blob: ce6c05b75260af2dae965629cf0037e392d76ff8 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkLinearBitmapPipeline_core_DEFINED
#define SkLinearBitmapPipeline_core_DEFINED
#include <algorithm>
#include <cmath>
#include "SkNx.h"
// New bilerp strategy:
// Pass through on bilerpList4 and bilerpListFew (analogs to pointList), introduce bilerpEdge
// which takes 4 points. If the sample spans an edge, then break it into a bilerpEdge. Bilerp
// span then becomes a normal span except in special cases where an extra Y is given. The bilerp
// need to stay single point calculations until the tile layer.
// TODO:
// - edge span predicate.
// - introduce new point API
// - Add tile for new api.
namespace {
struct X {
explicit X(SkScalar val) : fVal{val} { }
explicit X(SkPoint pt) : fVal{pt.fX} { }
explicit X(SkSize s) : fVal{s.fWidth} { }
explicit X(SkISize s) : fVal((SkScalar)s.fWidth) { }
operator SkScalar () const {return fVal;}
private:
SkScalar fVal;
};
struct Y {
explicit Y(SkScalar val) : fVal{val} { }
explicit Y(SkPoint pt) : fVal{pt.fY} { }
explicit Y(SkSize s) : fVal{s.fHeight} { }
explicit Y(SkISize s) : fVal((SkScalar)s.fHeight) { }
operator SkScalar () const {return fVal;}
private:
SkScalar fVal;
};
// The Span class enables efficient processing horizontal spans of pixels.
// * start - the point where to start the span.
// * length - the number of pixels to traverse in source space.
// * count - the number of pixels to produce in destination space.
// Both start and length are mapped through the inversion matrix to produce values in source
// space. After the matrix operation, the tilers may break the spans up into smaller spans.
// The tilers can produce spans that seem nonsensical.
// * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
// to the edge of the destination scan.
// * The mirror tiler can produce spans with negative length. This indicates that the source
// should be traversed in the opposite direction to the destination pixels.
class Span {
public:
Span(SkPoint start, SkScalar length, int count)
: fStart(start)
, fLength(length)
, fCount{count} {
SkASSERT(std::isfinite(length));
}
operator std::tuple<SkPoint&, SkScalar&, int&>() {
return std::tie(fStart, fLength, fCount);
}
bool isEmpty() const { return 0 == fCount; }
void clear() { fCount = 0; }
int count() const { return fCount; }
SkScalar length() const { return fLength; }
SkScalar startX() const { return X(fStart); }
SkScalar endX() const { return this->startX() + this->length(); }
SkScalar startY() const { return Y(fStart); }
Span emptySpan() { return Span{{0.0, 0.0}, 0.0f, 0}; }
bool completelyWithin(SkScalar xMin, SkScalar xMax) const {
SkScalar sMin, sMax;
std::tie(sMin, sMax) = std::minmax(startX(), endX());
return xMin <= sMin && sMax < xMax;
}
void offset(SkScalar offsetX) {
fStart.offset(offsetX, 0.0f);
}
Span breakAt(SkScalar breakX, SkScalar dx) {
SkASSERT(std::isfinite(breakX));
SkASSERT(std::isfinite(dx));
SkASSERT(dx != 0.0f);
if (this->isEmpty()) {
return this->emptySpan();
}
int dxSteps = SkScalarFloorToInt((breakX - this->startX()) / dx);
if (dxSteps < 0) {
// The span is wholly after breakX.
return this->emptySpan();
} else if (dxSteps >= fCount) {
// The span is wholly before breakX.
Span answer = *this;
this->clear();
return answer;
}
// Calculate the values for the span to cleave off.
SkScalar newLength = dxSteps * dx;
// If the last (or first if count = 1) sample lands directly on the boundary. Include it
// when dx < 0 and exclude it when dx > 0.
// Reasoning:
// dx > 0: The sample point on the boundary is part of the next span because the entire
// pixel is after the boundary.
// dx < 0: The sample point on the boundary is part of the current span because the
// entire pixel is before the boundary.
if (this->startX() + newLength == breakX && dx > 0) {
if (dxSteps > 0) {
dxSteps -= 1;
newLength -= dx;
} else {
return this->emptySpan();
}
}
// Calculate new span parameters
SkPoint newStart = fStart;
int newCount = dxSteps + 1;
SkASSERT(newCount > 0);
// Update this span to reflect the break.
