| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkLinearBitmapPipeline_sampler_DEFINED |
| #define SkLinearBitmapPipeline_sampler_DEFINED |
| |
| #include <tuple> |
| |
| #include "SkAutoMalloc.h" |
| #include "SkColor.h" |
| #include "SkColorPriv.h" |
| #include "SkFixed.h" // for SkFixed1 only. Don't use SkFixed in this file. |
| #include "SkHalf.h" |
| #include "SkLinearBitmapPipeline_core.h" |
| #include "SkNx.h" |
| #include "SkPM4fPriv.h" |
| |
| namespace { |
| // Explaination of the math: |
| // 1 - x x |
| // +--------+--------+ |
| // | | | |
| // 1 - y | px00 | px10 | |
| // | | | |
| // +--------+--------+ |
| // | | | |
| // y | px01 | px11 | |
| // | | | |
| // +--------+--------+ |
| // |
| // |
| // Given a pixelxy each is multiplied by a different factor derived from the fractional part of x |
| // and y: |
| // * px00 -> (1 - x)(1 - y) = 1 - x - y + xy |
| // * px10 -> x(1 - y) = x - xy |
| // * px01 -> (1 - x)y = y - xy |
| // * px11 -> xy |
| // So x * y is calculated first and then used to calculate all the other factors. |
| static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10, |
| Sk4f px01, Sk4f px11) { |
| // Calculate fractional xs and ys. |
| Sk4s fxs = xs - xs.floor(); |
| Sk4s fys = ys - ys.floor(); |
| Sk4s fxys{fxs * fys}; |
| Sk4f sum = px11 * fxys; |
| sum = sum + px01 * (fys - fxys); |
| sum = sum + px10 * (fxs - fxys); |
| sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys); |
| return sum; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| // PixelGetter is the lowest level interface to the source data. There is a PixelConverter for each |
| // of the different SkColorTypes. |
| template <SkColorType, SkGammaType> class PixelConverter; |
| |
| // Alpha handling: |
| // The alpha from the paint (tintColor) is used in the blend part of the pipeline to modulate |
| // the entire bitmap. So, the tint color is given an alpha of 1.0 so that the later alpha can |
| // modulate this color later. |
| template <> |
| class PixelConverter<kAlpha_8_SkColorType, kLinear_SkGammaType> { |
| public: |
| using Element = uint8_t; |
| PixelConverter(const SkPixmap& srcPixmap, SkColor tintColor) { |
| fTintColor = SkColor4f::FromColor(tintColor); |
| fTintColor.fA = 1.0f; |
| } |
| |
| Sk4f toSk4f(const Element pixel) const { |
| return Sk4f::Load(&fTintColor) * (pixel * (1.0f/255.0f)); |
| } |
| |
| private: |
| SkColor4f fTintColor; |
| }; |
| |
| template <SkGammaType gammaType> |
| static inline Sk4f pmcolor_to_rgba(SkPMColor pixel) { |
| return swizzle_rb_if_bgra( |
| (gammaType == kSRGB_SkGammaType) ? Sk4f_fromS32(pixel) |
| : Sk4f_fromL32(pixel)); |
| } |
| |
| template <SkGammaType gammaType> |
| class PixelConverter<kRGB_565_SkColorType, gammaType> { |
| public: |
| using Element = uint16_t; |
| PixelConverter(const SkPixmap& srcPixmap) { } |
| |
| Sk4f toSk4f(Element pixel) const { |
| return pmcolor_to_rgba<gammaType>(SkPixel16ToPixel32(pixel)); |
| } |
| }; |
| |
| template <SkGammaType gammaType> |
| class PixelConverter<kARGB_4444_SkColorType, gammaType> { |
| public: |
| using Element = uint16_t; |
| PixelConverter(const SkPixmap& srcPixmap) { } |
| |
| Sk4f toSk4f(Element pixel) const { |
| return pmcolor_to_rgba<gammaType>(SkPixel4444ToPixel32(pixel)); |
| } |
| }; |
| |
| template <SkGammaType gammaType> |
| class PixelConverter<kRGBA_8888_SkColorType, gammaType> { |
| public: |
| using Element = uint32_t; |
| PixelConverter(const SkPixmap& srcPixmap) { } |
| |
| Sk4f toSk4f(Element pixel) const { |
| return gammaType == kSRGB_SkGammaType |
| ? Sk4f_fromS32(pixel) |
| : Sk4f_fromL32(pixel); |
| } |
| }; |
| |
| template <SkGammaType gammaType> |
| class PixelConverter<kBGRA_8888_SkColorType, gammaType> { |
| public: |
| using Element = uint32_t; |
| PixelConverter(const SkPixmap& srcPixmap) { } |
| |
| Sk4f toSk4f(Element pixel) const { |
| return swizzle_rb( |
| gammaType == kSRGB_SkGammaType ? Sk4f_fromS32(pixel) : Sk4f_fromL32(pixel)); |
| } |
| }; |
| |
| template <SkGammaType gammaType> |
| class PixelConverter<kGray_8_SkColorType, gammaType> { |
| public: |
| using Element = uint8_t; |
| PixelConverter(const SkPixmap& srcPixmap) { } |
| |
| Sk4f toSk4f(Element pixel) const { |
