| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkJumper.h" |
| #include "SkJumper_misc.h" // SI, unaligned_load(), bit_cast() |
| #include "SkJumper_vectors.h" // F, I32, U32, U16, U8, cast(), expand() |
| |
| // Our fundamental vector depth is our pixel stride. |
| static const size_t kStride = sizeof(F) / sizeof(float); |
| |
| // A reminder: |
| // Code guarded by defined(JUMPER) can assume that it will be compiled by Clang |
| // and that F, I32, etc. are kStride-deep ext_vector_types of the appropriate type. |
| // Otherwise, F, I32, etc. just alias the basic scalar types (and so kStride == 1). |
| |
| // You can use most constants in this file, but in a few rare exceptions we read from this struct. |
| using K = const SkJumper_constants; |
| |
| // A little wrapper macro to name Stages differently depending on the instruction set. |
| // That lets us link together several options. |
| #if defined(STARBOARD) || !defined(JUMPER) |
| #define WRAP(name) sk_##name |
| #elif defined(__aarch64__) |
| #define WRAP(name) sk_##name##_aarch64 |
| #elif defined(__arm__) |
| #define WRAP(name) sk_##name##_vfp4 |
| #elif defined(__AVX2__) |
| #define WRAP(name) sk_##name##_hsw |
| #elif defined(__AVX__) |
| #define WRAP(name) sk_##name##_avx |
| #elif defined(__SSE4_1__) |
| #define WRAP(name) sk_##name##_sse41 |
| #elif defined(__SSE2__) |
| #define WRAP(name) sk_##name##_sse2 |
| #endif |
| |
| // We're finally going to get to what a Stage function looks like! |
| // tail == 0 ~~> work on a full kStride pixels |
| // tail != 0 ~~> work on only the first tail pixels |
| // tail is always < kStride. |
| // |
| // We keep program the second argument, so that it's passed in rsi for load_and_inc(). |
| using Stage = void(K* k, void** program, size_t x, size_t y, size_t tail, F,F,F,F, F,F,F,F); |
| |
| #if defined(JUMPER) && defined(__AVX__) |
| // We really want to make sure all paths go through this function's (implicit) vzeroupper. |
| // If they don't, we'll experience severe slowdowns when we first use SSE instructions again. |
| __attribute__((disable_tail_calls)) |
| #endif |
| MAYBE_MSABI |
| extern "C" void WRAP(start_pipeline)(size_t x, size_t y, size_t limit, void** program, K* k) { |
| #if defined(JUMPER) |
| F v; |
| #else |
| F v{}; |
| #endif |
| auto start = (Stage*)load_and_inc(program); |
| while (x + kStride <= limit) { |
| start(k,program,x,y,0, v,v,v,v, v,v,v,v); |
| x += kStride; |
| } |
| if (size_t tail = limit - x) { |
| start(k,program,x,y,tail, v,v,v,v, v,v,v,v); |
| } |
| } |
| |
| #if defined(JUMPER) && defined(__AVX__) |
| // We really want to make sure all paths go through this function's (implicit) vzeroupper. |
| // If they don't, we'll experience severe slowdowns when we first use SSE instructions again. |
| __attribute__((disable_tail_calls)) |
| #endif |
| #if defined(JUMPER) |
| __attribute__((flatten)) // Force-inline the call to start_pipeline(). |
| #endif |
| MAYBE_MSABI |
| extern "C" void WRAP(start_pipeline_2d)(size_t x, size_t y, size_t xlimit, size_t ylimit, |
| void** program, K* k) { |
| for (; y < ylimit; y++) { |
| WRAP(start_pipeline)(x,y,xlimit, program, k); |
| } |
| } |
| |
| #define STAGE(name) \ |
| SI void name##_k(K* k, LazyCtx ctx, size_t x, size_t y, size_t tail, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ |
| extern "C" void WRAP(name)(K* k, void** program, size_t x, size_t y, size_t tail, \ |
| F r, F g, F b, F a, F dr, F dg, F db, F da) { \ |
| LazyCtx ctx(program); \ |
| name##_k(k,ctx,x,y,tail, r,g,b,a, dr,dg,db,da); \ |
| auto next = (Stage*)load_and_inc(program); \ |
| next(k,program,x,y,tail, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| SI void name##_k(K* k, LazyCtx ctx, size_t x, size_t y, size_t tail, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) |
| |
| |
| // just_return() is a simple no-op stage that only exists to end the chain, |
| // returning back up to start_pipeline(), and from there to the caller. |
| extern "C" void WRAP(just_return)(K*, void**, size_t,size_t,size_t, F,F,F,F, F,F,F,F) {} |
| |
| |
| // We could start defining normal Stages now. But first, some helper functions. |
| |
| // These load() and store() methods are tail-aware, |
| // but focus mainly on keeping the at-stride tail==0 case fast. |
| |
