| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkBitmap.h" |
| #include "SkValidatingReadBuffer.h" |
| #include "SkStream.h" |
| #include "SkTypeface.h" |
| |
| SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) : |
| fError(false) { |
| this->setMemory(data, size); |
| this->setFlags(SkReadBuffer::kValidation_Flag); |
| } |
| |
| SkValidatingReadBuffer::~SkValidatingReadBuffer() { |
| } |
| |
| bool SkValidatingReadBuffer::validate(bool isValid) { |
| if (!fError && !isValid) { |
| // When an error is found, send the read cursor to the end of the stream |
| fReader.skip(fReader.available()); |
| fError = true; |
| } |
| return !fError; |
| } |
| |
| bool SkValidatingReadBuffer::isValid() const { |
| return !fError; |
| } |
| |
| void SkValidatingReadBuffer::setMemory(const void* data, size_t size) { |
| this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size)); |
| if (!fError) { |
| fReader.setMemory(data, size); |
| } |
| } |
| |
| const void* SkValidatingReadBuffer::skip(size_t size) { |
| size_t inc = SkAlign4(size); |
| this->validate(inc >= size); |
| const void* addr = fReader.peek(); |
| this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc)); |
| if (fError) { |
| return nullptr; |
| } |
| |
| fReader.skip(size); |
| return addr; |
| } |
| |
| // All the methods in this file funnel down into either readInt(), readScalar() or skip(), |
| // followed by a memcpy. So we've got all our validation in readInt(), readScalar() and skip(); |
| // if they fail they'll return a zero value or skip nothing, respectively, and set fError to |
| // true, which the caller should check to see if an error occurred during the read operation. |
| |
| bool SkValidatingReadBuffer::readBool() { |
| uint32_t value = this->readInt(); |
| // Boolean value should be either 0 or 1 |
| this->validate(!(value & ~1)); |
| return value != 0; |
| } |
| |
| SkColor SkValidatingReadBuffer::readColor() { |
| return this->readInt(); |
| } |
| |
| int32_t SkValidatingReadBuffer::readInt() { |
| const size_t inc = sizeof(int32_t); |
| this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc)); |
| return fError ? 0 : fReader.readInt(); |
| } |
| |
| SkScalar SkValidatingReadBuffer::readScalar() { |
| const size_t inc = sizeof(SkScalar); |
| this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc)); |
| return fError ? 0 : fReader.readScalar(); |
| } |
| |
| uint32_t SkValidatingReadBuffer::readUInt() { |
| return this->readInt(); |
| } |
| |
| int32_t SkValidatingReadBuffer::read32() { |
| return this->readInt(); |
| } |
| |
| uint8_t SkValidatingReadBuffer::peekByte() { |
| if (fReader.available() <= 0) { |
| fError = true; |
| return 0; |
| } |
| return *((uint8_t*) fReader.peek()); |
| } |
| |
| void SkValidatingReadBuffer::readString(SkString* string) { |
| const size_t len = this->readUInt(); |
| const void* ptr = fReader.peek(); |
| const char* cptr = (const char*)ptr; |
| |
| // skip over the string + '\0' and then pad to a multiple of 4 |
| const size_t alignedSize = SkAlign4(len + 1); |
| this->skip(alignedSize); |
| if (!fError) { |
| this->validate(cptr[len] == '\0'); |
| } |
| if (!fError) { |
| string->set(cptr, len); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readColor4f(SkColor4f* color) { |
| const void* ptr = this->skip(sizeof(SkColor4f)); |
| if (!fError) { |
| memcpy(color, ptr, sizeof(SkColor4f)); |
| } else { |
| *color = SkColor4f::FromColor(SK_ColorBLACK); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readPoint(SkPoint* point) { |
| point->fX = this->readScalar(); |
| point->fY = this->readScalar(); |
| } |
| |
| void SkValidatingReadBuffer::readPoint3(SkPoint3* point) { |
| point->fX = this->readScalar(); |
| point->fY = this->readScalar(); |
| point->fZ = this->readScalar(); |
| } |
| |
| void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) { |
| size_t size = 0; |
| if (!fError) { |
| size = matrix->readFromMemory(fReader.peek(), fReader.available()); |
| this->validate((SkAlign4(size) == size) && (0 != size)); |
| } |
| if (!fError) { |
| (void)this->skip(size); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readIRect(SkIRect* rect) { |
| const void* ptr = this->skip(sizeof(SkIRect)); |
| if (!fError) { |
| memcpy(rect, ptr, sizeof(SkIRect)); |
| } else { |
| rect->setEmpty(); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readRect(SkRect* rect) { |
| const void* ptr = this->skip(sizeof(SkRect)); |
| if (!fError) { |
| memcpy(rect, ptr, sizeof(SkRect)); |
| } else { |
| rect->setEmpty(); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readRRect(SkRRect* rrect) { |
