| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkTSort_DEFINED |
| #define SkTSort_DEFINED |
| |
| #include "SkTypes.h" |
| #include "SkMathPriv.h" |
| |
| /* A comparison functor which performs the comparison 'a < b'. */ |
| template <typename T> struct SkTCompareLT { |
| bool operator()(const T a, const T b) const { return a < b; } |
| }; |
| |
| /* A comparison functor which performs the comparison '*a < *b'. */ |
| template <typename T> struct SkTPointerCompareLT { |
| bool operator()(const T* a, const T* b) const { return *a < *b; } |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* Sifts a broken heap. The input array is a heap from root to bottom |
| * except that the root entry may be out of place. |
| * |
| * Sinks a hole from array[root] to leaf and then sifts the original array[root] element |
| * from the leaf level up. |
| * |
| * This version does extra work, in that it copies child to parent on the way down, |
| * then copies parent to child on the way back up. When copies are inexpensive, |
| * this is an optimization as this sift variant should only be used when |
| * the potentially out of place root entry value is expected to be small. |
| * |
| * @param root the one based index into array of the out-of-place root of the heap. |
| * @param bottom the one based index in the array of the last entry in the heap. |
| */ |
| template <typename T, typename C> |
| void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, C lessThan) { |
| T x = array[root-1]; |
| size_t start = root; |
| size_t j = root << 1; |
| while (j <= bottom) { |
| if (j < bottom && lessThan(array[j-1], array[j])) { |
| ++j; |
| } |
| array[root-1] = array[j-1]; |
| root = j; |
| j = root << 1; |
| } |
| j = root >> 1; |
| while (j >= start) { |
| if (lessThan(array[j-1], x)) { |
| array[root-1] = array[j-1]; |
| root = j; |
| j = root >> 1; |
| } else { |
| break; |
| } |
| } |
| array[root-1] = x; |
| } |
| |
| /* Sifts a broken heap. The input array is a heap from root to bottom |
| * except that the root entry may be out of place. |
| * |
| * Sifts the array[root] element from the root down. |
| * |
| * @param root the one based index into array of the out-of-place root of the heap. |
| * @param bottom the one based index in the array of the last entry in the heap. |
| */ |
| template <typename T, typename C> |
| void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, C lessThan) { |
| T x = array[root-1]; |
| size_t child = root << 1; |
| while (child <= bottom) { |
| if (child < bottom && lessThan(array[child-1], array[child])) { |
| ++child; |
| } |
| if (lessThan(x, array[child-1])) { |
| array[root-1] = array[child-1]; |
| root = child; |
| child = root << 1; |
| } else { |
| break; |
| } |
| } |
| array[root-1] = x; |
| } |
| |
| /** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm. Be sure to |
| * specialize SkTSwap if T has an efficient swap operation. |
| * |
| * @param array the array to be sorted. |
| * @param count the number of elements in the array. |
| * @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b. |
| */ |
| template <typename T, typename C> void SkTHeapSort(T array[], size_t count, C lessThan) { |
| for (size_t i = count >> 1; i > 0; --i) { |
| SkTHeapSort_SiftDown(array, i, count, lessThan); |
| } |
| |
| for (size_t i = count - 1; i > 0; --i) { |
| SkTSwap<T>(array[0], array[i]); |
| SkTHeapSort_SiftUp(array, 1, i, lessThan); |
| } |
| } |
| |
| /** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */ |
| template <typename T> void SkTHeapSort(T array[], size_t count) { |
| SkTHeapSort(array, count, SkTCompareLT<T>()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */ |
| template <typename T, typename C> static void SkTInsertionSort(T* left, T* right, C lessThan) { |
| for (T* next = left + 1; next <= right; ++next) { |
| if (!lessThan(*next, *(next - 1))) { |
| continue; |
| } |
| T insert = std::move(*next); |
| T* hole = next; |
| do { |
| *hole = std::move(*(hole - 1)); |
| --hole; |
| } while (left < hole && lessThan(insert, *(hole - 1))); |
| *hole = std::move(insert); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| template <typename T, typename C> |
| static T* SkTQSort_Partition(T* left, T* right, T* pivot, C lessThan) { |
| T pivotValue = *pivot; |
| SkTSwap(*pivot, *right); |
| T* newPivot = left; |
| while (left < right) { |
| if (lessThan(*left, pivotValue)) { |
| SkTSwap(*left, *newPivot); |
| newPivot += 1; |
| } |
| left += 1; |
| } |
| SkTSwap(*newPivot, *right); |
| return newPivot; |
| } |
| |
| /* Intro Sort is a modified Quick Sort. |
| * When the region to be sorted is a small constant size it uses Insertion Sort. |
| * When depth becomes zero, it switches over to Heap Sort. |
| * This implementation recurses on the left region after pivoting and loops on the right, |
| * we already limit the stack depth by switching to heap sort, |
| * and cache locality on the data appears more important than saving a few stack frames. |
| * |
| * @param depth at this recursion depth, switch to Heap Sort. |
| * @param left the beginning of the region to be sorted. |
| * @param right the end of the region to be sorted (inclusive). |
| * @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b. |
| */ |
| template <typename T, typename C> void SkTIntroSort(int depth, T* left, T* right, C lessThan) { |
| while (true) { |
| if (right - left < 32) { |
| SkTInsertionSort(left, right, lessThan); |
| return; |
| } |
| |
| if (depth == 0) { |
| SkTHeapSort<T>(left, right - left + 1, lessThan); |
| return; |
| } |
| --depth; |
| |
| T* pivot = left + ((right - left) >> 1); |
| pivot = SkTQSort_Partition(left, right, pivot, lessThan); |
| |
| SkTIntroSort(depth, left, pivot - 1, lessThan); |
| left = pivot + 1; |
| } |
| } |
| |
| /** Sorts the region from left to right using comparator lessThan using a Quick Sort algorithm. Be |
| * sure to specialize SkTSwap if T has an efficient swap operation. |
| * |
| * @param left the beginning of the region to be sorted. |
| * @param right the end of the region to be sorted (inclusive). |
| * @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b. |
| */ |
| template <typename T, typename C> void SkTQSort(T* left, T* right, C lessThan) { |
| if (left >= right) { |
| return; |
| } |
| // Limit Intro Sort recursion depth to no more than 2 * ceil(log2(n)). |
| int depth = 2 * SkNextLog2(SkToU32(right - left)); |
| SkTIntroSort(depth, left, right, lessThan); |
| } |
| |
| /** Sorts the region from left to right using comparator '<' using a Quick Sort algorithm. */ |
| template <typename T> void SkTQSort(T* left, T* right) { |
| SkTQSort(left, right, SkTCompareLT<T>()); |
| } |
| |
| /** Sorts the region from left to right using comparator '* < *' using a Quick Sort algorithm. */ |
| template <typename T> void SkTQSort(T** left, T** right) { |
| SkTQSort(left, right, SkTPointerCompareLT<T>()); |
| } |
| |
| #endif |