| template <typename V, typename T> |
| SI V load(const T* src, size_t tail) { |
| #if defined(JUMPER) |
| __builtin_assume(tail < kStride); |
| if (__builtin_expect(tail, 0)) { |
| V v{}; // Any inactive lanes are zeroed. |
| switch (tail) { |
| case 7: v[6] = src[6]; |
| case 6: v[5] = src[5]; |
| case 5: v[4] = src[4]; |
| case 4: memcpy(&v, src, 4*sizeof(T)); break; |
| case 3: v[2] = src[2]; |
| case 2: memcpy(&v, src, 2*sizeof(T)); break; |
| case 1: memcpy(&v, src, 1*sizeof(T)); break; |
| } |
| return v; |
| } |
| #endif |
| return unaligned_load<V>(src); |
| } |
| |
| template <typename V, typename T> |
| SI void store(T* dst, V v, size_t tail) { |
| #if defined(JUMPER) |
| __builtin_assume(tail < kStride); |
| if (__builtin_expect(tail, 0)) { |
| switch (tail) { |
| case 7: dst[6] = v[6]; |
| case 6: dst[5] = v[5]; |
| case 5: dst[4] = v[4]; |
| case 4: memcpy(dst, &v, 4*sizeof(T)); break; |
| case 3: dst[2] = v[2]; |
| case 2: memcpy(dst, &v, 2*sizeof(T)); break; |
| case 1: memcpy(dst, &v, 1*sizeof(T)); break; |
| } |
| return; |
| } |
| #endif |
| unaligned_store(dst, v); |
| } |
| |
| // AVX adds some mask loads and stores that make for shorter, faster code. |
| #if defined(JUMPER) && defined(__AVX__) |
| SI U32 mask(size_t tail) { |
| // We go a little out of our way to avoid needing large constant values here. |
| |
| // It's easiest to build the mask as 8 8-bit values, either 0x00 or 0xff. |
| // Start fully on, then shift away lanes from the top until we've got our mask. |
| uint64_t mask = 0xffffffffffffffff >> 8*(kStride-tail); |
| |
| // Sign-extend each mask lane to its full width, 0x00000000 or 0xffffffff. |
| using S8 = int8_t __attribute__((ext_vector_type(8))); |
| using S32 = int32_t __attribute__((ext_vector_type(8))); |
| return (U32)__builtin_convertvector(unaligned_load<S8>(&mask), S32); |
| } |
| |
| template <> |
| inline U32 load(const uint32_t* src, size_t tail) { |
| __builtin_assume(tail < kStride); |
| if (__builtin_expect(tail, 0)) { |
| return (U32)_mm256_maskload_ps((const float*)src, mask(tail)); |
| } |
| return unaligned_load<U32>(src); |
| } |
| |
| template <> |
| inline void store(uint32_t* dst, U32 v, size_t tail) { |
| __builtin_assume(tail < kStride); |
| if (__builtin_expect(tail, 0)) { |
| return _mm256_maskstore_ps((float*)dst, mask(tail), (F)v); |
| } |
| unaligned_store(dst, v); |
| } |
| #endif |
| |
| SI F from_byte(U8 b) { |
| return cast(expand(b)) * (1/255.0f); |
| } |
| SI void from_565(U16 _565, F* r, F* g, F* b) { |
| U32 wide = expand(_565); |
| *r = cast(wide & (31<<11)) * (1.0f / (31<<11)); |
| *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5)); |
| *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0)); |
| } |
| SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) { |
| U32 wide = expand(_4444); |
| *r = cast(wide & (15<<12)) * (1.0f / (15<<12)); |
| *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8)); |
| *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4)); |
| *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0)); |
| } |
| SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) { |
| *r = cast((_8888 ) & 0xff) * (1/255.0f); |
| *g = cast((_8888 >> 8) & 0xff) * (1/255.0f); |
| *b = cast((_8888 >> 16) & 0xff) * (1/255.0f); |
| *a = cast((_8888 >> 24) ) * (1/255.0f); |
| } |
| |
| template <typename T> |
| SI U32 ix_and_ptr(T** ptr, const SkJumper_MemoryCtx* ctx, F x, F y) { |
| *ptr = (const T*)ctx->pixels; |
| return trunc_(y)*ctx->stride + trunc_(x); |
| } |
| |
| // Now finally, normal Stages! |
| |
| STAGE(seed_shader) { |
| // It's important for speed to explicitly cast(x) and cast(y), |
| // which has the effect of splatting them to vectors before converting to floats. |
| // On Intel this breaks a data dependency on previous loop iterations' registers. |
| r = cast(x) + 0.5f + unaligned_load<F>(k->iota_F); |
| g = cast(y) + 0.5f; |
| b = 1.0f; |
| a = 0; |
| dr = dg = db = da = 0; |
| } |
| |
| STAGE(dither) { |
| auto rate = *(const float*)ctx; |
| |
| // Get [(x,y), (x+1,y), (x+2,y), ...] loaded up in integer vectors. |
| U32 X = x + unaligned_load<U32>(k->iota_U32), |
| Y = y; |
| |
| // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering. |
| // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ]. |
| |