| float gray = (gammaType == kSRGB_SkGammaType) |
| ? sk_linear_from_srgb[pixel] |
| : pixel * (1/255.0f); |
| return {gray, gray, gray, 1.0f}; |
| } |
| }; |
| |
| template <> |
| class PixelConverter<kRGBA_F16_SkColorType, kLinear_SkGammaType> { |
| public: |
| using Element = uint64_t; |
| PixelConverter(const SkPixmap& srcPixmap) { } |
| |
| Sk4f toSk4f(const Element pixel) const { |
| return SkHalfToFloat_finite_ftz(pixel); |
| } |
| }; |
| |
| class PixelAccessorShim { |
| public: |
| explicit PixelAccessorShim(SkLinearBitmapPipeline::PixelAccessorInterface* accessor) |
| : fPixelAccessor(accessor) { } |
| |
| void SK_VECTORCALL getFewPixels( |
| int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const { |
| fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2); |
| } |
| |
| void SK_VECTORCALL get4Pixels( |
| Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const { |
| fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3); |
| } |
| |
| void get4Pixels( |
| const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const { |
| fPixelAccessor->get4Pixels(src, index, px0, px1, px2, px3); |
| } |
| |
| Sk4f getPixelFromRow(const void* row, int index) const { |
| return fPixelAccessor->getPixelFromRow(row, index); |
| } |
| |
| Sk4f getPixelAt(int index) const { |
| return fPixelAccessor->getPixelAt(index); |
| } |
| |
| const void* row(int y) const { |
| return fPixelAccessor->row(y); |
| } |
| |
| private: |
| SkLinearBitmapPipeline::PixelAccessorInterface* const fPixelAccessor; |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| // PixelAccessor handles all the same plumbing for all the PixelGetters. |
| template <SkColorType colorType, SkGammaType gammaType> |
| class PixelAccessor final : public SkLinearBitmapPipeline::PixelAccessorInterface { |
| using Element = typename PixelConverter<colorType, gammaType>::Element; |
| public: |
| template <typename... Args> |
| PixelAccessor(const SkPixmap& srcPixmap, Args&&... args) |
| : fSrc{static_cast<const Element*>(srcPixmap.addr())} |
| , fWidth{srcPixmap.rowBytesAsPixels()} |
| , fConverter{srcPixmap, std::move<Args>(args)...} { } |
| |
| void SK_VECTORCALL getFewPixels ( |
| int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override { |
| Sk4i bufferLoc = ys * fWidth + xs; |
| switch (n) { |
| case 3: |
| *px2 = this->getPixelAt(bufferLoc[2]); |
| case 2: |
| *px1 = this->getPixelAt(bufferLoc[1]); |
| case 1: |
| *px0 = this->getPixelAt(bufferLoc[0]); |
| default: |
| break; |
| } |
| } |
| |
| void SK_VECTORCALL get4Pixels( |
| Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override { |
| Sk4i bufferLoc = ys * fWidth + xs; |
| *px0 = this->getPixelAt(bufferLoc[0]); |
| *px1 = this->getPixelAt(bufferLoc[1]); |
| *px2 = this->getPixelAt(bufferLoc[2]); |
| *px3 = this->getPixelAt(bufferLoc[3]); |
| } |
| |
| void get4Pixels( |
| const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override { |
| *px0 = this->getPixelFromRow(src, index + 0); |
| *px1 = this->getPixelFromRow(src, index + 1); |
| *px2 = this->getPixelFromRow(src, index + 2); |
| *px3 = this->getPixelFromRow(src, index + 3); |
| } |
| |
| Sk4f getPixelFromRow(const void* row, int index) const override { |
| const Element* src = static_cast<const Element*>(row); |
| return fConverter.toSk4f(src[index]); |
| } |
| |
| Sk4f getPixelAt(int index) const override { |
| return this->getPixelFromRow(fSrc, index); |
| } |
| |
| const void* row(int y) const override { return fSrc + y * fWidth; } |
| |
| private: |
| const Element* const fSrc; |
| const int fWidth; |
| PixelConverter<colorType, gammaType> fConverter; |
| }; |
| |
| // We're moving through source space at a rate of 1 source pixel per 1 dst pixel. |
| // We'll never re-use pixels, but we can at least load contiguous pixels. |
| template <typename Next, typename Strategy> |
| static void src_strategy_blend(Span span, Next* next, Strategy* strategy) { |
| SkPoint start; |
| SkScalar length; |
| int count; |
| std::tie(start, length, count) = span; |
| int ix = SkScalarFloorToInt(X(start)); |
| const void* row = strategy->row((int)std::floor(Y(start))); |
| if (length > 0) { |
| while (count >= 4) { |
| Sk4f px0, px1, px2, px3; |
| strategy->get4Pixels(row, ix, &px0, &px1, &px2, &px3); |
