| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkMipMap.h" |
| #include "SkBitmap.h" |
| #include "SkColorPriv.h" |
| #include "SkHalf.h" |
| #include "SkMathPriv.h" |
| #include "SkNx.h" |
| #include "SkPM4fPriv.h" |
| #include "SkSRGB.h" |
| #include "SkTypes.h" |
| |
| // |
| // ColorTypeFilter is the "Type" we pass to some downsample template functions. |
| // It controls how we expand a pixel into a large type, with space between each component, |
| // so we can then perform our simple filter (either box or triangle) and store the intermediates |
| // in the expanded type. |
| // |
| |
| struct ColorTypeFilter_8888 { |
| typedef uint32_t Type; |
| static Sk4h Expand(uint32_t x) { |
| return SkNx_cast<uint16_t>(Sk4b::Load(&x)); |
| } |
| static uint32_t Compact(const Sk4h& x) { |
| uint32_t r; |
| SkNx_cast<uint8_t>(x).store(&r); |
| return r; |
| } |
| }; |
| |
| struct ColorTypeFilter_S32 { |
| typedef uint32_t Type; |
| static Sk4h Expand(uint32_t x) { |
| return Sk4h(sk_linear12_from_srgb[(x ) & 0xFF], |
| sk_linear12_from_srgb[(x >> 8) & 0xFF], |
| sk_linear12_from_srgb[(x >> 16) & 0xFF], |
| (x >> 24) << 4); |
| } |
| static uint32_t Compact(const Sk4h& x) { |
| return sk_linear12_to_srgb[x[0]] | |
| sk_linear12_to_srgb[x[1]] << 8 | |
| sk_linear12_to_srgb[x[2]] << 16 | |
| (x[3] >> 4) << 24; |
| } |
| }; |
| |
| struct ColorTypeFilter_565 { |
| typedef uint16_t Type; |
| static uint32_t Expand(uint16_t x) { |
| return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); |
| } |
| static uint16_t Compact(uint32_t x) { |
| return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE); |
| } |
| }; |
| |
| struct ColorTypeFilter_4444 { |
| typedef uint16_t Type; |
| static uint32_t Expand(uint16_t x) { |
| return (x & 0xF0F) | ((x & ~0xF0F) << 12); |
| } |
| static uint16_t Compact(uint32_t x) { |
| return (x & 0xF0F) | ((x >> 12) & ~0xF0F); |
| } |
| }; |
| |
| struct ColorTypeFilter_8 { |
| typedef uint8_t Type; |
| static unsigned Expand(unsigned x) { |
| return x; |
| } |
| static uint8_t Compact(unsigned x) { |
| return (uint8_t)x; |
| } |
| }; |
| |
| struct ColorTypeFilter_F16 { |
| typedef uint64_t Type; // SkHalf x4 |
| static Sk4f Expand(uint64_t x) { |
| return SkHalfToFloat_finite_ftz(x); |
| } |
| static uint64_t Compact(const Sk4f& x) { |
| uint64_t r; |
| SkFloatToHalf_finite_ftz(x).store(&r); |
| return r; |
| } |
| }; |
| |
| template <typename T> T add_121(const T& a, const T& b, const T& c) { |
| return a + b + b + c; |
| } |
| |
| template <typename T> T shift_right(const T& x, int bits) { |
| return x >> bits; |
| } |
| |
| Sk4f shift_right(const Sk4f& x, int bits) { |
| return x * (1.0f / (1 << bits)); |
| } |
| |
| template <typename T> T shift_left(const T& x, int bits) { |
| return x << bits; |
| } |
| |
| Sk4f shift_left(const Sk4f& x, int bits) { |
| return x * (1 << bits); |
| } |
| |
| // |
| // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) |
| // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) |
| // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, |
| // else for even cases, we just use a 2x box filter. |
| // |
| // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of |
| // src pixels we need to sample in each dimension to produce 1 dst pixel. |
| // |
| // OpenGL expects a full mipmap stack to contain anisotropic space as well. |
| // This means a 100x1 image would continue down to a 50x1 image, 25x1 image... |
| // Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. |
| |
| template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c10 = F::Expand(p1[0]); |
| |
| auto c = c00 + c10; |
| d[i] = F::Compact(shift_right(c, 1)); |
| p0 += 2; |