| // We only need X and X^Y from here on, so it's easier to just think of that as "Y". |
| Y ^= X; |
| |
| // We'll mix the bottom 3 bits of each of X and Y to make 6 bits, |
| // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda. |
| U32 M = (Y & 1) << 5 | (X & 1) << 4 |
| | (Y & 2) << 2 | (X & 2) << 1 |
| | (Y & 4) >> 1 | (X & 4) >> 2; |
| |
| // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon. |
| // We want to make sure our dither is less than 0.5 in either direction to keep exact values |
| // like 0 and 1 unchanged after rounding. |
| F dither = cast(M) * (2/128.0f) - (63/128.0f); |
| |
| r += rate*dither; |
| g += rate*dither; |
| b += rate*dither; |
| |
| r = max(0, min(r, a)); |
| g = max(0, min(g, a)); |
| b = max(0, min(b, a)); |
| } |
| |
| // load 4 floats from memory, and splat them into r,g,b,a |
| STAGE(uniform_color) { |
| auto rgba = (const float*)ctx; |
| r = rgba[0]; |
| g = rgba[1]; |
| b = rgba[2]; |
| a = rgba[3]; |
| } |
| |
| // splats opaque-black into r,g,b,a |
| STAGE(black_color) { |
| r = g = b = 0.0f; |
| a = 1.0f; |
| } |
| |
| STAGE(white_color) { |
| r = g = b = a = 1.0f; |
| } |
| |
| // load registers r,g,b,a from context (mirrors store_rgba) |
| STAGE(load_rgba) { |
| auto ptr = (const float*)ctx; |
| r = unaligned_load<F>(ptr + 0*kStride); |
| g = unaligned_load<F>(ptr + 1*kStride); |
| b = unaligned_load<F>(ptr + 2*kStride); |
| a = unaligned_load<F>(ptr + 3*kStride); |
| } |
| |
| // store registers r,g,b,a into context (mirrors load_rgba) |
| STAGE(store_rgba) { |
| auto ptr = (float*)ctx; |
| unaligned_store(ptr + 0*kStride, r); |
| unaligned_store(ptr + 1*kStride, g); |
| unaligned_store(ptr + 2*kStride, b); |
| unaligned_store(ptr + 3*kStride, a); |
| } |
| |
| // Most blend modes apply the same logic to each channel. |
| #define BLEND_MODE(name) \ |
| SI F name##_channel(F s, F d, F sa, F da); \ |
| STAGE(name) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = name##_channel(a,da,a,da); \ |
| } \ |
| SI F name##_channel(F s, F d, F sa, F da) |
| |
| SI F inv(F x) { return 1.0f - x; } |
| SI F two(F x) { return x + x; } |
| |
| BLEND_MODE(clear) { return 0; } |
| BLEND_MODE(srcatop) { return s*da + d*inv(sa); } |
| BLEND_MODE(dstatop) { return d*sa + s*inv(da); } |
| BLEND_MODE(srcin) { return s * da; } |
| BLEND_MODE(dstin) { return d * sa; } |
| BLEND_MODE(srcout) { return s * inv(da); } |
| BLEND_MODE(dstout) { return d * inv(sa); } |
| BLEND_MODE(srcover) { return mad(d, inv(sa), s); } |
| BLEND_MODE(dstover) { return mad(s, inv(da), d); } |
| |
| BLEND_MODE(modulate) { return s*d; } |
| BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } |
| BLEND_MODE(plus_) { return s + d; } |
| BLEND_MODE(screen) { return s + d - s*d; } |
| BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); } |
| #undef BLEND_MODE |
| |
| // Most other blend modes apply the same logic to colors, and srcover to alpha. |
| #define BLEND_MODE(name) \ |
| SI F name##_channel(F s, F d, F sa, F da); \ |
| STAGE(name) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = mad(da, inv(a), a); \ |
| } \ |
| SI F name##_channel(F s, F d, F sa, F da) |
| |
| BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; } |
| BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; } |
| BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); } |
| BLEND_MODE(exclusion) { return s + d - two(s*d); } |
| |
| BLEND_MODE(colorburn) { |
| return if_then_else(d == da, d + s*inv(da), |
| if_then_else(s == 0, s + d*inv(sa), |
| sa*(da - min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa))); |
| } |
| BLEND_MODE(colordodge) { |
| return if_then_else(d == 0, d + s*inv(da), |
| if_then_else(s == sa, s + d*inv(sa), |
| sa*min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa))); |
| } |
| BLEND_MODE(hardlight) { |
| return s*inv(da) + d*inv(sa) |
| + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s))); |
| } |
| BLEND_MODE(overlay) { |
| return s*inv(da) + d*inv(sa) |
| + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s))); |
| } |
| |
| BLEND_MODE(softlight) { |
| F m = if_then_else(da > 0, d / da, 0), |
| s2 = two(s), |
| m4 = two(two(m)); |
| |
| // The logic forks three ways: |
| // 1. dark src? |
| // 2. light src, dark dst? |
| // 3. light src, light dst? |
