| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkSRGB_DEFINED |
| #define SkSRGB_DEFINED |
| |
| #include "SkNx.h" |
| |
| /** Components for building our canonical sRGB -> linear and linear -> sRGB transformations. |
| * |
| * Current best practices: |
| * - for sRGB -> linear, lookup R,G,B in sk_linear_from_srgb; |
| * - for linear -> sRGB, call sk_linear_to_srgb() for R,G,B; |
| * - the alpha channel is linear in both formats, needing at most *(1/255.0f) or *255.0f. |
| * |
| * sk_linear_to_srgb() will run a little faster than usual when compiled with SSE4.1+. |
| */ |
| |
| extern const float sk_linear_from_srgb[256]; |
| extern const uint16_t sk_linear12_from_srgb[256]; |
| extern const uint8_t sk_linear12_to_srgb[4096]; |
| |
| template <typename V> |
| static inline V sk_clamp_0_255(const V& x) { |
| // The order of the arguments is important here. We want to make sure that NaN |
| // clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN. |
| return V::Min(V::Max(x, 0.0f), 255.0f); |
| } |
| |
| // [0.0f, 1.0f] -> [0.0f, 255.xf], for small x. Correct after truncation. |
| template <typename V> |
| static inline V sk_linear_to_srgb_needs_trunc(const V& x) { |
| // Approximation of the sRGB gamma curve (within 1 when scaled to 8-bit pixels). |
| // |
| // Constants tuned by brute force to minimize (in order of importance) after truncation: |
| // 1) the number of bytes that fail to round trip (0 of 256); |
| // 2) the number of points in [FLT_MIN, 1.0f] that are non-monotonic (0 of ~1 billion); |
| // 3) the number of points halfway between bytes that hit the wrong byte (131 of 255). |
| auto rsqrt = x.rsqrt(), |
| sqrt = rsqrt.invert(), |
| ftrt = rsqrt.rsqrt(); |
| |
| auto lo = (13.0471f * 255.0f) * x; |
| |
| auto hi = SkNx_fma(V{+0.412999f * 255.0f}, ftrt, |
| SkNx_fma(V{+0.687999f * 255.0f}, sqrt, |
| V{-0.0974983f * 255.0f})); |
| return (x < 0.0048f).thenElse(lo, hi); |
| } |
| |
| // [0.0f, 1.0f] -> [0.0f, 1.0f]. Correct after rounding. |
| template <typename V> |
| static inline V sk_linear_to_srgb_needs_round(const V& x) { |
| // Tuned to round trip each sRGB byte after rounding. |
| auto rsqrt = x.rsqrt(), |
| sqrt = rsqrt.invert(), |
| ftrt = rsqrt.rsqrt(); |
| |
| auto lo = 12.46f * x; |
| |
| auto hi = V::Min(1.0f, SkNx_fma(V{+0.411192f}, ftrt, |
| SkNx_fma(V{+0.689206f}, sqrt, |
| V{-0.0988f}))); |
| return (x < 0.0043f).thenElse(lo, hi); |
| } |
| |
| template <int N> |
| static inline SkNx<N,int> sk_linear_to_srgb(const SkNx<N,float>& x) { |
| auto f = sk_linear_to_srgb_needs_trunc(x); |
| return SkNx_cast<int>(sk_clamp_0_255(f)); |
| } |
| |
| |
| // sRGB -> linear, using math instead of table lookups. |
| template <typename V> |
| static inline V sk_linear_from_srgb_math(const V& x) { |
| // Non-linear segment of sRGB curve approximated by |
| // l = 0.0025 + 0.6975x^2 + 0.3x^3 |
| const V k0 = 0.0025f, |
| k2 = 0.6975f, |
| k3 = 0.3000f; |
| auto hi = SkNx_fma(x*x, SkNx_fma(x, k3, k2), k0); |
| |
| // Linear segment of sRGB curve: the normal slope, extended a little further than normal. |
| auto lo = x * (1/12.92f); |
| |
| return (x < 0.055f).thenElse(lo, hi); |
| } |
| |
| // Same as above, starting from ints. |
| template <int N> |
| static inline SkNx<N,float> sk_linear_from_srgb_math(const SkNx<N,int>& s) { |
| auto x = SkNx_cast<float>(s); |
| |
| // Same math as above, but working with x in [0,255], so x^n needs scaling by u^n. |
| const float u = 1/255.0f; |
| |
| const SkNx<N,float> k0 = 0.0025f, |
| k2 = 0.6975f * u*u, |
| k3 = 0.3000f * u*u*u; |
| auto hi = SkNx_fma(x*x, SkNx_fma(x, k3, k2), k0); |
| auto lo = x * (u/12.92f); |
| return (x < (0.055f/u)).thenElse(lo, hi); |
| } |
| |
| #endif//SkSRGB_DEFINED |