| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkRecord_DEFINED |
| #define SkRecord_DEFINED |
| |
| #include "SkArenaAlloc.h" |
| #include "SkRecords.h" |
| #include "SkTLogic.h" |
| #include "SkTemplates.h" |
| |
| // SkRecord represents a sequence of SkCanvas calls, saved for future use. |
| // These future uses may include: replay, optimization, serialization, or combinations of those. |
| // |
| // Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to |
| // work with SkRecord, you probably want to look at SkRecorder which presents an SkCanvas interface |
| // for creating an SkRecord, and SkRecordDraw which plays an SkRecord back into another SkCanvas. |
| // |
| // SkRecord often looks like it's compatible with any type T, but really it's compatible with any |
| // type T which has a static const SkRecords::Type kType. That is to say, SkRecord is compatible |
| // only with SkRecords::* structs defined in SkRecords.h. Your compiler will helpfully yell if you |
| // get this wrong. |
| |
| class SkRecord : public SkRefCnt { |
| public: |
| SkRecord() = default; |
| ~SkRecord(); |
| |
| // Returns the number of canvas commands in this SkRecord. |
| int count() const { return fCount; } |
| |
| // Visit the i-th canvas command with a functor matching this interface: |
| // template <typename T> |
| // R operator()(const T& record) { ... } |
| // This operator() must be defined for at least all SkRecords::*. |
| template <typename F> |
| auto visit(int i, F&& f) const -> decltype(f(SkRecords::NoOp())) { |
| return fRecords[i].visit(f); |
| } |
| |
| // Mutate the i-th canvas command with a functor matching this interface: |
| // template <typename T> |
| // R operator()(T* record) { ... } |
| // This operator() must be defined for at least all SkRecords::*. |
| template <typename F> |
| auto mutate(int i, F&& f) -> decltype(f((SkRecords::NoOp*)nullptr)) { |
| return fRecords[i].mutate(f); |
| } |
| |
| // Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed. |
| // Here T can be any class, not just those from SkRecords. Throws on failure. |
| template <typename T> |
| T* alloc(size_t count = 1) { |
| struct RawBytes { |
| alignas(T) char data[sizeof(T)]; |
| }; |
| fApproxBytesAllocated += count * sizeof(T) + alignof(T); |
| return (T*)fAlloc.makeArrayDefault<RawBytes>(count); |
| } |
| |
| // Add a new command of type T to the end of this SkRecord. |
| // You are expected to placement new an object of type T onto this pointer. |
| template <typename T> |
| T* append() { |
| if (fCount == fReserved) { |
| this->grow(); |
| } |
| return fRecords[fCount++].set(this->allocCommand<T>()); |
| } |
| |
| // Replace the i-th command with a new command of type T. |
| // You are expected to placement new an object of type T onto this pointer. |
| // References to the original command are invalidated. |
| template <typename T> |
| T* replace(int i) { |
| SkASSERT(i < this->count()); |
| |
| Destroyer destroyer; |
| this->mutate(i, destroyer); |
| |
| return fRecords[i].set(this->allocCommand<T>()); |
| } |
| |
| // Replace the i-th command with a new command of type T. |
| // You are expected to placement new an object of type T onto this pointer. |
| // You must show proof that you've already adopted the existing command. |
| template <typename T, typename Existing> |
| T* replace(int i, const SkRecords::Adopted<Existing>& proofOfAdoption) { |
| SkASSERT(i < this->count()); |
| |
| SkASSERT(Existing::kType == fRecords[i].type()); |
| SkASSERT(proofOfAdoption == fRecords[i].ptr()); |
| |
| return fRecords[i].set(this->allocCommand<T>()); |
| } |
| |
| // Does not return the bytes in any pointers embedded in the Records; callers |
| // need to iterate with a visitor to measure those they care for. |
| size_t bytesUsed() const; |
| |
| // Rearrange and resize this record to eliminate any NoOps. |
| // May change count() and the indices of ops, but preserves their order. |
| void defrag(); |
| |
| private: |
| // An SkRecord is structured as an array of pointers into a big chunk of memory where |
| // records representing each canvas draw call are stored: |
| // |
| // fRecords: [*][*][*]... |
| // | | | |
| // | | | |
| // | | +---------------------------------------+ |
| // | +-----------------+ | |
| // | | | |
| // v v v |
| // fAlloc: [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]... |
| // |
| // We store the types of each of the pointers alongside the pointer. |
| // The cost to append a T to this structure is 8 + sizeof(T) bytes. |
| |
| // A mutator that can be used with replace to destroy canvas commands. |
| struct Destroyer { |
| template <typename T> |
| void operator()(T* record) { record->~T(); } |
| }; |
| |
| template <typename T> |
| SK_WHEN(std::is_empty<T>::value, T*) allocCommand() { |
| static T singleton = {}; |
| return &singleton; |
| } |
| |
| template <typename T> |
| SK_WHEN(!std::is_empty<T>::value, T*) allocCommand() { return this->alloc<T>(); } |
| |
| void grow(); |
| |
| // A typed pointer to some bytes in fAlloc. visit() and mutate() allow polymorphic dispatch. |
| struct Record { |
| // On 32-bit machines we store type in 4 bytes, followed by a pointer. Simple. |
| // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes. |
| // FWIW, SkRecords::Type is tiny. It can easily fit in one byte. |
| uint64_t fTypeAndPtr; |
| static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48; |
| |
| // Point this record to its data in fAlloc. Returns ptr for convenience. |
| template <typename T> |
| T* set(T* ptr) { |
| fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr; |
| SkASSERT(this->ptr() == ptr && this->type() == T::kType); |
| return ptr; |
| } |
| |
| SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); } |
| void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); } |
| |
| // Visit this record with functor F (see public API above). |
| template <typename F> |
| auto visit(F&& f) const -> decltype(f(SkRecords::NoOp())) { |
| #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr()); |
| switch(this->type()) { SK_RECORD_TYPES(CASE) } |
| #undef CASE |
| SkDEBUGFAIL("Unreachable"); |
| static const SkRecords::NoOp noop{}; |
| return f(noop); |
| } |
| |
| // Mutate this record with functor F (see public API above). |
| template <typename F> |
| auto mutate(F&& f) -> decltype(f((SkRecords::NoOp*)nullptr)) { |
| #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr()); |
| switch(this->type()) { SK_RECORD_TYPES(CASE) } |
| #undef CASE |
| SkDEBUGFAIL("Unreachable"); |
| static const SkRecords::NoOp noop{}; |
| return f(const_cast<SkRecords::NoOp*>(&noop)); |
| } |
| }; |
| |
| // fRecords needs to be a data structure that can append fixed length data, and need to |
| // support efficient random access and forward iteration. (It doesn't need to be contiguous.) |
| int fCount{0}, |
| fReserved{0}; |
| SkAutoTMalloc<Record> fRecords; |
| |
| // fAlloc needs to be a data structure which can append variable length data in contiguous |
| // chunks, returning a stable handle to that data for later retrieval. |
| SkArenaAlloc fAlloc{256}; |
| size_t fApproxBytesAllocated{0}; |
| }; |
| |
| #endif//SkRecord_DEFINED |