| F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. |
| darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. |
| liteDst = rcp(rsqrt(m)) - m, // Used in case 3. |
| liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3? |
| return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)? |
| } |
| #undef BLEND_MODE |
| |
| // We're basing our implemenation of non-separable blend modes on |
| // https://www.w3.org/TR/compositing-1/#blendingnonseparable. |
| // and |
| // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf |
| // They're equivalent, but ES' math has been better simplified. |
| // |
| // Anything extra we add beyond that is to make the math work with premul inputs. |
| |
| SI F max(F r, F g, F b) { return max(r, max(g, b)); } |
| SI F min(F r, F g, F b) { return min(r, min(g, b)); } |
| |
| SI F sat(F r, F g, F b) { return max(r,g,b) - min(r,g,b); } |
| SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; } |
| |
| SI void set_sat(F* r, F* g, F* b, F s) { |
| F mn = min(*r,*g,*b), |
| mx = max(*r,*g,*b), |
| sat = mx - mn; |
| |
| // Map min channel to 0, max channel to s, and scale the middle proportionally. |
| auto scale = [=](F c) { |
| return if_then_else(sat == 0, 0, (c - mn) * s / sat); |
| }; |
| *r = scale(*r); |
| *g = scale(*g); |
| *b = scale(*b); |
| } |
| SI void set_lum(F* r, F* g, F* b, F l) { |
| F diff = l - lum(*r, *g, *b); |
| *r += diff; |
| *g += diff; |
| *b += diff; |
| } |
| SI void clip_color(F* r, F* g, F* b, F a) { |
| F mn = min(*r, *g, *b), |
| mx = max(*r, *g, *b), |
| l = lum(*r, *g, *b); |
| |
| auto clip = [=](F c) { |
| c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) ); |
| c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c); |
| c = max(c, 0); // Sometimes without this we may dip just a little negative. |
| return c; |
| }; |
| *r = clip(*r); |
| *g = clip(*g); |
| *b = clip(*b); |
| } |
| |
| STAGE(hue) { |
| F R = r*a, |
| G = g*a, |
| B = b*a; |
| |
| set_sat(&R, &G, &B, sat(dr,dg,db)*a); |
| set_lum(&R, &G, &B, lum(dr,dg,db)*a); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(saturation) { |
| F R = dr*a, |
| G = dg*a, |
| B = db*a; |
| |
| set_sat(&R, &G, &B, sat( r, g, b)*da); |
| set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.) |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(color) { |
| F R = r*da, |
| G = g*da, |
| B = b*da; |
| |
| set_lum(&R, &G, &B, lum(dr,dg,db)*a); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(luminosity) { |
| F R = dr*a, |
| G = dg*a, |
| B = db*a; |
| |
| set_lum(&R, &G, &B, lum(r,g,b)*da); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| |
| STAGE(srcover_rgba_8888) { |
| auto ptr = *(uint32_t**)ctx + x; |
| |
| U32 dst = load<U32>(ptr, tail); |
| dr = cast((dst ) & 0xff); |
| dg = cast((dst >> 8) & 0xff); |
| db = cast((dst >> 16) & 0xff); |
| da = cast((dst >> 24) ); |
| // {dr,dg,db,da} are in [0,255] |
| // { r, g, b, a} are in [0, 1] |
| |
| r = mad(dr, inv(a), r*255.0f); |
| g = mad(dg, inv(a), g*255.0f); |
| b = mad(db, inv(a), b*255.0f); |
| a = mad(da, inv(a), a*255.0f); |
| // { r, g, b, a} are now in [0,255] |
| |
| dst = round(r, 1.0f) |
| | round(g, 1.0f) << 8 |
| | round(b, 1.0f) << 16 |
| | round(a, 1.0f) << 24; |
| store(ptr, dst, tail); |
| } |
| |
| STAGE(clamp_0) { |
| r = max(r, 0); |
| g = max(g, 0); |
| b = max(b, 0); |
| a = max(a, 0); |
| } |
| |
| STAGE(clamp_1) { |
| r = min(r, 1.0f); |
| g = min(g, 1.0f); |
| b = min(b, 1.0f); |
| a = min(a, 1.0f); |
| } |
| |
| STAGE(clamp_a) { |
| a = min(a, 1.0f); |
| r = min(r, a); |
| g = min(g, a); |
| b = min(b, a); |
| } |
| |
| STAGE(clamp_a_dst) { |
| da = min(da, 1.0f); |
| dr = min(dr, da); |
| dg = min(dg, da); |
| db = min(db, da); |
| } |
| |
| STAGE(set_rgb) { |
| auto rgb = (const float*)ctx; |
| r = rgb[0]; |
| g = rgb[1]; |
| b = rgb[2]; |
| } |
| STAGE(swap_rb) { |
| auto tmp = r; |
| r = b; |
| b = tmp; |
| } |
| |
| STAGE(move_src_dst) { |
| dr = r; |
| dg = g; |
| db = b; |
| da = a; |
| } |
| STAGE(move_dst_src) { |
| r = dr; |
| g = dg; |
| b = db; |
| a = da; |
| } |
| |
| STAGE(premul) { |
| r = r * a; |
| g = g * a; |
| b = b * a; |
| } |
| STAGE(premul_dst) { |
| dr = dr * da; |
| dg = dg * da; |
| db = db * da; |
| } |
| STAGE(unpremul) { |
| auto scale = if_then_else(a == 0, 0, 1.0f / a); |