| p1 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c10 = F::Expand(p1[0]); |
| auto c20 = F::Expand(p2[0]); |
| |
| auto c = add_121(c00, c10, c20); |
| d[i] = F::Compact(shift_right(c, 2)); |
| p0 += 2; |
| p1 += 2; |
| p2 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c01 = F::Expand(p0[1]); |
| |
| auto c = c00 + c01; |
| d[i] = F::Compact(shift_right(c, 1)); |
| p0 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c01 = F::Expand(p0[1]); |
| auto c10 = F::Expand(p1[0]); |
| auto c11 = F::Expand(p1[1]); |
| |
| auto c = c00 + c10 + c01 + c11; |
| d[i] = F::Compact(shift_right(c, 2)); |
| p0 += 2; |
| p1 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c01 = F::Expand(p0[1]); |
| auto c10 = F::Expand(p1[0]); |
| auto c11 = F::Expand(p1[1]); |
| auto c20 = F::Expand(p2[0]); |
| auto c21 = F::Expand(p2[1]); |
| |
| auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); |
| d[i] = F::Compact(shift_right(c, 3)); |
| p0 += 2; |
| p1 += 2; |
| p2 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| auto c02 = F::Expand(p0[0]); |
| for (int i = 0; i < count; ++i) { |
| auto c00 = c02; |
| auto c01 = F::Expand(p0[1]); |
| c02 = F::Expand(p0[2]); |
| |
| auto c = add_121(c00, c01, c02); |
| d[i] = F::Compact(shift_right(c, 2)); |
| p0 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| // Given pixels: |
| // a0 b0 c0 d0 e0 ... |
| // a1 b1 c1 d1 e1 ... |
| // We want: |
| // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 |
| // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 |
| // ... |
| |
| auto c0 = F::Expand(p0[0]); |
| auto c1 = F::Expand(p1[0]); |
| auto c = c0 + c1; |
| for (int i = 0; i < count; ++i) { |
| auto a = c; |
| |
| auto b0 = F::Expand(p0[1]); |
| auto b1 = F::Expand(p1[1]); |
| auto b = b0 + b0 + b1 + b1; |
| |
| c0 = F::Expand(p0[2]); |
| c1 = F::Expand(p1[2]); |
| c = c0 + c1; |
| |
| auto sum = a + b + c; |
| d[i] = F::Compact(shift_right(sum, 3)); |
| p0 += 2; |
| p1 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| // Given pixels: |
| // a0 b0 c0 d0 e0 ... |
| // a1 b1 c1 d1 e1 ... |
| // a2 b2 c2 d2 e2 ... |
| // We want: |
| // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 |
| // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 |
| // ... |
| |
| auto c0 = F::Expand(p0[0]); |
| auto c1 = F::Expand(p1[0]); |
| auto c2 = F::Expand(p2[0]); |
| auto c = add_121(c0, c1, c2); |
| for (int i = 0; i < count; ++i) { |
| auto a = c; |
| |
| auto b0 = F::Expand(p0[1]); |
| auto b1 = F::Expand(p1[1]); |
| auto b2 = F::Expand(p2[1]); |
| auto b = shift_left(add_121(b0, b1, b2), 1); |
| |
| c0 = F::Expand(p0[2]); |
| c1 = F::Expand(p1[2]); |
| c2 = F::Expand(p2[2]); |
| c = add_121(c0, c1, c2); |
| |
| auto sum = a + b + c; |
| d[i] = F::Compact(shift_right(sum, 4)); |
| p0 += 2; |
| p1 += 2; |
| p2 += 2; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // Some sRGB specific performance optimizations. |
| |
| void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) { |
| const uint8_t* p0 = ((const uint8_t*) src); |
| const uint8_t* p1 = ((const uint8_t*) src) + srcRB; |
| uint8_t* d = (uint8_t*) dst; |
| |
| // Given pixels: |
| // a0 b0 c0 d0 ... |
| // a1 b1 c1 d1 ... |
| // We want: |
| // (a0 + b0 + a1 + b1) / 4 |
| // (c0 + d0 + c1 + d1) / 4 |
| // ... |
| while (count >= 2) { |
| Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]], |
| sk_linear12_from_srgb[p0[ 1]], |
| sk_linear12_from_srgb[p0[ 2]], |
| p0[ 3] << 4 , |
| sk_linear12_from_srgb[p0[ 8]], |
| sk_linear12_from_srgb[p0[ 9]], |
| sk_linear12_from_srgb[p0[10]], |
| p0[11] << 4 ); |
| Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]], |
| sk_linear12_from_srgb[p0[ 5]], |
| sk_linear12_from_srgb[p0[ 6]], |