| next->blend4Pixels(px0, px1, px2, px3); |
| ix += 4; |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| next->blendPixel(strategy->getPixelFromRow(row, ix)); |
| ix += 1; |
| count -= 1; |
| } |
| } else { |
| while (count >= 4) { |
| Sk4f px0, px1, px2, px3; |
| strategy->get4Pixels(row, ix - 3, &px3, &px2, &px1, &px0); |
| next->blend4Pixels(px0, px1, px2, px3); |
| ix -= 4; |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| next->blendPixel(strategy->getPixelFromRow(row, ix)); |
| ix -= 1; |
| count -= 1; |
| } |
| } |
| } |
| |
| // -- NearestNeighborSampler ----------------------------------------------------------------------- |
| // NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels. |
| template<typename Accessor, typename Next> |
| class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface { |
| public: |
| template<typename... Args> |
| NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args) |
| : fNext{next}, fAccessor{std::forward<Args>(args)...} { } |
| |
| NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, |
| const NearestNeighborSampler& sampler) |
| : fNext{next}, fAccessor{sampler.fAccessor} { } |
| |
| void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| SkASSERT(0 < n && n < 4); |
| Sk4f px0, px1, px2; |
| fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2); |
| if (n >= 1) fNext->blendPixel(px0); |
| if (n >= 2) fNext->blendPixel(px1); |
| if (n >= 3) fNext->blendPixel(px2); |
| } |
| |
| void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
| Sk4f px0, px1, px2, px3; |
| fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3); |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| } |
| |
| void pointSpan(Span span) override { |
| SkASSERT(!span.isEmpty()); |
| SkPoint start; |
| SkScalar length; |
| int count; |
| std::tie(start, length, count) = span; |
| SkScalar absLength = SkScalarAbs(length); |
| if (absLength < (count - 1)) { |
| this->spanSlowRate(span); |
| } else if (absLength == (count - 1)) { |
| src_strategy_blend(span, fNext, &fAccessor); |
| } else { |
| this->spanFastRate(span); |
| } |
| } |
| |
| void repeatSpan(Span span, int32_t repeatCount) override { |
| while (repeatCount > 0) { |
| this->pointSpan(span); |
| repeatCount--; |
| } |
| } |
| |
| private: |
| // When moving through source space more slowly than dst space (zoomed in), |
| // we'll be sampling from the same source pixel more than once. |
| void spanSlowRate(Span span) { |
| SkPoint start; SkScalar length; int count; |
| std::tie(start, length, count) = span; |
| SkScalar x = X(start); |
| // fx is a fixed 48.16 number. |
| int64_t fx = static_cast<int64_t>(x * SK_Fixed1); |
| SkScalar dx = length / (count - 1); |
| // fdx is a fixed 48.16 number. |
| int64_t fdx = static_cast<int64_t>(dx * SK_Fixed1); |
| |
| const void* row = fAccessor.row((int)std::floor(Y(start))); |
| Next* next = fNext; |
| |
| int64_t ix = fx >> 16; |
| int64_t prevIX = ix; |
| Sk4f fpixel = fAccessor.getPixelFromRow(row, ix); |
| |
| // When dx is less than one, each pixel is used more than once. Using the fixed point fx |
| // allows the code to quickly check that the same pixel is being used. The code uses this |
| // same pixel check to do the sRGB and normalization only once. |
| auto getNextPixel = [&]() { |
| if (ix != prevIX) { |
| fpixel = fAccessor.getPixelFromRow(row, ix); |
| prevIX = ix; |
| } |
| fx += fdx; |
| ix = fx >> 16; |
| return fpixel; |
| }; |
| |
| while (count >= 4) { |
| Sk4f px0 = getNextPixel(); |
| Sk4f px1 = getNextPixel(); |
| Sk4f px2 = getNextPixel(); |
| Sk4f px3 = getNextPixel(); |
| next->blend4Pixels(px0, px1, px2, px3); |
| count -= 4; |
| } |
| while (count > 0) { |
| next->blendPixel(getNextPixel()); |
| count -= 1; |
| } |
| } |
| |
| // We're moving through source space at a rate of 1 source pixel per 1 dst pixel. |
| // We'll never re-use pixels, but we can at least load contiguous pixels. |
| void spanUnitRate(Span span) { |
| src_strategy_blend(span, fNext, &fAccessor); |
| } |
| |
| // We're moving through source space faster than dst (zoomed out), |
| // so we'll never reuse a source pixel or be able to do contiguous loads. |
| void spanFastRate(Span span) { |