| r *= scale; |
| g *= scale; |
| b *= scale; |
| } |
| |
| SI F from_srgb(F s) { |
| auto lo = s * (1/12.92f); |
| auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f); |
| return if_then_else(s < 0.055f, lo, hi); |
| } |
| |
| STAGE(from_srgb) { |
| r = from_srgb(r); |
| g = from_srgb(g); |
| b = from_srgb(b); |
| } |
| STAGE(from_srgb_dst) { |
| dr = from_srgb(dr); |
| dg = from_srgb(dg); |
| db = from_srgb(db); |
| } |
| STAGE(to_srgb) { |
| auto fn = [&](F l) { |
| // We tweak c and d for each instruction set to make sure fn(1) is exactly 1. |
| #if defined(JUMPER) && defined(__SSE2__) |
| const float c = 1.130048394203f, |
| d = 0.141357362270f; |
| #elif defined(JUMPER) && (defined(__aarch64__) || defined(__arm__)) |
| const float c = 1.129999995232f, |
| d = 0.141381442547f; |
| #else |
| const float c = 1.129999995232f, |
| d = 0.141377761960f; |
| #endif |
| F t = rsqrt(l); |
| auto lo = l * 12.92f; |
| auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), c) |
| * rcp(d + t); |
| return if_then_else(l < 0.00465985f, lo, hi); |
| }; |
| r = fn(r); |
| g = fn(g); |
| b = fn(b); |
| } |
| |
| STAGE(rgb_to_hsl) { |
| F mx = max(max(r,g), b), |
| mn = min(min(r,g), b), |
| d = mx - mn, |
| d_rcp = 1.0f / d; |
| |
| F h = (1/6.0f) * |
| if_then_else(mx == mn, 0, |
| if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0), |
| if_then_else(mx == g, (b-r)*d_rcp + 2.0f, |
| (r-g)*d_rcp + 4.0f))); |
| |
| F l = (mx + mn) * 0.5f; |
| F s = if_then_else(mx == mn, 0, |
| d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn)); |
| |
| r = h; |
| g = s; |
| b = l; |
| } |
| STAGE(hsl_to_rgb) { |
| F h = r, |
| s = g, |
| l = b; |
| |
| F q = l + if_then_else(l >= 0.5f, s - l*s, l*s), |
| p = 2.0f*l - q; |
| |
| auto hue_to_rgb = [&](F t) { |
| t = fract(t); |
| |
| F r = p; |
| r = if_then_else(t >= 4/6.0f, r, p + (q-p)*(4.0f - 6.0f*t)); |
| r = if_then_else(t >= 3/6.0f, r, q); |
| r = if_then_else(t >= 1/6.0f, r, p + (q-p)*( 6.0f*t)); |
| return r; |
| }; |
| |
| r = if_then_else(s == 0, l, hue_to_rgb(h + (1/3.0f))); |
| g = if_then_else(s == 0, l, hue_to_rgb(h )); |
| b = if_then_else(s == 0, l, hue_to_rgb(h - (1/3.0f))); |
| } |
| |
| STAGE(scale_1_float) { |
| auto c = *(const float*)ctx; |
| |
| r = r * c; |
| g = g * c; |
| b = b * c; |
| a = a * c; |
| } |
| STAGE(scale_u8) { |
| auto ptr = *(const uint8_t**)ctx + x; |
| |
| auto scales = load<U8>(ptr, tail); |
| auto c = from_byte(scales); |
| |
| r = r * c; |
| g = g * c; |
| b = b * c; |
| a = a * c; |
| } |
| |
| SI F lerp(F from, F to, F t) { |
| return mad(to-from, t, from); |
| } |
| |
| STAGE(lerp_1_float) { |
| auto c = *(const float*)ctx; |
| |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE(lerp_u8) { |
| auto ptr = *(const uint8_t**)ctx + x; |
| |
| auto scales = load<U8>(ptr, tail); |
| auto c = from_byte(scales); |
| |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE(lerp_565) { |
| auto ptr = *(const uint16_t**)ctx + x; |
| |
| F cr,cg,cb; |
| from_565(load<U16>(ptr, tail), &cr, &cg, &cb); |
| |
| r = lerp(dr, r, cr); |
| g = lerp(dg, g, cg); |
| b = lerp(db, b, cb); |
| a = max(lerp(da, a, cr), lerp(da, a, cg), lerp(da, a, cb)); |
| } |
| |
| STAGE(load_tables) { |
| auto c = (const SkJumper_LoadTablesCtx*)ctx; |
| |
| auto px = load<U32>((const uint32_t*)c->src + x, tail); |
| r = gather(c->r, (px ) & 0xff); |
| g = gather(c->g, (px >> 8) & 0xff); |
| b = gather(c->b, (px >> 16) & 0xff); |
| a = cast( (px >> 24)) * (1/255.0f); |
| } |
| STAGE(load_tables_u16_be) { |
| auto c = (const SkJumper_LoadTablesCtx*)ctx; |
| auto ptr = (const uint16_t*)c->src + 4*x; |
| |
| U16 R,G,B,A; |
| load4(ptr, tail, &R,&G,&B,&A); |
| |
| // c->src is big-endian, so & 0xff grabs the 8 most signficant bits. |
| r = gather(c->r, expand(R) & 0xff); |
| g = gather(c->g, expand(G) & 0xff); |
| b = gather(c->b, expand(B) & 0xff); |
| a = (1/65535.0f) * cast(expand(bswap(A))); |
| } |
| STAGE(load_tables_rgb_u16_be) { |
| auto c = (const SkJumper_LoadTablesCtx*)ctx; |
| auto ptr = (const uint16_t*)c->src + 3*x; |
| |
| U16 R,G,B; |
| load3(ptr, tail, &R,&G,&B); |
| |
| // c->src is big-endian, so & 0xff grabs the 8 most signficant bits. |
| r = gather(c->r, expand(R) & 0xff); |
| g = gather(c->g, expand(G) & 0xff); |
| b = gather(c->b, expand(B) & 0xff); |