| p0[ 7] << 4 , |
| sk_linear12_from_srgb[p0[12]], |
| sk_linear12_from_srgb[p0[13]], |
| sk_linear12_from_srgb[p0[14]], |
| p0[15] << 4 ); |
| Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]], |
| sk_linear12_from_srgb[p1[ 1]], |
| sk_linear12_from_srgb[p1[ 2]], |
| p1[ 3] << 4 , |
| sk_linear12_from_srgb[p1[ 8]], |
| sk_linear12_from_srgb[p1[ 9]], |
| sk_linear12_from_srgb[p1[10]], |
| p1[11] << 4 ); |
| Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]], |
| sk_linear12_from_srgb[p1[ 5]], |
| sk_linear12_from_srgb[p1[ 6]], |
| p1[ 7] << 4 , |
| sk_linear12_from_srgb[p1[12]], |
| sk_linear12_from_srgb[p1[13]], |
| sk_linear12_from_srgb[p1[14]], |
| p1[15] << 4 ); |
| |
| Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2; |
| d[0] = sk_linear12_to_srgb[avg[0]]; |
| d[1] = sk_linear12_to_srgb[avg[1]]; |
| d[2] = sk_linear12_to_srgb[avg[2]]; |
| d[3] = avg[3] >> 4; |
| d[4] = sk_linear12_to_srgb[avg[4]]; |
| d[5] = sk_linear12_to_srgb[avg[5]]; |
| d[6] = sk_linear12_to_srgb[avg[6]]; |
| d[7] = avg[7] >> 4; |
| |
| p0 += 16; |
| p1 += 16; |
| d += 8; |
| count -= 2; |
| } |
| |
| if (count) { |
| downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count); |
| } |
| } |
| |
| void downsample_2_3_srgb(void* dst, const void* src, size_t srcRB, int count) { |
| const uint8_t* p0 = ((const uint8_t*) src); |
| const uint8_t* p1 = p0 + srcRB; |
| const uint8_t* p2 = p1 + srcRB; |
| uint8_t* d = (uint8_t*) dst; |
| |
| // Given pixels: |
| // a0 b0 c0 d0 ... |
| // a1 b1 c1 d1 ... |
| // a2 b2 c2 d2 ... |
| // We want: |
| // (a0 + b0 + 2*a1 + 2*b1 + a2 + b2) / 8 |
| // (c0 + d0 + 2*c1 + 2*d1 + c2 + d2) / 8 |
| // ... |
| while (count >= 2) { |
| Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]], |
| sk_linear12_from_srgb[p0[ 1]], |
| sk_linear12_from_srgb[p0[ 2]], |
| p0[ 3] << 4 , |
| sk_linear12_from_srgb[p0[ 8]], |
| sk_linear12_from_srgb[p0[ 9]], |
| sk_linear12_from_srgb[p0[10]], |
| p0[11] << 4 ); |
| Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]], |
| sk_linear12_from_srgb[p0[ 5]], |
| sk_linear12_from_srgb[p0[ 6]], |
| p0[ 7] << 4 , |
| sk_linear12_from_srgb[p0[12]], |
| sk_linear12_from_srgb[p0[13]], |
| sk_linear12_from_srgb[p0[14]], |
| p0[15] << 4 ); |
| Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]], |
| sk_linear12_from_srgb[p1[ 1]], |
| sk_linear12_from_srgb[p1[ 2]], |
| p1[ 3] << 4 , |
| sk_linear12_from_srgb[p1[ 8]], |
| sk_linear12_from_srgb[p1[ 9]], |
| sk_linear12_from_srgb[p1[10]], |
| p1[11] << 4 ); |
| Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]], |
| sk_linear12_from_srgb[p1[ 5]], |
| sk_linear12_from_srgb[p1[ 6]], |
| p1[ 7] << 4 , |
| sk_linear12_from_srgb[p1[12]], |
| sk_linear12_from_srgb[p1[13]], |
| sk_linear12_from_srgb[p1[14]], |
| p1[15] << 4 ); |
| Sk8h a2c2 = Sk8h(sk_linear12_from_srgb[p2[ 0]], |
| sk_linear12_from_srgb[p2[ 1]], |
| sk_linear12_from_srgb[p2[ 2]], |
| p2[ 3] << 4 , |
| sk_linear12_from_srgb[p2[ 8]], |
| sk_linear12_from_srgb[p2[ 9]], |
| sk_linear12_from_srgb[p2[10]], |
| p2[11] << 4 ); |
| Sk8h b2d2 = Sk8h(sk_linear12_from_srgb[p2[ 4]], |
| sk_linear12_from_srgb[p2[ 5]], |
| sk_linear12_from_srgb[p2[ 6]], |
| p2[ 7] << 4 , |
| sk_linear12_from_srgb[p2[12]], |
| sk_linear12_from_srgb[p2[13]], |
| sk_linear12_from_srgb[p2[14]], |
| p2[15] << 4 ); |
| |
| Sk8h avg = (a0c0 + b0d0 + a1c1 + a1c1 + b1d1 + b1d1 + a2c2 + b2d2) >> 3; |
| d[0] = sk_linear12_to_srgb[avg[0]]; |
| d[1] = sk_linear12_to_srgb[avg[1]]; |
| d[2] = sk_linear12_to_srgb[avg[2]]; |
| d[3] = avg[3] >> 4; |
| d[4] = sk_linear12_to_srgb[avg[4]]; |
| d[5] = sk_linear12_to_srgb[avg[5]]; |
| d[6] = sk_linear12_to_srgb[avg[6]]; |
| d[7] = avg[7] >> 4; |
| |
| p0 += 16; |
