blob: 900b872896c1d541ca9464f0b85b0300bff97625 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRect.h"
#include "SkMalloc.h"
void SkIRect::join(int32_t left, int32_t top, int32_t right, int32_t bottom) {
// do nothing if the params are empty
if (left >= right || top >= bottom) {
return;
}
// if we are empty, just assign
if (fLeft >= fRight || fTop >= fBottom) {
this->set(left, top, right, bottom);
} else {
if (left < fLeft) fLeft = left;
if (top < fTop) fTop = top;
if (right > fRight) fRight = right;
if (bottom > fBottom) fBottom = bottom;
}
}
/////////////////////////////////////////////////////////////////////////////
void SkRect::toQuad(SkPoint quad[4]) const {
SkASSERT(quad);
quad[0].set(fLeft, fTop);
quad[1].set(fRight, fTop);
quad[2].set(fRight, fBottom);
quad[3].set(fLeft, fBottom);
}
#include "SkNx.h"
static inline bool is_finite(const Sk4s& value) {
auto finite = value * Sk4s(0) == Sk4s(0);
return finite.allTrue();
}
bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
SkASSERT((pts && count > 0) || count == 0);
bool isFinite = true;
if (count <= 0) {
sk_bzero(this, sizeof(SkRect));
} else {
Sk4s min, max, accum;
if (count & 1) {
min = Sk4s(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
pts += 1;
count -= 1;
} else {
min = Sk4s::Load(pts);
pts += 2;
count -= 2;
}
accum = max = min;
accum = accum * Sk4s(0);
count >>= 1;
for (int i = 0; i < count; ++i) {
Sk4s xy = Sk4s::Load(pts);
accum = accum * xy;
min = Sk4s::Min(min, xy);
max = Sk4s::Max(max, xy);
pts += 2;
}
/**
* With some trickery, we may be able to use Min/Max to also propogate non-finites,
* in which case we could eliminate accum entirely, and just check min and max for
* "is_finite".
*/
if (is_finite(accum)) {
float minArray[4], maxArray[4];
min.store(minArray);
max.store(maxArray);
this->set(SkTMin(minArray[0], minArray[2]), SkTMin(minArray[1], minArray[3]),
SkTMax(maxArray[0], maxArray[2]), SkTMax(maxArray[1], maxArray[3]));
} else {
// we hit a non-finite value, so zero everything and return false
this->setEmpty();
isFinite = false;
}
}
return isFinite;
}
#define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \
SkScalar L = SkMaxScalar(al, bl); \
SkScalar R = SkMinScalar(ar, br); \
SkScalar T = SkMaxScalar(at, bt); \
SkScalar B = SkMinScalar(ab, bb); \
do { if (L >= R || T >= B) return false; } while (0)
bool SkRect::intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
CHECK_INTERSECT(left, top, right, bottom, fLeft, fTop, fRight, fBottom);
this->setLTRB(L, T, R, B);
return true;
}
bool SkRect::intersect(const SkRect& r) {
return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
bool SkRect::intersect(const SkRect& a, const SkRect& b) {
CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom);
this->setLTRB(L, T, R, B);
return true;
}
void SkRect::join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
// do nothing if the params are empty
if (left >= right || top >= bottom) {
return;
}
// if we are empty, just assign
if (fLeft >= fRight || fTop >= fBottom) {
this->set(left, top, right, bottom);
} else {
fLeft = SkMinScalar(fLeft, left);
fTop = SkMinScalar(fTop, top);
fRight = SkMaxScalar(fRight, right);
fBottom = SkMaxScalar(fBottom, bottom);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkString.h"
#include "SkStringUtils.h"
static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) {
storage->reset();
SkAppendScalar(storage, value, asType);
return storage->c_str();
}
void SkRect::dump(bool asHex) const {
SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
SkString line;
if (asHex) {
SkString tmp;
line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft);
line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop);
line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight);
line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom);
} else {
SkString strL, strT, strR, strB;
SkAppendScalarDec(&strL, fLeft);
SkAppendScalarDec(&strT, fTop);
SkAppendScalarDec(&strR, fRight);
SkAppendScalarDec(&strB, fBottom);
line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);",
strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str());
}
SkDebugf("%s\n", line.c_str());
}