| a = 1.0f; |
| } |
| |
| STAGE(byte_tables) { |
| struct Tables { const uint8_t *r, *g, *b, *a; }; |
| auto tables = (const Tables*)ctx; |
| |
| r = from_byte(gather(tables->r, round(r, 255.0f))); |
| g = from_byte(gather(tables->g, round(g, 255.0f))); |
| b = from_byte(gather(tables->b, round(b, 255.0f))); |
| a = from_byte(gather(tables->a, round(a, 255.0f))); |
| } |
| |
| STAGE(byte_tables_rgb) { |
| struct Tables { const uint8_t *r, *g, *b; int n; }; |
| auto tables = (const Tables*)ctx; |
| |
| F scale = tables->n - 1; |
| r = from_byte(gather(tables->r, round(r, scale))); |
| g = from_byte(gather(tables->g, round(g, scale))); |
| b = from_byte(gather(tables->b, round(b, scale))); |
| } |
| |
| SI F table(F v, const SkJumper_TableCtx* ctx) { |
| return gather(ctx->table, round(v, ctx->size - 1)); |
| } |
| STAGE(table_r) { r = table(r, ctx); } |
| STAGE(table_g) { g = table(g, ctx); } |
| STAGE(table_b) { b = table(b, ctx); } |
| STAGE(table_a) { a = table(a, ctx); } |
| |
| SI F parametric(F v, const SkJumper_ParametricTransferFunction* ctx) { |
| F r = if_then_else(v <= ctx->D, mad(ctx->C, v, ctx->F) |
| , approx_powf(mad(ctx->A, v, ctx->B), ctx->G) + ctx->E); |
| return min(max(r, 0), 1.0f); // Clamp to [0,1], with argument order mattering to handle NaN. |
| } |
| STAGE(parametric_r) { r = parametric(r, ctx); } |
| STAGE(parametric_g) { g = parametric(g, ctx); } |
| STAGE(parametric_b) { b = parametric(b, ctx); } |
| STAGE(parametric_a) { a = parametric(a, ctx); } |
| |
| STAGE(lab_to_xyz) { |
| F L = r * 100.0f, |
| A = g * 255.0f - 128.0f, |
| B = b * 255.0f - 128.0f; |
| |
| F Y = (L + 16.0f) * (1/116.0f), |
| X = Y + A*(1/500.0f), |
| Z = Y - B*(1/200.0f); |
| |
| X = if_then_else(X*X*X > 0.008856f, X*X*X, (X - (16/116.0f)) * (1/7.787f)); |
| Y = if_then_else(Y*Y*Y > 0.008856f, Y*Y*Y, (Y - (16/116.0f)) * (1/7.787f)); |
| Z = if_then_else(Z*Z*Z > 0.008856f, Z*Z*Z, (Z - (16/116.0f)) * (1/7.787f)); |
| |
| // Adjust to D50 illuminant. |
| r = X * 0.96422f; |
| g = Y ; |
| b = Z * 0.82521f; |
| } |
| |
| STAGE(load_a8) { |
| auto ptr = *(const uint8_t**)ctx + x; |
| |
| r = g = b = 0.0f; |
| a = from_byte(load<U8>(ptr, tail)); |
| } |
| STAGE(load_a8_dst) { |
| auto ptr = *(const uint8_t**)ctx + x; |
| |
| dr = dg = db = 0.0f; |
| da = from_byte(load<U8>(ptr, tail)); |
| } |
| STAGE(gather_a8) { |
| const uint8_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| r = g = b = 0.0f; |
| a = from_byte(gather(ptr, ix)); |
| } |
| STAGE(store_a8) { |
| auto ptr = *(uint8_t**)ctx + x; |
| |
| U8 packed = pack(pack(round(a, 255.0f))); |
| store(ptr, packed, tail); |
| } |
| |
| STAGE(load_g8) { |
| auto ptr = *(const uint8_t**)ctx + x; |
| |
| r = g = b = from_byte(load<U8>(ptr, tail)); |
| a = 1.0f; |
| } |
| STAGE(load_g8_dst) { |
| auto ptr = *(const uint8_t**)ctx + x; |
| |
| dr = dg = db = from_byte(load<U8>(ptr, tail)); |
| da = 1.0f; |
| } |
| STAGE(gather_g8) { |
| const uint8_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| r = g = b = from_byte(gather(ptr, ix)); |
| a = 1.0f; |
| } |
| |
| STAGE(load_565) { |
| auto ptr = *(const uint16_t**)ctx + x; |
| |
| from_565(load<U16>(ptr, tail), &r,&g,&b); |
| a = 1.0f; |
| } |
| STAGE(load_565_dst) { |
| auto ptr = *(const uint16_t**)ctx + x; |
| |
| from_565(load<U16>(ptr, tail), &dr,&dg,&db); |
| da = 1.0f; |
| } |
| STAGE(gather_565) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_565(gather(ptr, ix), &r,&g,&b); |
| a = 1.0f; |
| } |
| STAGE(store_565) { |
| auto ptr = *(uint16_t**)ctx + x; |
| |
| U16 px = pack( round(r, 31.0f) << 11 |
| | round(g, 63.0f) << 5 |
| | round(b, 31.0f) ); |
| store(ptr, px, tail); |
| } |
| |
| STAGE(load_4444) { |
| auto ptr = *(const uint16_t**)ctx + x; |
| from_4444(load<U16>(ptr, tail), &r,&g,&b,&a); |
| } |
| STAGE(load_4444_dst) { |
| auto ptr = *(const uint16_t**)ctx + x; |
| from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da); |
| } |
| STAGE(gather_4444) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_4444(gather(ptr, ix), &r,&g,&b,&a); |
| } |
| STAGE(store_4444) { |
| auto ptr = *(uint16_t**)ctx + x; |
| U16 px = pack( round(r, 15.0f) << 12 |
| | round(g, 15.0f) << 8 |
| | round(b, 15.0f) << 4 |
| | round(a, 15.0f) ); |
| store(ptr, px, tail); |
| } |
| |
| STAGE(load_8888) { |
