blob: 43a63c963804d4c504e6a54b4e991502dbd109ae [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkWriteBuffer.h"
#include "SkBitmap.h"
#include "SkData.h"
#include "SkDeduper.h"
#include "SkPixelRef.h"
#include "SkPtrRecorder.h"
#include "SkStream.h"
#include "SkTypeface.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags)
: fFlags(flags)
, fFactorySet(nullptr)
, fTFSet(nullptr) {
}
SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
: fFlags(flags)
, fFactorySet(nullptr)
, fWriter(storage, storageSize)
, fTFSet(nullptr) {
}
SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {
SkSafeUnref(fFactorySet);
SkSafeUnref(fTFSet);
}
void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) {
fWriter.write32(SkToU32(size));
fWriter.writePad(data, size);
}
void SkBinaryWriteBuffer::writeBool(bool value) {
fWriter.writeBool(value);
}
void SkBinaryWriteBuffer::writeScalar(SkScalar value) {
fWriter.writeScalar(value);
}
void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(SkScalar));
}
void SkBinaryWriteBuffer::writeInt(int32_t value) {
fWriter.write32(value);
}
void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(int32_t));
}
void SkBinaryWriteBuffer::writeUInt(uint32_t value) {
fWriter.write32(value);
}
void SkBinaryWriteBuffer::writeString(const char* value) {
fWriter.writeString(value);
}
void SkBinaryWriteBuffer::writeColor(SkColor color) {
fWriter.write32(color);
}
void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor));
}
void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) {
fWriter.write(&color, sizeof(SkColor4f));
}
void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor4f));
}
void SkBinaryWriteBuffer::writePoint(const SkPoint& point) {
fWriter.writeScalar(point.fX);
fWriter.writeScalar(point.fY);
}
void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
fWriter.write32(count);
fWriter.write(point, count * sizeof(SkPoint));
}
void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) {
fWriter.writeMatrix(matrix);
}
void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) {
fWriter.write(&rect, sizeof(SkIRect));
}
void SkBinaryWriteBuffer::writeRect(const SkRect& rect) {
fWriter.writeRect(rect);
}
void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) {
fWriter.writeRegion(region);
}
void SkBinaryWriteBuffer::writePath(const SkPath& path) {
fWriter.writePath(path);
}
size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) {
fWriter.write32(SkToU32(length));
size_t bytesWritten = fWriter.readFromStream(stream, length);
if (bytesWritten < length) {
fWriter.reservePad(length - bytesWritten);
}
return bytesWritten;
}
bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) {
return fWriter.writeToStream(stream);
}
static void write_encoded_bitmap(SkBinaryWriteBuffer* buffer, SkData* data,
const SkIPoint& origin) {
buffer->writeDataAsByteArray(data);
buffer->write32(origin.fX);
buffer->write32(origin.fY);
}
void SkBinaryWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
// Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
// right size.
this->writeInt(bitmap.width());
this->writeInt(bitmap.height());
// Record information about the bitmap in one of two ways, in order of priority:
// 1. If there is a function for encoding bitmaps, use it to write an encoded version of the
// bitmap. After writing a boolean value of false, signifying that a heap was not used, write
// the size of the encoded data. A non-zero size signifies that encoded data was written.
// 2. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
// not used, write a zero to signify that the data was not encoded.
// Write a bool to indicate that we did not use an SkBitmapHeap. That feature is deprecated.
this->writeBool(false);
// see if the caller wants to manually encode
SkPixmap result;
if (fPixelSerializer && bitmap.peekPixels(&result)) {
sk_sp<SkData> data = fPixelSerializer->encodeToData(result);
if (data) {
// if we have to "encode" the bitmap, then we assume there is no
// offset to share, since we are effectively creating a new pixelref
write_encoded_bitmap(this, data.get(), SkIPoint::Make(0, 0));
return;
}
}
this->writeUInt(0); // signal raw pixels
SkBitmap::WriteRawPixels(this, bitmap);
}
void SkBinaryWriteBuffer::writeImage(const SkImage* image) {
if (fDeduper) {
this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image)));
return;
}
this->writeInt(image->width());
this->writeInt(image->height());
sk_sp<SkData> encoded = image->encodeToData(this->getPixelSerializer());
if (encoded && encoded->size() > 0) {
write_encoded_bitmap(this, encoded.get(), SkIPoint::Make(0, 0));
return;
}
SkBitmap bm;
if (image->asLegacyBitmap(&bm, SkImage::kRO_LegacyBitmapMode)) {
this->writeUInt(1); // signal raw pixels.
SkBitmap::WriteRawPixels(this, bm);
return;
}
this->writeUInt(0); // signal no pixels (in place of the size of the encoded data)
}
void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) {
if (fDeduper) {
this->write32(fDeduper->findOrDefineTypeface(obj));
return;
}
if (nullptr == obj || nullptr == fTFSet) {
fWriter.write32(0);
} else {
fWriter.write32(fTFSet->add(obj));
}
}
void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) {
paint.flatten(*this);
}
SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
SkRefCnt_SafeAssign(fFactorySet, rec);
return rec;
}
SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
SkRefCnt_SafeAssign(fTFSet, rec);
return rec;
}
void SkBinaryWriteBuffer::setPixelSerializer(sk_sp<SkPixelSerializer> serializer) {
fPixelSerializer = std::move(serializer);
}
void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
if (nullptr == flattenable) {
this->write32(0);
return;
}
if (fDeduper) {
this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(flattenable)));
} else {
/*
* We can write 1 of 2 versions of the flattenable:
* 1. index into fFactorySet : This assumes the writer will later
* resolve the function-ptrs into strings for its reader. SkPicture
* does exactly this, by writing a table of names (matching the indices)
* up front in its serialized form.
* 2. string name of the flattenable or index into fFlattenableDict: We
* store the string to allow the reader to specify its own factories
* after write time. In order to improve compression, if we have
* already written the string, we write its index instead.
*/
if (fFactorySet) {
SkFlattenable::Factory factory = flattenable->getFactory();
SkASSERT(factory);
this->write32(fFactorySet->add(factory));
} else {
const char* name = flattenable->getTypeName();
SkASSERT(name);
SkString key(name);
if (uint32_t* indexPtr = fFlattenableDict.find(key)) {
// We will write the index as a 32-bit int. We want the first byte
// that we send to be zero - this will act as a sentinel that we
// have an index (not a string). This means that we will send the
// the index shifted left by 8. The remaining 24-bits should be
// plenty to store the index. Note that this strategy depends on
// being little endian.
SkASSERT(0 == *indexPtr >> 24);
this->write32(*indexPtr << 8);
} else {
// Otherwise write the string. Clients should not use the empty
// string as a name, or we will have a problem.
SkASSERT(strcmp("", name));
this->writeString(name);
// Add key to dictionary.
fFlattenableDict.set(key, fFlattenableDict.count() + 1);
}
}
}
// make room for the size of the flattened object
(void)fWriter.reserve(sizeof(uint32_t));
// record the current size, so we can subtract after the object writes.
size_t offset = fWriter.bytesWritten();
// now flatten the object
flattenable->flatten(*this);
size_t objSize = fWriter.bytesWritten() - offset;
// record the obj's size
fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
}