| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkRect.h" |
| |
| #include "SkMalloc.h" |
| |
| void SkIRect::join(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
| // do nothing if the params are empty |
| if (left >= right || top >= bottom) { |
| return; |
| } |
| |
| // if we are empty, just assign |
| if (fLeft >= fRight || fTop >= fBottom) { |
| this->set(left, top, right, bottom); |
| } else { |
| if (left < fLeft) fLeft = left; |
| if (top < fTop) fTop = top; |
| if (right > fRight) fRight = right; |
| if (bottom > fBottom) fBottom = bottom; |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| void SkRect::toQuad(SkPoint quad[4]) const { |
| SkASSERT(quad); |
| |
| quad[0].set(fLeft, fTop); |
| quad[1].set(fRight, fTop); |
| quad[2].set(fRight, fBottom); |
| quad[3].set(fLeft, fBottom); |
| } |
| |
| #include "SkNx.h" |
| |
| static inline bool is_finite(const Sk4s& value) { |
| auto finite = value * Sk4s(0) == Sk4s(0); |
| return finite.allTrue(); |
| } |
| |
| bool SkRect::setBoundsCheck(const SkPoint pts[], int count) { |
| SkASSERT((pts && count > 0) || count == 0); |
| |
| bool isFinite = true; |
| |
| if (count <= 0) { |
| sk_bzero(this, sizeof(SkRect)); |
| } else { |
| Sk4s min, max, accum; |
| |
| if (count & 1) { |
| min = Sk4s(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY); |
| pts += 1; |
| count -= 1; |
| } else { |
| min = Sk4s::Load(pts); |
| pts += 2; |
| count -= 2; |
| } |
| accum = max = min; |
| accum = accum * Sk4s(0); |
| |
| count >>= 1; |
| for (int i = 0; i < count; ++i) { |
| Sk4s xy = Sk4s::Load(pts); |
| accum = accum * xy; |
| min = Sk4s::Min(min, xy); |
| max = Sk4s::Max(max, xy); |
| pts += 2; |
| } |
| |
| /** |
| * With some trickery, we may be able to use Min/Max to also propogate non-finites, |
| * in which case we could eliminate accum entirely, and just check min and max for |
| * "is_finite". |
| */ |
| if (is_finite(accum)) { |
| float minArray[4], maxArray[4]; |
| min.store(minArray); |
| max.store(maxArray); |
| this->set(SkTMin(minArray[0], minArray[2]), SkTMin(minArray[1], minArray[3]), |
| SkTMax(maxArray[0], maxArray[2]), SkTMax(maxArray[1], maxArray[3])); |
| } else { |
| // we hit a non-finite value, so zero everything and return false |
| this->setEmpty(); |
| isFinite = false; |
| } |
| } |
| return isFinite; |
| } |
| |
| #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \ |
| SkScalar L = SkMaxScalar(al, bl); \ |
| SkScalar R = SkMinScalar(ar, br); \ |
| SkScalar T = SkMaxScalar(at, bt); \ |
| SkScalar B = SkMinScalar(ab, bb); \ |
| do { if (L >= R || T >= B) return false; } while (0) |
| |
| bool SkRect::intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
| CHECK_INTERSECT(left, top, right, bottom, fLeft, fTop, fRight, fBottom); |
| this->setLTRB(L, T, R, B); |
| return true; |
| } |
| |
| bool SkRect::intersect(const SkRect& r) { |
| return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); |
| } |
| |
| bool SkRect::intersect(const SkRect& a, const SkRect& b) { |
| CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom); |
| this->setLTRB(L, T, R, B); |
| return true; |
| } |
| |
| void SkRect::join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
| // do nothing if the params are empty |
| if (left >= right || top >= bottom) { |
| return; |
| } |
| |
| // if we are empty, just assign |
| if (fLeft >= fRight || fTop >= fBottom) { |
| this->set(left, top, right, bottom); |
| } else { |
| fLeft = SkMinScalar(fLeft, left); |
| fTop = SkMinScalar(fTop, top); |
| fRight = SkMaxScalar(fRight, right); |
| fBottom = SkMaxScalar(fBottom, bottom); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkString.h" |
| #include "SkStringUtils.h" |
| |
| static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) { |
| storage->reset(); |
| SkAppendScalar(storage, value, asType); |
| return storage->c_str(); |
| } |
| |
| void SkRect::dump(bool asHex) const { |
| SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| |
| SkString line; |
| if (asHex) { |
| SkString tmp; |
| line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft); |
| line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop); |
| line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight); |
| line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom); |
| } else { |
| SkString strL, strT, strR, strB; |
| SkAppendScalarDec(&strL, fLeft); |
| SkAppendScalarDec(&strT, fTop); |
| SkAppendScalarDec(&strR, fRight); |
| SkAppendScalarDec(&strB, fBottom); |
| line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);", |
| strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str()); |
| } |
| SkDebugf("%s\n", line.c_str()); |
| } |