| auto ptr = *(const uint32_t**)ctx + x; |
| from_8888(load<U32>(ptr, tail), &r,&g,&b,&a); |
| } |
| STAGE(load_8888_dst) { |
| auto ptr = *(const uint32_t**)ctx + x; |
| from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da); |
| } |
| STAGE(gather_8888) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_8888(gather(ptr, ix), &r,&g,&b,&a); |
| } |
| STAGE(store_8888) { |
| auto ptr = *(uint32_t**)ctx + x; |
| |
| U32 px = round(r, 255.0f) |
| | round(g, 255.0f) << 8 |
| | round(b, 255.0f) << 16 |
| | round(a, 255.0f) << 24; |
| store(ptr, px, tail); |
| } |
| |
| STAGE(store_8888_2d) { |
| auto c = (const SkJumper_MemoryCtx*)ctx; |
| auto ptr = (uint32_t*)c->pixels + y*c->stride + x; |
| |
| U32 px = round(r, 255.0f) |
| | round(g, 255.0f) << 8 |
| | round(b, 255.0f) << 16 |
| | round(a, 255.0f) << 24; |
| store(ptr, px, tail); |
| } |
| |
| STAGE(load_bgra) { |
| auto ptr = *(const uint32_t**)ctx + x; |
| from_8888(load<U32>(ptr, tail), &b,&g,&r,&a); |
| } |
| STAGE(load_bgra_dst) { |
| auto ptr = *(const uint32_t**)ctx + x; |
| from_8888(load<U32>(ptr, tail), &db,&dg,&dr,&da); |
| } |
| STAGE(gather_bgra) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_8888(gather(ptr, ix), &b,&g,&r,&a); |
| } |
| STAGE(store_bgra) { |
| auto ptr = *(uint32_t**)ctx + x; |
| |
| U32 px = round(b, 255.0f) |
| | round(g, 255.0f) << 8 |
| | round(r, 255.0f) << 16 |
| | round(a, 255.0f) << 24; |
| store(ptr, px, tail); |
| } |
| |
| STAGE(load_f16) { |
| auto ptr = *(const uint64_t**)ctx + x; |
| |
| U16 R,G,B,A; |
| load4((const uint16_t*)ptr,tail, &R,&G,&B,&A); |
| r = from_half(R); |
| g = from_half(G); |
| b = from_half(B); |
| a = from_half(A); |
| } |
| STAGE(load_f16_dst) { |
| auto ptr = *(const uint64_t**)ctx + x; |
| |
| U16 R,G,B,A; |
| load4((const uint16_t*)ptr,tail, &R,&G,&B,&A); |
| dr = from_half(R); |
| dg = from_half(G); |
| db = from_half(B); |
| da = from_half(A); |
| } |
| STAGE(gather_f16) { |
| const uint64_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| auto px = gather(ptr, ix); |
| |
| U16 R,G,B,A; |
| load4((const uint16_t*)&px,0, &R,&G,&B,&A); |
| r = from_half(R); |
| g = from_half(G); |
| b = from_half(B); |
| a = from_half(A); |
| } |
| STAGE(store_f16) { |
| auto ptr = *(uint64_t**)ctx + x; |
| store4((uint16_t*)ptr,tail, to_half(r) |
| , to_half(g) |
| , to_half(b) |
| , to_half(a)); |
| } |
| |
| STAGE(load_u16_be) { |
| auto ptr = *(const uint16_t**)ctx + 4*x; |
| |
| U16 R,G,B,A; |
| load4(ptr,tail, &R,&G,&B,&A); |
| |
| r = (1/65535.0f) * cast(expand(bswap(R))); |
| g = (1/65535.0f) * cast(expand(bswap(G))); |
| b = (1/65535.0f) * cast(expand(bswap(B))); |
| a = (1/65535.0f) * cast(expand(bswap(A))); |
| } |
| STAGE(load_rgb_u16_be) { |
| auto ptr = *(const uint16_t**)ctx + 3*x; |
| |
| U16 R,G,B; |
| load3(ptr,tail, &R,&G,&B); |
| |
| r = (1/65535.0f) * cast(expand(bswap(R))); |
| g = (1/65535.0f) * cast(expand(bswap(G))); |
| b = (1/65535.0f) * cast(expand(bswap(B))); |
| a = 1.0f; |
| } |
| STAGE(store_u16_be) { |
| auto ptr = *(uint16_t**)ctx + 4*x; |
| |
| U16 R = bswap(pack(round(r, 65535.0f))), |
| G = bswap(pack(round(g, 65535.0f))), |
| B = bswap(pack(round(b, 65535.0f))), |
| A = bswap(pack(round(a, 65535.0f))); |
| |
| store4(ptr,tail, R,G,B,A); |
| } |
| |
| STAGE(load_f32) { |
| auto ptr = *(const float**)ctx + 4*x; |
| load4(ptr,tail, &r,&g,&b,&a); |
| } |
| STAGE(load_f32_dst) { |
| auto ptr = *(const float**)ctx + 4*x; |
| load4(ptr,tail, &dr,&dg,&db,&da); |
| } |
| STAGE(store_f32) { |
| auto ptr = *(float**)ctx + 4*x; |
| store4(ptr,tail, r,g,b,a); |
| } |
| |
| SI F ulp_before(F f) { |
| U32 bits = -1 + unaligned_load<U32>(&f); |
| return unaligned_load<F>(&bits); |
| } |
| |
| SI F exclusive_clamp(F v, const SkJumper_TileCtx* ctx) { |
| v = max(0,v); |
| return min(v, ulp_before(ctx->scale)); |
| } |
| SI F exclusive_repeat(F v, const SkJumper_TileCtx* ctx) { |
| v = v - floor_(v*ctx->invScale)*ctx->scale; |
| return min(v, ulp_before(ctx->scale)); |
| } |
| SI F exclusive_mirror(F v, const SkJumper_TileCtx* ctx) { |
| auto limit = ctx->scale; |
| auto invLimit = ctx->invScale; |
| v = abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit ); |
| return min(v, ulp_before(limit)); |
| } |
| // Clamp x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images). |