| p1 += 16; |
| p2 += 16; |
| d += 8; |
| count -= 2; |
| } |
| |
| if (count) { |
| downsample_2_3<ColorTypeFilter_S32>(d, p0, srcRB, count); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) { |
| if (levelCount < 0) { |
| return 0; |
| } |
| int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; |
| if (!sk_64_isS32(size)) { |
| return 0; |
| } |
| return sk_64_asS32(size); |
| } |
| |
| SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode, |
| SkDiscardableFactoryProc fact) { |
| typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); |
| |
| FilterProc* proc_1_2 = nullptr; |
| FilterProc* proc_1_3 = nullptr; |
| FilterProc* proc_2_1 = nullptr; |
| FilterProc* proc_2_2 = nullptr; |
| FilterProc* proc_2_3 = nullptr; |
| FilterProc* proc_3_1 = nullptr; |
| FilterProc* proc_3_2 = nullptr; |
| FilterProc* proc_3_3 = nullptr; |
| |
| const SkColorType ct = src.colorType(); |
| const SkAlphaType at = src.alphaType(); |
| const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode) |
| && src.info().gammaCloseToSRGB(); |
| |
| switch (ct) { |
| case kRGBA_8888_SkColorType: |
| case kBGRA_8888_SkColorType: |
| if (srgbGamma) { |
| proc_1_2 = downsample_1_2<ColorTypeFilter_S32>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_S32>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_S32>; |
| proc_2_2 = downsample_2_2_srgb; |
| proc_2_3 = downsample_2_3_srgb; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_S32>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_S32>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_S32>; |
| } else { |
| proc_1_2 = downsample_1_2<ColorTypeFilter_8888>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_8888>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_8888>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_8888>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; |
| } |
| break; |
| case kRGB_565_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_565>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_565>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_565>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_565>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_565>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_565>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_565>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_565>; |
| break; |
| case kARGB_4444_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_4444>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_4444>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_4444>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_4444>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; |
| break; |
| case kAlpha_8_SkColorType: |
| case kGray_8_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_8>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_8>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_8>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_8>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_8>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_8>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_8>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_8>; |
| break; |
| case kRGBA_F16_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_F16>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_F16>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_F16>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_F16>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_F16>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_F16>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_F16>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_F16>; |
