| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkWriteBuffer.h" |
| #include "SkBitmap.h" |
| #include "SkData.h" |
| #include "SkDeduper.h" |
| #include "SkPixelRef.h" |
| #include "SkPtrRecorder.h" |
| #include "SkStream.h" |
| #include "SkTypeface.h" |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags) |
| : fFlags(flags) |
| , fFactorySet(nullptr) |
| , fTFSet(nullptr) { |
| } |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint32_t flags) |
| : fFlags(flags) |
| , fFactorySet(nullptr) |
| , fWriter(storage, storageSize) |
| , fTFSet(nullptr) { |
| } |
| |
| SkBinaryWriteBuffer::~SkBinaryWriteBuffer() { |
| SkSafeUnref(fFactorySet); |
| SkSafeUnref(fTFSet); |
| } |
| |
| void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
| fWriter.write32(SkToU32(size)); |
| fWriter.writePad(data, size); |
| } |
| |
| void SkBinaryWriteBuffer::writeBool(bool value) { |
| fWriter.writeBool(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
| fWriter.writeScalar(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(SkScalar)); |
| } |
| |
| void SkBinaryWriteBuffer::writeInt(int32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(int32_t)); |
| } |
| |
| void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeString(const char* value) { |
| fWriter.writeString(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor(SkColor color) { |
| fWriter.write32(color); |
| } |
| |
| void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
| fWriter.write(&color, sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
| fWriter.writeScalar(point.fX); |
| fWriter.writeScalar(point.fY); |
| } |
| |
| void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(point, count * sizeof(SkPoint)); |
| } |
| |
| void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
| fWriter.writeMatrix(matrix); |
| } |
| |
| void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
| fWriter.write(&rect, sizeof(SkIRect)); |
| } |
| |
| void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
| fWriter.writeRect(rect); |
| } |
| |
| void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
| fWriter.writeRegion(region); |
| } |
| |
| void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
| fWriter.writePath(path); |
| } |
| |
| size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
| fWriter.write32(SkToU32(length)); |
| size_t bytesWritten = fWriter.readFromStream(stream, length); |
| if (bytesWritten < length) { |
| fWriter.reservePad(length - bytesWritten); |
| } |
| return bytesWritten; |
| } |
| |
| bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) { |
| return fWriter.writeToStream(stream); |
| } |
| |
| static void write_encoded_bitmap(SkBinaryWriteBuffer* buffer, SkData* data, |
| const SkIPoint& origin) { |
| buffer->writeDataAsByteArray(data); |
| buffer->write32(origin.fX); |
| buffer->write32(origin.fY); |
| } |
| |
| void SkBinaryWriteBuffer::writeBitmap(const SkBitmap& bitmap) { |
| // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the |
| // right size. |
| this->writeInt(bitmap.width()); |
| this->writeInt(bitmap.height()); |
| |
| // Record information about the bitmap in one of two ways, in order of priority: |
| // 1. If there is a function for encoding bitmaps, use it to write an encoded version of the |
| // bitmap. After writing a boolean value of false, signifying that a heap was not used, write |
| // the size of the encoded data. A non-zero size signifies that encoded data was written. |
| // 2. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was |
| // not used, write a zero to signify that the data was not encoded. |
| |
| // Write a bool to indicate that we did not use an SkBitmapHeap. That feature is deprecated. |
| this->writeBool(false); |
| |
| // see if the caller wants to manually encode |
| SkPixmap result; |
| if (fPixelSerializer && bitmap.peekPixels(&result)) { |
| sk_sp<SkData> data = fPixelSerializer->encodeToData(result); |
| if (data) { |
| // if we have to "encode" the bitmap, then we assume there is no |
| // offset to share, since we are effectively creating a new pixelref |
