| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkMathPriv_DEFINED |
| #define SkMathPriv_DEFINED |
| |
| #include "SkMath.h" |
| |
| #if defined(SK_BUILD_FOR_IOS) && (defined(SK_BUILD_FOR_ARM32) || defined(SK_BUILD_FOR_ARM64)) |
| // iOS on ARM starts processes with the Flush-To-Zero (FTZ) and |
| // Denormals-Are-Zero (DAZ) bits in the fpscr register set. |
| // Algorithms that rely on denormalized numbers need alternative implementations. |
| // This can also be controlled in SSE with the MXCSR register, |
| // x87 with FSTCW/FLDCW, and mips with FCSR. This should be detected at runtime, |
| // or the library built one way or the other more generally (by the build). |
| #define SK_CPU_FLUSH_TO_ZERO |
| #endif |
| |
| /** Returns -1 if n < 0, else returns 0 |
| */ |
| #define SkExtractSign(n) ((int32_t)(n) >> 31) |
| |
| /** If sign == -1, returns -n, else sign must be 0, and returns n. |
| Typically used in conjunction with SkExtractSign(). |
| */ |
| static inline int32_t SkApplySign(int32_t n, int32_t sign) { |
| SkASSERT(sign == 0 || sign == -1); |
| return (n ^ sign) - sign; |
| } |
| |
| /** Return x with the sign of y */ |
| static inline int32_t SkCopySign32(int32_t x, int32_t y) { |
| return SkApplySign(x, SkExtractSign(x ^ y)); |
| } |
| |
| /** Given a positive value and a positive max, return the value |
| pinned against max. |
| Note: only works as long as max - value doesn't wrap around |
| @return max if value >= max, else value |
| */ |
| static inline unsigned SkClampUMax(unsigned value, unsigned max) { |
| if (value > max) { |
| value = max; |
| } |
| return value; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Return a*b/255, truncating away any fractional bits. Only valid if both |
| a and b are 0..255 |
| */ |
| static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = a*b + 1; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if |
| both a and b are 0..255. The expected result equals (a * b + 254) / 255. |
| */ |
| static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = a*b + 255; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Just the rounding step in SkDiv255Round: round(value / 255) |
| */ |
| static inline unsigned SkDiv255Round(unsigned prod) { |
| prod += 128; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| static inline float SkPinToUnitFloat(float x) { |
| return SkTMin(SkTMax(x, 0.0f), 1.0f); |
| } |
| |
| /** |
| * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa. |
| */ |
| #if defined(_MSC_VER) |
| #include <intrin.h> |
| static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); } |
| #else |
| static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); } |
| #endif |
| |
| //! Returns the number of leading zero bits (0...32) |
| int SkCLZ_portable(uint32_t); |
| |
| #ifndef SkCLZ |
| #if defined(SK_BUILD_FOR_WIN32) |
| #include <intrin.h> |
| |
| static inline int SkCLZ(uint32_t mask) { |
| if (mask) { |
| unsigned long index; |
| _BitScanReverse(&index, mask); |
| // Suppress this bogus /analyze warning. The check for non-zero |
| // guarantees that _BitScanReverse will succeed. |
| #pragma warning(suppress : 6102) // Using 'index' from failed function call |
| return index ^ 0x1F; |
| } else { |
| return 32; |
| } |
| } |
| #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) |
| static inline int SkCLZ(uint32_t mask) { |
| // __builtin_clz(0) is undefined, so we have to detect that case. |
| return mask ? __builtin_clz(mask) : 32; |
| } |
| #else |
| #define SkCLZ(x) SkCLZ_portable(x) |
| #endif |
| #endif |
| |
| /** |
| * Returns the smallest power-of-2 that is >= the specified value. If value |
| * is already a power of 2, then it is returned unchanged. It is undefined |
| * if value is <= 0. |
| */ |
| static inline int SkNextPow2(int value) { |
| SkASSERT(value > 0); |
| return 1 << (32 - SkCLZ(value - 1)); |
| } |
| |
| /** |
| * Returns the largest power-of-2 that is <= the specified value. If value |
| * is already a power of 2, then it is returned unchanged. It is undefined |
| * if value is <= 0. |
| */ |
| static inline int SkPrevPow2(int value) { |
| SkASSERT(value > 0); |
| return 1 << (32 - SkCLZ(value >> 1)); |
| } |
| |
| /** |
| * Returns the log2 of the specified value, were that value to be rounded up |
| * to the next power of 2. It is undefined to pass 0. Examples: |
| * SkNextLog2(1) -> 0 |
| * SkNextLog2(2) -> 1 |
| * SkNextLog2(3) -> 2 |
| * SkNextLog2(4) -> 2 |
| * SkNextLog2(5) -> 3 |
| */ |
| static inline int SkNextLog2(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ(value - 1); |
| } |
| |
| /** |
| * Returns the log2 of the specified value, were that value to be rounded down |
| * to the previous power of 2. It is undefined to pass 0. Examples: |
| * SkPrevLog2(1) -> 0 |
| * SkPrevLog2(2) -> 1 |
| * SkPrevLog2(3) -> 1 |
| * SkPrevLog2(4) -> 2 |
| * SkPrevLog2(5) -> 2 |
| */ |
| static inline int SkPrevLog2(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ(value >> 1); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Return the next power of 2 >= n. |
| */ |
| static inline uint32_t GrNextPow2(uint32_t n) { |
| return n ? (1 << (32 - SkCLZ(n - 1))) : 1; |
| } |
| |
| /** |
| * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t. |
| */ |
| static inline size_t GrNextSizePow2(size_t n) { |
| constexpr int kNumSizeTBits = 8 * sizeof(size_t); |
| constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1); |
| |
| if (!n) { |
| return 1; |
| } else if (n >= kHighBitSet) { |
| return n; |
| } |
| |
| n--; |
| uint32_t shift = 1; |
| while (shift < kNumSizeTBits) { |
| n |= n >> shift; |
| shift <<= 1; |
| } |
| return n + 1; |
| } |
| |
| #endif |