SkScalar lengthToStart = newLength + dx;
fLength -= lengthToStart;
fCount -= newCount;
fStart = {this->startX() + lengthToStart, Y(fStart)};
return Span{newStart, newLength, newCount};
}
void clampToSinglePixel(SkPoint pixel) {
fStart = pixel;
fLength = 0.0f;
}
private:
SkPoint fStart;
SkScalar fLength;
int fCount;
};
template<typename Stage>
void span_fallback(Span span, Stage* stage) {
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
Sk4f startXs{X(start)};
Sk4f ys{Y(start)};
Sk4f mults = {0.0f, 1.0f, 2.0f, 3.0f};
// Initializing this is not needed, but some compilers can't figure this out.
Sk4s dXs{0.0f};
if (count > 1) {
SkScalar dx = length / (count - 1);
dXs = Sk4f{dx};
}
// Instead of using xs = xs + dx every round, this uses xs = i * dx + X(start). This
// eliminates the rounding error for the sum.
Sk4f xs = startXs + mults * dXs;
while (count >= 4) {
stage->pointList4(xs, ys);
mults += Sk4f{4.0f};
xs = mults * dXs + startXs;
count -= 4;
}
if (count > 0) {
stage->pointListFew(count, xs, ys);
}
}
inline Sk4f SK_VECTORCALL check_pixel(const Sk4f& pixel) {
SkASSERTF(0.0f <= pixel[0] && pixel[0] <= 1.0f, "pixel[0]: %f", pixel[0]);
SkASSERTF(0.0f <= pixel[1] && pixel[1] <= 1.0f, "pixel[1]: %f", pixel[1]);
SkASSERTF(0.0f <= pixel[2] && pixel[2] <= 1.0f, "pixel[2]: %f", pixel[2]);
SkASSERTF(0.0f <= pixel[3] && pixel[3] <= 1.0f, "pixel[3]: %f", pixel[3]);
return pixel;
}
} // namespace
class SkLinearBitmapPipeline::PointProcessorInterface {
public:
virtual ~PointProcessorInterface() { }
// Take the first n (where 0 < n && n < 4) items from xs and ys and sample those points. For
// nearest neighbor, that means just taking the floor xs and ys. For bilerp, this means
// to expand the bilerp filter around the point and sample using that filter.
virtual void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0;
// Same as pointListFew, but n = 4.
virtual void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0;
// A span is a compact form of sample points that are obtained by mapping points from
// destination space to source space. This is used for horizontal lines only, and is mainly
// used to take advantage of memory coherence for horizontal spans.
virtual void pointSpan(Span span) = 0;
};
class SkLinearBitmapPipeline::SampleProcessorInterface
: public SkLinearBitmapPipeline::PointProcessorInterface {
public:
// Used for nearest neighbor when scale factor is 1.0. The span can just be repeated with no
// edge pixel alignment problems. This is for handling a very common case.
virtual void repeatSpan(Span span, int32_t repeatCount) = 0;
};
class SkLinearBitmapPipeline::DestinationInterface {
public:
virtual ~DestinationInterface() { }
// Count is normally not needed, but in these early stages of development it is useful to
// check bounds.
// TODO(herb): 4/6/2016 - remove count when code is stable.
virtual void setDestination(void* dst, int count) = 0;
};
class SkLinearBitmapPipeline::BlendProcessorInterface
: public SkLinearBitmapPipeline::DestinationInterface {
public:
virtual void SK_VECTORCALL blendPixel(Sk4f pixel0) = 0;
virtual void SK_VECTORCALL blend4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
};
class SkLinearBitmapPipeline::PixelAccessorInterface {
public:
virtual ~PixelAccessorInterface() { }
virtual void SK_VECTORCALL getFewPixels(
int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const = 0;
virtual void SK_VECTORCALL get4Pixels(
Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
virtual void get4Pixels(
const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
virtual Sk4f getPixelFromRow(const void* row, int index) const = 0;
virtual Sk4f getPixelAt(int index) const = 0;
virtual const void* row(int y) const = 0;
};
#endif // SkLinearBitmapPipeline_core_DEFINED