {
return this->chooseTilerYMode<XRepeatStrategy>(
next, yMode, dimensions, allocator);
}
case SkShader::kMirror_TileMode:
return this->chooseTilerYMode<XMirrorStrategy>(next, yMode, dimensions, allocator);
}
// Should never get here.
SkFAIL("Not all X tile cases covered.");
return nullptr;
}
template <SkColorType colorType>
SkLinearBitmapPipeline::PixelAccessorInterface*
SkLinearBitmapPipeline::chooseSpecificAccessor(
const SkPixmap& srcPixmap,
SkArenaAlloc* allocator)
{
if (srcPixmap.info().gammaCloseToSRGB()) {
using Accessor = PixelAccessor<colorType, kSRGB_SkGammaType>;
return allocator->make<Accessor>(srcPixmap);
} else {
using Accessor = PixelAccessor<colorType, kLinear_SkGammaType>;
return allocator->make<Accessor>(srcPixmap);
}
}
SkLinearBitmapPipeline::PixelAccessorInterface* SkLinearBitmapPipeline::choosePixelAccessor(
const SkPixmap& srcPixmap,
const SkColor A8TintColor,
SkArenaAlloc* allocator)
{
const SkImageInfo& imageInfo = srcPixmap.info();
switch (imageInfo.colorType()) {
case kAlpha_8_SkColorType: {
using Accessor = PixelAccessor<kAlpha_8_SkColorType, kLinear_SkGammaType>;
return allocator->make<Accessor>(srcPixmap, A8TintColor);
}
case kARGB_4444_SkColorType:
return this->chooseSpecificAccessor<kARGB_4444_SkColorType>(srcPixmap, allocator);
case kRGB_565_SkColorType:
return this->chooseSpecificAccessor<kRGB_565_SkColorType>(srcPixmap, allocator);
case kRGBA_8888_SkColorType:
return this->chooseSpecificAccessor<kRGBA_8888_SkColorType>(srcPixmap, allocator);
case kBGRA_8888_SkColorType:
return this->chooseSpecificAccessor<kBGRA_8888_SkColorType>(srcPixmap, allocator);
case kGray_8_SkColorType:
return this->chooseSpecificAccessor<kGray_8_SkColorType>(srcPixmap, allocator);
case kRGBA_F16_SkColorType: {
using Accessor = PixelAccessor<kRGBA_F16_SkColorType, kLinear_SkGammaType>;
return allocator->make<Accessor>(srcPixmap);
}
default:
// Should never get here.
SkFAIL("Pixel source not supported.");
return nullptr;
}
}
SkLinearBitmapPipeline::SampleProcessorInterface* SkLinearBitmapPipeline::chooseSampler(
Blender* next,
SkFilterQuality filterQuality,
SkShader::TileMode xTile, SkShader::TileMode yTile,
const SkPixmap& srcPixmap,
const SkColor A8TintColor,
SkArenaAlloc* allocator)
{
const SkImageInfo& imageInfo = srcPixmap.info();
SkISize dimensions = imageInfo.dimensions();
// Special case samplers with fully expanded templates
if (imageInfo.gammaCloseToSRGB()) {
if (filterQuality == kNone_SkFilterQuality) {
switch (imageInfo.colorType()) {
case kN32_SkColorType: {
using Sampler =
NearestNeighborSampler<
PixelAccessor<kN32_SkColorType, kSRGB_SkGammaType>, Blender>;
return allocator->make<Sampler>(next, srcPixmap);
}
default:
break;
}
} else {
switch (imageInfo.colorType()) {
case kN32_SkColorType: {
using Sampler =
BilerpSampler<
PixelAccessor<kN32_SkColorType, kSRGB_SkGammaType>, Blender>;
return allocator->make<Sampler>(next, dimensions, xTile, yTile, srcPixmap);
}
default:
break;
}
}
}
auto pixelAccessor = this->choosePixelAccessor(srcPixmap, A8TintColor, allocator);
// General cases.
if (filterQuality == kNone_SkFilterQuality) {
using Sampler = NearestNeighborSampler<PixelAccessorShim, Blender>;
return allocator->make<Sampler>(next, pixelAccessor);
} else {
using Sampler = BilerpSampler<PixelAccessorShim, Blender>;
return allocator->make<Sampler>(next, dimensions, xTile, yTile, pixelAccessor);
}
}
Blender* SkLinearBitmapPipeline::chooseBlenderForShading(
SkAlphaType alphaType,
float postAlpha,
SkArenaAlloc* allocator)
{
if (alphaType == kUnpremul_SkAlphaType) {
return allocator->make<SrcFPPixel<kUnpremul_SkAlphaType>>(postAlpha);
} else {
// kOpaque_SkAlphaType is treated the same as kPremul_SkAlphaType
return allocator->make<SrcFPPixel<kPremul_SkAlphaType>>(postAlpha);
}
}