| span_fallback(span, this); |
| } |
| |
| Next* const fNext; |
| Accessor fAccessor; |
| }; |
| |
| // From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge |
| // vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to |
| // generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value |
| // on the interval [0, vMax]. |
| // Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel. |
| static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) { |
| SkASSERT(-1 <= vs && vs <= vMax + 1); |
| switch (edgeType) { |
| case SkShader::kClamp_TileMode: |
| case SkShader::kMirror_TileMode: |
| vs = std::max(vs, 0); |
| vs = std::min(vs, vMax); |
| break; |
| case SkShader::kRepeat_TileMode: |
| vs = (vs <= vMax) ? vs : 0; |
| vs = (vs >= 0) ? vs : vMax; |
| break; |
| } |
| SkASSERT(0 <= vs && vs <= vMax); |
| return vs; |
| } |
| |
| // From a sample point on the tile, return the top or left filter value. |
| // The result r should be in the range (0, 1]. Since this represents the weight given to the top |
| // left element, then if x == 0.5 the filter value should be 1.0. |
| // The input sample point must be on the tile, therefore it must be >= 0. |
| static SkScalar sample_to_filter(SkScalar x) { |
| SkASSERT(x >= 0.0f); |
| // The usual form of the top or left edge is x - .5, but since we are working on the unit |
| // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use |
| // of trunc. |
| SkScalar v = x + 0.5f; |
| // Produce the top or left offset a value on the range [0, 1). |
| SkScalar f = v - SkScalarTruncToScalar(v); |
| // Produce the filter value which is on the range (0, 1]. |
| SkScalar r = 1.0f - f; |
| SkASSERT(0.0f < r && r <= 1.0f); |
| return r; |
| } |
| |
| // -- BilerpSampler -------------------------------------------------------------------------------- |
| // BilerpSampler - use a bilerp filter to create runs of destination pixels. |
| // Note: in the code below, there are two types of points |
| // * sample points - these are the points passed in by pointList* and Spans. |
| // * filter points - are created from a sample point to form the coordinates of the points |
| // to use in the filter and to generate the filter values. |
| template<typename Accessor, typename Next> |
| class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface { |
| public: |
| template<typename... Args> |
| BilerpSampler( |
| SkLinearBitmapPipeline::BlendProcessorInterface* next, |
| SkISize dimensions, |
| SkShader::TileMode xTile, SkShader::TileMode yTile, |
| Args&& ... args |
| ) |
| : fNext{next} |
| , fXEdgeType{xTile} |
| , fXMax{dimensions.width() - 1} |
| , fYEdgeType{yTile} |
| , fYMax{dimensions.height() - 1} |
| , fAccessor{std::forward<Args>(args)...} { } |
| |
| BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, |
| const BilerpSampler& sampler) |
| : fNext{next} |
| , fXEdgeType{sampler.fXEdgeType} |
| , fXMax{sampler.fXMax} |
| , fYEdgeType{sampler.fYEdgeType} |
| , fYMax{sampler.fYMax} |
| , fAccessor{sampler.fAccessor} { } |
| |
| void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| SkASSERT(0 < n && n < 4); |
| auto bilerpPixel = [&](int index) { |
| return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]}); |
| }; |
| |
| if (n >= 1) fNext->blendPixel(bilerpPixel(0)); |
| if (n >= 2) fNext->blendPixel(bilerpPixel(1)); |
| if (n >= 3) fNext->blendPixel(bilerpPixel(2)); |
| } |
| |
| void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
| auto bilerpPixel = [&](int index) { |
| return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]}); |
| }; |
| fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3)); |
| } |
| |
| void pointSpan(Span span) override { |
| SkASSERT(!span.isEmpty()); |
| SkPoint start; |
| SkScalar length; |
| int count; |
| std::tie(start, length, count) = span; |
| |
| // Nothing to do. |
| if (count == 0) { |
| return; |
| } |
| |
| // Trivial case. No sample points are generated other than start. |
| if (count == 1) { |
| fNext->blendPixel(this->bilerpSamplePoint(start)); |
| return; |
| } |
| |
| // Note: the following code could be done in terms of dx = length / (count -1), but that |
| // would introduce a divide that is not needed for the most common dx == 1 cases. |
