blob: bb0b162872f79fabcee027eb77b2b458db516b9c [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkValidatingReadBuffer.h"
#include "SkStream.h"
#include "SkTypeface.h"
SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) :
fError(false) {
this->setMemory(data, size);
this->setFlags(SkReadBuffer::kValidation_Flag);
}
SkValidatingReadBuffer::~SkValidatingReadBuffer() {
}
bool SkValidatingReadBuffer::validate(bool isValid) {
if (!fError && !isValid) {
// When an error is found, send the read cursor to the end of the stream
fReader.skip(fReader.available());
fError = true;
}
return !fError;
}
bool SkValidatingReadBuffer::isValid() const {
return !fError;
}
void SkValidatingReadBuffer::setMemory(const void* data, size_t size) {
this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size));
if (!fError) {
fReader.setMemory(data, size);
}
}
const void* SkValidatingReadBuffer::skip(size_t size) {
size_t inc = SkAlign4(size);
this->validate(inc >= size);
const void* addr = fReader.peek();
this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc));
if (fError) {
return nullptr;
}
fReader.skip(size);
return addr;
}
// All the methods in this file funnel down into either readInt(), readScalar() or skip(),
// followed by a memcpy. So we've got all our validation in readInt(), readScalar() and skip();
// if they fail they'll return a zero value or skip nothing, respectively, and set fError to
// true, which the caller should check to see if an error occurred during the read operation.
bool SkValidatingReadBuffer::readBool() {
uint32_t value = this->readInt();
// Boolean value should be either 0 or 1
this->validate(!(value & ~1));
return value != 0;
}
SkColor SkValidatingReadBuffer::readColor() {
return this->readInt();
}
int32_t SkValidatingReadBuffer::readInt() {
const size_t inc = sizeof(int32_t);
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
return fError ? 0 : fReader.readInt();
}
SkScalar SkValidatingReadBuffer::readScalar() {
const size_t inc = sizeof(SkScalar);
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
return fError ? 0 : fReader.readScalar();
}
uint32_t SkValidatingReadBuffer::readUInt() {
return this->readInt();
}
int32_t SkValidatingReadBuffer::read32() {
return this->readInt();
}
uint8_t SkValidatingReadBuffer::peekByte() {
if (fReader.available() <= 0) {
fError = true;
return 0;
}
return *((uint8_t*) fReader.peek());
}
void SkValidatingReadBuffer::readString(SkString* string) {
const size_t len = this->readUInt();
const void* ptr = fReader.peek();
const char* cptr = (const char*)ptr;
// skip over the string + '\0' and then pad to a multiple of 4
const size_t alignedSize = SkAlign4(len + 1);
this->skip(alignedSize);
if (!fError) {
this->validate(cptr[len] == '\0');
}
if (!fError) {
string->set(cptr, len);
}
}
void SkValidatingReadBuffer::readColor4f(SkColor4f* color) {
const void* ptr = this->skip(sizeof(SkColor4f));
if (!fError) {
memcpy(color, ptr, sizeof(SkColor4f));
} else {
*color = SkColor4f::FromColor(SK_ColorBLACK);
}
}
void SkValidatingReadBuffer::readPoint(SkPoint* point) {
point->fX = this->readScalar();
point->fY = this->readScalar();
}
void SkValidatingReadBuffer::readPoint3(SkPoint3* point) {
point->fX = this->readScalar();
point->fY = this->readScalar();
point->fZ = this->readScalar();
}
void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) {
size_t size = 0;
if (!fError) {
size = matrix->readFromMemory(fReader.peek(), fReader.available());
this->validate((SkAlign4(size) == size) && (0 != size));
}
if (!fError) {
(void)this->skip(size);
}
}
void SkValidatingReadBuffer::readIRect(SkIRect* rect) {
const void* ptr = this->skip(sizeof(SkIRect));
if (!fError) {
memcpy(rect, ptr, sizeof(SkIRect));
} else {
rect->setEmpty();
}
}
void SkValidatingReadBuffer::readRect(SkRect* rect) {
const void* ptr = this->skip(sizeof(SkRect));
if (!fError) {
memcpy(rect, ptr, sizeof(SkRect));
} else {
rect->setEmpty();
}
}
void SkValidatingReadBuffer::readRRect(SkRRect* rrect) {