| break; |
| default: |
| // TODO: We could build miplevels for kIndex8 if the levels were in 8888. |
| // Means using more ram, but the quality would be fine. |
| return nullptr; |
| } |
| |
| if (src.width() <= 1 && src.height() <= 1) { |
| return nullptr; |
| } |
| // whip through our loop to compute the exact size needed |
| size_t size = 0; |
| int countLevels = ComputeLevelCount(src.width(), src.height()); |
| for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { |
| SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); |
| size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; |
| } |
| |
| size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size); |
| if (0 == storageSize) { |
| return nullptr; |
| } |
| |
| SkMipMap* mipmap; |
| if (fact) { |
| SkDiscardableMemory* dm = fact(storageSize); |
| if (nullptr == dm) { |
| return nullptr; |
| } |
| mipmap = new SkMipMap(storageSize, dm); |
| } else { |
| mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize); |
| } |
| |
| // init |
| mipmap->fCS = sk_ref_sp(src.info().colorSpace()); |
| mipmap->fCount = countLevels; |
| mipmap->fLevels = (Level*)mipmap->writable_data(); |
| SkASSERT(mipmap->fLevels); |
| |
| Level* levels = mipmap->fLevels; |
| uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; |
| uint8_t* addr = baseAddr; |
| int width = src.width(); |
| int height = src.height(); |
| uint32_t rowBytes; |
| SkPixmap srcPM(src); |
| |
| for (int i = 0; i < countLevels; ++i) { |
| FilterProc* proc; |
| if (height & 1) { |
| if (height == 1) { // src-height is 1 |
| if (width & 1) { // src-width is 3 |
| proc = proc_3_1; |
| } else { // src-width is 2 |
| proc = proc_2_1; |
| } |
| } else { // src-height is 3 |
| if (width & 1) { |
| if (width == 1) { // src-width is 1 |
| proc = proc_1_3; |
| } else { // src-width is 3 |
| proc = proc_3_3; |
| } |
| } else { // src-width is 2 |
| proc = proc_2_3; |
| } |
| } |
| } else { // src-height is 2 |
| if (width & 1) { |
| if (width == 1) { // src-width is 1 |
| proc = proc_1_2; |
| } else { // src-width is 3 |
| proc = proc_3_2; |
| } |
| } else { // src-width is 2 |
| proc = proc_2_2; |
| } |
| } |
| width = SkTMax(1, width >> 1); |
| height = SkTMax(1, height >> 1); |
| rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); |
| |
| // We make the Info w/o any colorspace, since that storage is not under our control, and |
| // will not be deleted in a controlled fashion. When the caller is given the pixmap for |
| // a given level, we augment this pixmap with fCS (which we do manage). |
| new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); |
| levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), |
| SkIntToScalar(height) / src.height()); |
| |
| const SkPixmap& dstPM = levels[i].fPixmap; |
| const void* srcBasePtr = srcPM.addr(); |
| void* dstBasePtr = dstPM.writable_addr(); |
| |
| const size_t srcRB = srcPM.rowBytes(); |
| for (int y = 0; y < height; y++) { |
| proc(dstBasePtr, srcBasePtr, srcRB, width); |
| srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows |
| dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); |
| } |
| srcPM = dstPM; |
| addr += height * rowBytes; |
| } |
| SkASSERT(addr == baseAddr + size); |
| |
| SkASSERT(mipmap->fLevels); |
| return mipmap; |
| } |
| |
| int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) { |
| if (baseWidth < 1 || baseHeight < 1) { |
| return 0; |
| } |
| |
| // OpenGL's spec requires that each mipmap level have height/width equal to |
| // max(1, floor(original_height / 2^i) |
| // (or original_width) where i is the mipmap level. |
| // Continue scaling down until both axes are size 1. |
| |
| const int largestAxis = SkTMax(baseWidth, baseHeight); |