| SkScalar absLength = SkScalarAbs(length); |
| if (absLength == 0.0f) { |
| // |dx| == 0 |
| // length is zero, so clamp an edge pixel. |
| this->spanZeroRate(span); |
| } else if (absLength < (count - 1)) { |
| // 0 < |dx| < 1. |
| this->spanSlowRate(span); |
| } else if (absLength == (count - 1)) { |
| // |dx| == 1. |
| if (sample_to_filter(span.startX()) == 1.0f |
| && sample_to_filter(span.startY()) == 1.0f) { |
| // All the pixels are aligned with the dest; go fast. |
| src_strategy_blend(span, fNext, &fAccessor); |
| } else { |
| // There is some sub-pixel offsets, so bilerp. |
| this->spanUnitRate(span); |
| } |
| } else if (absLength < 2.0f * (count - 1)) { |
| // 1 < |dx| < 2. |
| this->spanMediumRate(span); |
| } else { |
| // |dx| >= 2. |
| this->spanFastRate(span); |
| } |
| } |
| |
| void repeatSpan(Span span, int32_t repeatCount) override { |
| while (repeatCount > 0) { |
| this->pointSpan(span); |
| repeatCount--; |
| } |
| } |
| |
| private: |
| |
| // Convert a sample point to the points used by the filter. |
| void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) { |
| // May be less than zero. Be careful to use Floor. |
| int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax); |
| // Always greater than zero. Use the faster Trunc. |
| int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax); |
| int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax); |
| int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax); |
| |
| *filterXs = Sk4i{x0, x1, x0, x1}; |
| *filterYs = Sk4i{y0, y0, y1, y1}; |
| } |
| |
| // Given a sample point, generate a color by bilerping the four filter points. |
| Sk4f bilerpSamplePoint(SkPoint sample) { |
| Sk4i iXs, iYs; |
| filterPoints(sample, &iXs, &iYs); |
| Sk4f px00, px10, px01, px11; |
| fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11); |
| return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11); |
| } |
| |
| // Get two pixels at x from row0 and row1. |
| void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) { |
| *px0 = fAccessor.getPixelFromRow(row0, x); |
| *px1 = fAccessor.getPixelFromRow(row1, x); |
| } |
| |
| // |dx| == 0. This code assumes that length is zero. |
| void spanZeroRate(Span span) { |
| SkPoint start; SkScalar length; int count; |
| std::tie(start, length, count) = span; |
| SkASSERT(length == 0.0f); |
| |
| // Filter for the blending of the top and bottom pixels. |
| SkScalar filterY = sample_to_filter(Y(start)); |
| |
| // Generate the four filter points from the sample point start. Generate the row* values. |
| Sk4i iXs, iYs; |
| this->filterPoints(start, &iXs, &iYs); |
| const void* const row0 = fAccessor.row(iYs[0]); |
| const void* const row1 = fAccessor.row(iYs[2]); |
| |
| // Get the two pixels that make up the clamping pixel. |
| Sk4f pxTop, pxBottom; |
| this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom); |
| Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom; |
| |
| while (count >= 4) { |
| fNext->blend4Pixels(pixel, pixel, pixel, pixel); |
| count -= 4; |
| } |
| while (count > 0) { |
| fNext->blendPixel(pixel); |
| count -= 1; |
| } |
| } |
| |
| // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce |
| // computation. In particular, several destination pixels maybe generated from the same four |
| // source pixels. |
| // In the following code a "part" is a combination of two pixels from the same column of the |
| // filter. |
| void spanSlowRate(Span span) { |
| SkPoint start; SkScalar length; int count; |
| std::tie(start, length, count) = span; |
| |
| // Calculate the distance between each sample point. |
| const SkScalar dx = length / (count - 1); |
| SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f); |
| |
| // Generate the filter values for the top-left corner. |
| // Note: these values are in filter space; this has implications about how to adjust |
| // these values at each step. For example, as the sample point increases, the filter |
| // value decreases, this is because the filter and position are related by |
| // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite |
| // direction of the sample point which is increasing by dx. |
| SkScalar filterX = sample_to_filter(X(start)); |