const void* ptr = this->skip(sizeof(SkRRect));
if (!fError) {
memcpy(rrect, ptr, sizeof(SkRRect));
this->validate(rrect->isValid());
}
if (fError) {
rrect->setEmpty();
}
}
void SkValidatingReadBuffer::readRegion(SkRegion* region) {
size_t size = 0;
if (!fError) {
size = region->readFromMemory(fReader.peek(), fReader.available());
this->validate((SkAlign4(size) == size) && (0 != size));
}
if (!fError) {
(void)this->skip(size);
}
}
void SkValidatingReadBuffer::readPath(SkPath* path) {
size_t size = 0;
if (!fError) {
size = path->readFromMemory(fReader.peek(), fReader.available());
this->validate((SkAlign4(size) == size) && (0 != size));
}
if (!fError) {
(void)this->skip(size);
}
}
bool SkValidatingReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
const uint32_t count = this->getArrayCount();
this->validate(size == count);
(void)this->skip(sizeof(uint32_t)); // Skip array count
const uint64_t byteLength64 = sk_64_mul(count, elementSize);
const size_t byteLength = count * elementSize;
this->validate(byteLength == byteLength64);
const void* ptr = this->skip(SkAlign4(byteLength));
if (!fError) {
memcpy(value, ptr, byteLength);
return true;
}
return false;
}
bool SkValidatingReadBuffer::readByteArray(void* value, size_t size) {
return this->readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
}
bool SkValidatingReadBuffer::readColorArray(SkColor* colors, size_t size) {
return this->readArray(colors, size, sizeof(SkColor));
}
bool SkValidatingReadBuffer::readColor4fArray(SkColor4f* colors, size_t size) {
return this->readArray(colors, size, sizeof(SkColor4f));
}
bool SkValidatingReadBuffer::readIntArray(int32_t* values, size_t size) {
return this->readArray(values, size, sizeof(int32_t));
}
bool SkValidatingReadBuffer::readPointArray(SkPoint* points, size_t size) {
return this->readArray(points, size, sizeof(SkPoint));
}
bool SkValidatingReadBuffer::readScalarArray(SkScalar* values, size_t size) {
return this->readArray(values, size, sizeof(SkScalar));
}
uint32_t SkValidatingReadBuffer::getArrayCount() {
const size_t inc = sizeof(uint32_t);
fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
return fError ? 0 : *(uint32_t*)fReader.peek();
}
bool SkValidatingReadBuffer::validateAvailable(size_t size) {
return this->validate((size <= SK_MaxU32) && fReader.isAvailable(static_cast<uint32_t>(size)));
}
SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type) {
// The validating read buffer always uses strings and string-indices for unflattening.
SkASSERT(0 == this->factoryCount());
uint8_t firstByte = this->peekByte();
if (fError) {
return nullptr;
}
SkString name;
if (firstByte) {
// If the first byte is non-zero, the flattenable is specified by a string.
this->readString(&name);
if (fError) {
return nullptr;
}
// Add the string to the dictionary.
fFlattenableDict.set(fFlattenableDict.count() + 1, name);
} else {
// Read the index. We are guaranteed that the first byte
// is zeroed, so we must shift down a byte.
uint32_t index = this->readUInt() >> 8;
if (0 == index) {
return nullptr; // writer failed to give us the flattenable
}
SkString* namePtr = fFlattenableDict.find(index);
if (!namePtr) {
return nullptr;
}
name = *namePtr;
}
// Is this the type we wanted ?
const char* cname = name.c_str();
SkFlattenable::Type baseType;
if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) {
return nullptr;
}
// Get the factory for this flattenable.
SkFlattenable::Factory factory = this->getCustomFactory(name);
if (!factory) {
factory = SkFlattenable::NameToFactory(cname);
if (!factory) {
return nullptr; // writer failed to give us the flattenable
}
}
// If we get here, the factory is non-null.
sk_sp<SkFlattenable> obj;
uint32_t sizeRecorded = this->readUInt();
size_t offset = fReader.offset();
obj = (*factory)(*this);
// check that we read the amount we expected
size_t sizeRead = fReader.offset() - offset;
this->validate(sizeRecorded == sizeRead);
if (fError) {
obj = nullptr;
}
return obj.release();
}