| write_encoded_bitmap(this, data.get(), SkIPoint::Make(0, 0)); |
| return; |
| } |
| } |
| |
| this->writeUInt(0); // signal raw pixels |
| SkBitmap::WriteRawPixels(this, bitmap); |
| } |
| |
| void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
| if (fDeduper) { |
| this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image))); |
| return; |
| } |
| |
| this->writeInt(image->width()); |
| this->writeInt(image->height()); |
| |
| sk_sp<SkData> encoded = image->encodeToData(this->getPixelSerializer()); |
| if (encoded && encoded->size() > 0) { |
| write_encoded_bitmap(this, encoded.get(), SkIPoint::Make(0, 0)); |
| return; |
| } |
| |
| SkBitmap bm; |
| if (image->asLegacyBitmap(&bm, SkImage::kRO_LegacyBitmapMode)) { |
| this->writeUInt(1); // signal raw pixels. |
| SkBitmap::WriteRawPixels(this, bm); |
| return; |
| } |
| |
| this->writeUInt(0); // signal no pixels (in place of the size of the encoded data) |
| } |
| |
| void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
| if (fDeduper) { |
| this->write32(fDeduper->findOrDefineTypeface(obj)); |
| return; |
| } |
| |
| if (nullptr == obj || nullptr == fTFSet) { |
| fWriter.write32(0); |
| } else { |
| fWriter.write32(fTFSet->add(obj)); |
| } |
| } |
| |
| void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| paint.flatten(*this); |
| } |
| |
| SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { |
| SkRefCnt_SafeAssign(fFactorySet, rec); |
| return rec; |
| } |
| |
| SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { |
| SkRefCnt_SafeAssign(fTFSet, rec); |
| return rec; |
| } |
| |
| void SkBinaryWriteBuffer::setPixelSerializer(sk_sp<SkPixelSerializer> serializer) { |
| fPixelSerializer = std::move(serializer); |
| } |
| |
| void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
| if (nullptr == flattenable) { |
| this->write32(0); |
| return; |
| } |
| |
| if (fDeduper) { |
| this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(flattenable))); |
| } else { |
| /* |
| * We can write 1 of 2 versions of the flattenable: |
| * 1. index into fFactorySet : This assumes the writer will later |
| * resolve the function-ptrs into strings for its reader. SkPicture |
| * does exactly this, by writing a table of names (matching the indices) |
| * up front in its serialized form. |
| * 2. string name of the flattenable or index into fFlattenableDict: We |
| * store the string to allow the reader to specify its own factories |
| * after write time. In order to improve compression, if we have |
| * already written the string, we write its index instead. |
| */ |
| if (fFactorySet) { |
| SkFlattenable::Factory factory = flattenable->getFactory(); |
| SkASSERT(factory); |
| this->write32(fFactorySet->add(factory)); |
| } else { |
| const char* name = flattenable->getTypeName(); |
| SkASSERT(name); |
| SkString key(name); |
| if (uint32_t* indexPtr = fFlattenableDict.find(key)) { |
| // We will write the index as a 32-bit int. We want the first byte |
| // that we send to be zero - this will act as a sentinel that we |
| // have an index (not a string). This means that we will send the |
| // the index shifted left by 8. The remaining 24-bits should be |
| // plenty to store the index. Note that this strategy depends on |
| // being little endian. |
| SkASSERT(0 == *indexPtr >> 24); |
| this->write32(*indexPtr << 8); |
| } else { |
| // Otherwise write the string. Clients should not use the empty |
| // string as a name, or we will have a problem. |
| SkASSERT(strcmp("", name)); |
| this->writeString(name); |
| |
| // Add key to dictionary. |
| fFlattenableDict.set(key, fFlattenableDict.count() + 1); |
| } |
| } |
| } |
| |
| // make room for the size of the flattened object |
| (void)fWriter.reserve(sizeof(uint32_t)); |
| // record the current size, so we can subtract after the object writes. |
| size_t offset = fWriter.bytesWritten(); |
| // now flatten the object |
| flattenable->flatten(*this); |
| size_t objSize = fWriter.bytesWritten() - offset; |
| // record the obj's size |
| fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
| } |