| SkScalar filterY = sample_to_filter(Y(start)); |
| |
| // Generate the four filter points from the sample point start. Generate the row* values. |
| Sk4i iXs, iYs; |
| this->filterPoints(start, &iXs, &iYs); |
| const void* const row0 = fAccessor.row(iYs[0]); |
| const void* const row1 = fAccessor.row(iYs[2]); |
| |
| // Generate part of the filter value at xColumn. |
| auto partAtColumn = [&](int xColumn) { |
| int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); |
| Sk4f pxTop, pxBottom; |
| this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); |
| return pxTop * filterY + (1.0f - filterY) * pxBottom; |
| }; |
| |
| // The leftPart is made up of two pixels from the left column of the filter, right part |
| // is similar. The top and bottom pixels in the *Part are created as a linear blend of |
| // the top and bottom pixels using filterY. See the partAtColumn function above. |
| Sk4f leftPart = partAtColumn(iXs[0]); |
| Sk4f rightPart = partAtColumn(iXs[1]); |
| |
| // Create a destination color by blending together a left and right part using filterX. |
| auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) { |
| Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX); |
| return check_pixel(pixel); |
| }; |
| |
| // Send the first pixel to the destination. This simplifies the loop structure so that no |
| // extra pixels are fetched for the last iteration of the loop. |
| fNext->blendPixel(bilerp(leftPart, rightPart)); |
| count -= 1; |
| |
| if (dx > 0.0f) { |
| // * positive direction - generate destination pixels by sliding the filter from left |
| // to right. |
| int rightPartCursor = iXs[1]; |
| |
| // Advance the filter from left to right. Remember that moving the top-left corner of |
| // the filter to the right actually makes the filter value smaller. |
| auto advanceFilter = [&]() { |
| filterX -= dx; |
| if (filterX <= 0.0f) { |
| filterX += 1.0f; |
| leftPart = rightPart; |
| rightPartCursor += 1; |
| rightPart = partAtColumn(rightPartCursor); |
| } |
| SkASSERT(0.0f < filterX && filterX <= 1.0f); |
| |
| return bilerp(leftPart, rightPart); |
| }; |
| |
| while (count >= 4) { |
| Sk4f px0 = advanceFilter(), |
| px1 = advanceFilter(), |
| px2 = advanceFilter(), |
| px3 = advanceFilter(); |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| fNext->blendPixel(advanceFilter()); |
| count -= 1; |
| } |
| } else { |
| // * negative direction - generate destination pixels by sliding the filter from |
| // right to left. |
| int leftPartCursor = iXs[0]; |
| |
| // Advance the filter from right to left. Remember that moving the top-left corner of |
| // the filter to the left actually makes the filter value larger. |
| auto advanceFilter = [&]() { |
| // Remember, dx < 0 therefore this adds |dx| to filterX. |
| filterX -= dx; |
| // At this point filterX may be > 1, and needs to be wrapped back on to the filter |
| // interval, and the next column in the filter is calculated. |
| if (filterX > 1.0f) { |
| filterX -= 1.0f; |
| rightPart = leftPart; |
| leftPartCursor -= 1; |
| leftPart = partAtColumn(leftPartCursor); |
| } |
| SkASSERT(0.0f < filterX && filterX <= 1.0f); |
| |
| return bilerp(leftPart, rightPart); |
| }; |
| |
| while (count >= 4) { |
| Sk4f px0 = advanceFilter(), |
| px1 = advanceFilter(), |
| px2 = advanceFilter(), |
| px3 = advanceFilter(); |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| fNext->blendPixel(advanceFilter()); |
| count -= 1; |
| } |
| } |
| } |
| |
| // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel. |
| // Every filter part is used for two destination pixels, and the code can bulk load four |
| // pixels at a time. |
| void spanUnitRate(Span span) { |
| SkPoint start; SkScalar length; int count; |
| std::tie(start, length, count) = span; |
| SkASSERT(SkScalarAbs(length) == (count - 1)); |
| |
| // Calculate the four filter points of start, and use the two different Y values to |
| // generate the row pointers. |
| Sk4i iXs, iYs; |
| filterPoints(start, &iXs, &iYs); |
| const void* row0 = fAccessor.row(iYs[0]); |
| const void* row1 = fAccessor.row(iYs[2]); |
| |
| // Calculate the filter values for the top-left filter element. |
| const SkScalar filterX = sample_to_filter(X(start)); |