| if (largestAxis < 2) { |
| // SkMipMap::Build requires a minimum size of 2. |
| return 0; |
| } |
| const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis)); |
| // If the value 00011010 has 3 leading 0s then it has 5 significant bits |
| // (the bits which are not leading zeros) |
| const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; |
| // This is making the assumption that the size of a byte is 8 bits |
| // and that sizeof(uint32_t)'s implementation-defined behavior is 4. |
| int mipLevelCount = significantBits; |
| |
| // SkMipMap does not include the base mip level. |
| // For example, it contains levels 1-x instead of 0-x. |
| // This is because the image used to create SkMipMap is the base level. |
| // So subtract 1 from the mip level count. |
| if (mipLevelCount > 0) { |
| --mipLevelCount; |
| } |
| |
| return mipLevelCount; |
| } |
| |
| SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { |
| if (baseWidth < 1 || baseHeight < 1) { |
| return SkISize::Make(0, 0); |
| } |
| |
| int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); |
| if (level >= maxLevelCount || level < 0) { |
| return SkISize::Make(0, 0); |
| } |
| // OpenGL's spec requires that each mipmap level have height/width equal to |
| // max(1, floor(original_height / 2^i) |
| // (or original_width) where i is the mipmap level. |
| |
| // SkMipMap does not include the base mip level. |
| // For example, it contains levels 1-x instead of 0-x. |
| // This is because the image used to create SkMipMap is the base level. |
| // So subtract 1 from the mip level to get the index stored by SkMipMap. |
| int width = SkTMax(1, baseWidth >> (level + 1)); |
| int height = SkTMax(1, baseHeight >> (level + 1)); |
| |
| return SkISize::Make(width, height); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const { |
| if (nullptr == fLevels) { |
| return false; |
| } |
| |
| SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); |
| |
| #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE |
| // Use the smallest scale to match the GPU impl. |
| const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height()); |
| #else |
| // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the |
| // scales can produce some atrocious results, so for now we use the geometric mean. |
| // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) |
| const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height()); |
| #endif |
| |
| if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { |
| return false; |
| } |
| |
| SkScalar L = -SkScalarLog2(scale); |
| if (!SkScalarIsFinite(L)) { |
| return false; |
| } |
| SkASSERT(L >= 0); |
| int level = SkScalarFloorToInt(L); |
| |
| SkASSERT(level >= 0); |
| if (level <= 0) { |
| return false; |
| } |
| |
| if (level > fCount) { |
| level = fCount; |
| } |
| if (levelPtr) { |
| *levelPtr = fLevels[level - 1]; |
| // need to augment with our colorspace |
| levelPtr->fPixmap.setColorSpace(fCS); |
| } |
| return true; |
| } |
| |
| // Helper which extracts a pixmap from the src bitmap |
| // |
| SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode, |
| SkDiscardableFactoryProc fact) { |
| SkPixmap srcPixmap; |
| if (!src.peekPixels(&srcPixmap)) { |
| return nullptr; |
| } |
| return Build(srcPixmap, colorMode, fact); |
| } |
| |
| int SkMipMap::countLevels() const { |
| return fCount; |
| } |
| |
| bool SkMipMap::getLevel(int index, Level* levelPtr) const { |
| if (NULL == fLevels) { |
| return false; |
| } |
| if (index < 0) { |
| return false; |
| } |
| if (index > fCount - 1) { |
| return false; |
| } |
| if (levelPtr) { |
| *levelPtr = fLevels[index]; |
| } |
| return true; |
| } |