| const void* ptr = this->skip(sizeof(SkRRect)); |
| if (!fError) { |
| memcpy(rrect, ptr, sizeof(SkRRect)); |
| this->validate(rrect->isValid()); |
| } |
| |
| if (fError) { |
| rrect->setEmpty(); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readRegion(SkRegion* region) { |
| size_t size = 0; |
| if (!fError) { |
| size = region->readFromMemory(fReader.peek(), fReader.available()); |
| this->validate((SkAlign4(size) == size) && (0 != size)); |
| } |
| if (!fError) { |
| (void)this->skip(size); |
| } |
| } |
| |
| void SkValidatingReadBuffer::readPath(SkPath* path) { |
| size_t size = 0; |
| if (!fError) { |
| size = path->readFromMemory(fReader.peek(), fReader.available()); |
| this->validate((SkAlign4(size) == size) && (0 != size)); |
| } |
| if (!fError) { |
| (void)this->skip(size); |
| } |
| } |
| |
| bool SkValidatingReadBuffer::readArray(void* value, size_t size, size_t elementSize) { |
| const uint32_t count = this->getArrayCount(); |
| this->validate(size == count); |
| (void)this->skip(sizeof(uint32_t)); // Skip array count |
| const uint64_t byteLength64 = sk_64_mul(count, elementSize); |
| const size_t byteLength = count * elementSize; |
| this->validate(byteLength == byteLength64); |
| const void* ptr = this->skip(SkAlign4(byteLength)); |
| if (!fError) { |
| memcpy(value, ptr, byteLength); |
| return true; |
| } |
| return false; |
| } |
| |
| bool SkValidatingReadBuffer::readByteArray(void* value, size_t size) { |
| return this->readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char)); |
| } |
| |
| bool SkValidatingReadBuffer::readColorArray(SkColor* colors, size_t size) { |
| return this->readArray(colors, size, sizeof(SkColor)); |
| } |
| |
| bool SkValidatingReadBuffer::readColor4fArray(SkColor4f* colors, size_t size) { |
| return this->readArray(colors, size, sizeof(SkColor4f)); |
| } |
| |
| bool SkValidatingReadBuffer::readIntArray(int32_t* values, size_t size) { |
| return this->readArray(values, size, sizeof(int32_t)); |
| } |
| |
| bool SkValidatingReadBuffer::readPointArray(SkPoint* points, size_t size) { |
| return this->readArray(points, size, sizeof(SkPoint)); |
| } |
| |
| bool SkValidatingReadBuffer::readScalarArray(SkScalar* values, size_t size) { |
| return this->readArray(values, size, sizeof(SkScalar)); |
| } |
| |
| uint32_t SkValidatingReadBuffer::getArrayCount() { |
| const size_t inc = sizeof(uint32_t); |
| fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc); |
| return fError ? 0 : *(uint32_t*)fReader.peek(); |
| } |
| |
| bool SkValidatingReadBuffer::validateAvailable(size_t size) { |
| return this->validate((size <= SK_MaxU32) && fReader.isAvailable(static_cast<uint32_t>(size))); |
| } |
| |
| SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type) { |
| // The validating read buffer always uses strings and string-indices for unflattening. |
| SkASSERT(0 == this->factoryCount()); |
| |
| uint8_t firstByte = this->peekByte(); |
| if (fError) { |
| return nullptr; |
| } |
| |
| SkString name; |
| if (firstByte) { |
| // If the first byte is non-zero, the flattenable is specified by a string. |
| this->readString(&name); |
| if (fError) { |
| return nullptr; |
| } |
| |
| // Add the string to the dictionary. |
| fFlattenableDict.set(fFlattenableDict.count() + 1, name); |
| } else { |
| // Read the index. We are guaranteed that the first byte |
| // is zeroed, so we must shift down a byte. |
| uint32_t index = this->readUInt() >> 8; |
| if (0 == index) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| |
| SkString* namePtr = fFlattenableDict.find(index); |
| if (!namePtr) { |
| return nullptr; |
| } |
| name = *namePtr; |
| } |
| |
| // Is this the type we wanted ? |
| const char* cname = name.c_str(); |
| SkFlattenable::Type baseType; |
| if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) { |
| return nullptr; |
| } |
| |
| // Get the factory for this flattenable. |
| SkFlattenable::Factory factory = this->getCustomFactory(name); |
| if (!factory) { |
| factory = SkFlattenable::NameToFactory(cname); |
| if (!factory) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| } |
| |
| // If we get here, the factory is non-null. |
| sk_sp<SkFlattenable> obj; |
| uint32_t sizeRecorded = this->readUInt(); |
| size_t offset = fReader.offset(); |
| obj = (*factory)(*this); |
| // check that we read the amount we expected |
| size_t sizeRead = fReader.offset() - offset; |
| this->validate(sizeRecorded == sizeRead); |
| if (fError) { |
| obj = nullptr; |
| } |
| return obj.release(); |
| } |