| const SkScalar filterY = sample_to_filter(Y(start)); |
| |
| // Generate part of the filter value at xColumn. |
| auto partAtColumn = [&](int xColumn) { |
| int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); |
| Sk4f pxTop, pxBottom; |
| this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); |
| return pxTop * filterY + (1.0f - filterY) * pxBottom; |
| }; |
| |
| auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) { |
| // Check if the pixels needed are near the edges. If not go fast using bulk pixels, |
| // otherwise be careful. |
| if (0 <= ix && ix <= fXMax - 3) { |
| Sk4f px00, px10, px20, px30, |
| px01, px11, px21, px31; |
| fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30); |
| fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31); |
| *part0 = filterY * px00 + (1.0f - filterY) * px01; |
| *part1 = filterY * px10 + (1.0f - filterY) * px11; |
| *part2 = filterY * px20 + (1.0f - filterY) * px21; |
| *part3 = filterY * px30 + (1.0f - filterY) * px31; |
| } else { |
| *part0 = partAtColumn(ix + 0); |
| *part1 = partAtColumn(ix + 1); |
| *part2 = partAtColumn(ix + 2); |
| *part3 = partAtColumn(ix + 3); |
| } |
| }; |
| |
| auto bilerp = [&](const Sk4f& part0, const Sk4f& part1) { |
| return part0 * filterX + part1 * (1.0f - filterX); |
| }; |
| |
| if (length > 0) { |
| // * positive direction - generate destination pixels by sliding the filter from left |
| // to right. |
| |
| // overlapPart is the filter part from the end of the previous four pixels used at |
| // the start of the next four pixels. |
| Sk4f overlapPart = partAtColumn(iXs[0]); |
| int rightColumnCursor = iXs[1]; |
| while (count >= 4) { |
| Sk4f part0, part1, part2, part3; |
| get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3); |
| Sk4f px0 = bilerp(overlapPart, part0); |
| Sk4f px1 = bilerp(part0, part1); |
| Sk4f px2 = bilerp(part1, part2); |
| Sk4f px3 = bilerp(part2, part3); |
| overlapPart = part3; |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| rightColumnCursor += 4; |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| Sk4f rightPart = partAtColumn(rightColumnCursor); |
| |
| fNext->blendPixel(bilerp(overlapPart, rightPart)); |
| overlapPart = rightPart; |
| rightColumnCursor += 1; |
| count -= 1; |
| } |
| } else { |
| // * negative direction - generate destination pixels by sliding the filter from |
| // right to left. |
| Sk4f overlapPart = partAtColumn(iXs[1]); |
| int leftColumnCursor = iXs[0]; |
| |
| while (count >= 4) { |
| Sk4f part0, part1, part2, part3; |
| get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0); |
| Sk4f px0 = bilerp(part0, overlapPart); |
| Sk4f px1 = bilerp(part1, part0); |
| Sk4f px2 = bilerp(part2, part1); |
| Sk4f px3 = bilerp(part3, part2); |
| overlapPart = part3; |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| leftColumnCursor -= 4; |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| Sk4f leftPart = partAtColumn(leftColumnCursor); |
| |
| fNext->blendPixel(bilerp(leftPart, overlapPart)); |
| overlapPart = leftPart; |
| leftColumnCursor -= 1; |
| count -= 1; |
| } |
| } |
| } |
| |
| // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but |
| // still slow enough to take advantage of previous calculations. |
| void spanMediumRate(Span span) { |
| SkPoint start; SkScalar length; int count; |
| std::tie(start, length, count) = span; |
| |
| // Calculate the distance between each sample point. |
| const SkScalar dx = length / (count - 1); |
| SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f)); |
| |
| // Generate the filter values for the top-left corner. |
| // Note: these values are in filter space; this has implications about how to adjust |
| // these values at each step. For example, as the sample point increases, the filter |
| // value decreases, this is because the filter and position are related by |
| // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite |
| // direction of the sample point which is increasing by dx. |
| SkScalar filterX = sample_to_filter(X(start)); |
| SkScalar filterY = sample_to_filter(Y(start)); |
| |
| // Generate the four filter points from the sample point start. Generate the row* values. |
| Sk4i iXs, iYs; |
| this->filterPoints(start, &iXs, &iYs); |
| const void* const row0 = fAccessor.row(iYs[0]); |
| const void* const row1 = fAccessor.row(iYs[2]); |
| |
| // Generate part of the filter value at xColumn. |
| auto partAtColumn = [&](int xColumn) { |
| int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); |
| Sk4f pxTop, pxBottom; |
| this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); |
| return pxTop * filterY + (1.0f - filterY) * pxBottom; |
| }; |
| |
| // The leftPart is made up of two pixels from the left column of the filter, right part |
| // is similar. The top and bottom pixels in the *Part are created as a linear blend of |
| // the top and bottom pixels using filterY. See the nextPart function below. |
| Sk4f leftPart = partAtColumn(iXs[0]); |
| Sk4f rightPart = partAtColumn(iXs[1]); |
| |
| // Create a destination color by blending together a left and right part using filterX. |
| auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) { |
| Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX); |
| return check_pixel(pixel); |
| }; |
| |
| // Send the first pixel to the destination. This simplifies the loop structure so that no |
| // extra pixels are fetched for the last iteration of the loop. |
| fNext->blendPixel(bilerp(leftPart, rightPart)); |
| count -= 1; |
| |
| if (dx > 0.0f) { |
| // * positive direction - generate destination pixels by sliding the filter from left |
| // to right. |
| int rightPartCursor = iXs[1]; |
| |
| // Advance the filter from left to right. Remember that moving the top-left corner of |
| // the filter to the right actually makes the filter value smaller. |
| auto advanceFilter = [&]() { |
| filterX -= dx; |
| // At this point filterX is less than zero, but might actually be less than -1. |
| if (filterX > -1.0f) { |
| filterX += 1.0f; |
| leftPart = rightPart; |
| rightPartCursor += 1; |
| rightPart = partAtColumn(rightPartCursor); |
| } else { |
| filterX += 2.0f; |
| rightPartCursor += 2; |
| leftPart = partAtColumn(rightPartCursor - 1); |
| rightPart = partAtColumn(rightPartCursor); |
| } |
| SkASSERT(0.0f < filterX && filterX <= 1.0f); |
| |
| return bilerp(leftPart, rightPart); |
| }; |
| |
| while (count >= 4) { |
| Sk4f px0 = advanceFilter(), |
| px1 = advanceFilter(), |
| px2 = advanceFilter(), |
| px3 = advanceFilter(); |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| fNext->blendPixel(advanceFilter()); |
| count -= 1; |
| } |
| } else { |
| // * negative direction - generate destination pixels by sliding the filter from |
| // right to left. |
| int leftPartCursor = iXs[0]; |
| |
| auto advanceFilter = [&]() { |
| // Remember, dx < 0 therefore this adds |dx| to filterX. |
| filterX -= dx; |
| // At this point, filterX is greater than one, but may actually be greater than two. |
| if (filterX < 2.0f) { |
| filterX -= 1.0f; |
| rightPart = leftPart; |
| leftPartCursor -= 1; |
| leftPart = partAtColumn(leftPartCursor); |
| } else { |
| filterX -= 2.0f; |
| leftPartCursor -= 2; |
| rightPart = partAtColumn(leftPartCursor - 1); |
| leftPart = partAtColumn(leftPartCursor); |
| } |
| SkASSERT(0.0f < filterX && filterX <= 1.0f); |
| return bilerp(leftPart, rightPart); |
| }; |
| |
| while (count >= 4) { |
| Sk4f px0 = advanceFilter(), |
| px1 = advanceFilter(), |
| px2 = advanceFilter(), |
| px3 = advanceFilter(); |
| fNext->blend4Pixels(px0, px1, px2, px3); |
| count -= 4; |
| } |
| |
| while (count > 0) { |
| fNext->blendPixel(advanceFilter()); |
| count -= 1; |
| } |
| } |
| } |
| |
| // We're moving through source space faster than dst (zoomed out), |
| // so we'll never reuse a source pixel or be able to do contiguous loads. |
| void spanFastRate(Span span) { |
| SkPoint start; SkScalar length; int count; |
| std::tie(start, length, count) = span; |
| SkScalar x = X(start); |
| SkScalar y = Y(start); |
| |
| SkScalar dx = length / (count - 1); |
| while (count > 0) { |
| fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y})); |
| x += dx; |
| count -= 1; |
| } |
| } |
| |
| Next* const fNext; |
| const SkShader::TileMode fXEdgeType; |
| const int fXMax; |
| const SkShader::TileMode fYEdgeType; |
| const int fYMax; |
| Accessor fAccessor; |
| }; |
| |
| } // namespace |
| |
| #endif // SkLinearBitmapPipeline_sampler_DEFINED |