| STAGE(clamp_x) { r = exclusive_clamp (r, (const SkJumper_TileCtx*)ctx); } |
| STAGE(clamp_y) { g = exclusive_clamp (g, (const SkJumper_TileCtx*)ctx); } |
| STAGE(repeat_x) { r = exclusive_repeat(r, (const SkJumper_TileCtx*)ctx); } |
| STAGE(repeat_y) { g = exclusive_repeat(g, (const SkJumper_TileCtx*)ctx); } |
| STAGE(mirror_x) { r = exclusive_mirror(r, (const SkJumper_TileCtx*)ctx); } |
| STAGE(mirror_y) { g = exclusive_mirror(g, (const SkJumper_TileCtx*)ctx); } |
| |
| // Clamp x to [0,1], both sides exclusive (think, gradients). |
| STAGE( clamp_x_1) { r = min(max(0, r), 1.0f); } |
| STAGE(repeat_x_1) { r = r - floor_(r); } |
| STAGE(mirror_x_1) { r = abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f ); } |
| |
| STAGE(luminance_to_alpha) { |
| a = r*0.2126f + g*0.7152f + b*0.0722f; |
| r = g = b = 0; |
| } |
| |
| STAGE(matrix_translate) { |
| auto m = (const float*)ctx; |
| |
| r += m[0]; |
| g += m[1]; |
| } |
| STAGE(matrix_scale_translate) { |
| auto m = (const float*)ctx; |
| |
| r = mad(r,m[2], m[0]); |
| g = mad(g,m[3], m[1]); |
| } |
| STAGE(matrix_2x3) { |
| auto m = (const float*)ctx; |
| |
| auto R = mad(r,m[0], mad(g,m[2], m[4])), |
| G = mad(r,m[1], mad(g,m[3], m[5])); |
| r = R; |
| g = G; |
| } |
| STAGE(matrix_3x4) { |
| auto m = (const float*)ctx; |
| |
| auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))), |
| G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))), |
| B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11]))); |
| r = R; |
| g = G; |
| b = B; |
| } |
| STAGE(matrix_4x5) { |
| auto m = (const float*)ctx; |
| |
| auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))), |
| G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))), |
| B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))), |
| A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19])))); |
| r = R; |
| g = G; |
| b = B; |
| a = A; |
| } |
| STAGE(matrix_4x3) { |
| auto m = (const float*)ctx; |
| auto X = r, |
| Y = g; |
| |
| r = mad(X, m[0], mad(Y, m[4], m[ 8])); |
| g = mad(X, m[1], mad(Y, m[5], m[ 9])); |
| b = mad(X, m[2], mad(Y, m[6], m[10])); |
| a = mad(X, m[3], mad(Y, m[7], m[11])); |
| } |
| STAGE(matrix_perspective) { |
| // N.B. Unlike the other matrix_ stages, this matrix is row-major. |
| auto m = (const float*)ctx; |
| |
| auto R = mad(r,m[0], mad(g,m[1], m[2])), |
| G = mad(r,m[3], mad(g,m[4], m[5])), |
| Z = mad(r,m[6], mad(g,m[7], m[8])); |
| r = R * rcp(Z); |
| g = G * rcp(Z); |
| } |
| |
| SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t, |
| F* r, F* g, F* b, F* a) { |
| F fr, br, fg, bg, fb, bb, fa, ba; |
| #if defined(JUMPER) && defined(__AVX2__) |
| if (c->stopCount <=8) { |
| fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx); |
| br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx); |
| fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx); |
| bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx); |
| fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx); |
| bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx); |
| fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx); |
| ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx); |
| } else |
| #endif |
| { |
| fr = gather(c->fs[0], idx); |
| br = gather(c->bs[0], idx); |
| fg = gather(c->fs[1], idx); |
| bg = gather(c->bs[1], idx); |
| fb = gather(c->fs[2], idx); |
| bb = gather(c->bs[2], idx); |
| fa = gather(c->fs[3], idx); |
| ba = gather(c->bs[3], idx); |
| } |
| |
| *r = mad(t, fr, br); |
| *g = mad(t, fg, bg); |
| *b = mad(t, fb, bb); |
| *a = mad(t, fa, ba); |
| } |
| |
| STAGE(evenly_spaced_gradient) { |
| auto c = (const SkJumper_GradientCtx*)ctx; |
| auto t = r; |
| auto idx = trunc_(t * (c->stopCount-1)); |
| gradient_lookup(c, idx, t, &r, &g, &b, &a); |
| } |
| |
| STAGE(gauss_a_to_rgba) { |
| // x = 1 - x; |
| // exp(-x * x * 4) - 0.018f; |
| // ... now approximate with quartic |
| // |
| const float c4 = -2.26661229133605957031f; |
| const float c3 = 2.89795351028442382812f; |
| const float c2 = 0.21345567703247070312f; |
| const float c1 = 0.15489584207534790039f; |
| const float c0 = 0.00030726194381713867f; |
| a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0); |
| r = a; |
| g = a; |
| b = a; |
| } |
| |
| STAGE(gradient) { |
| auto c = (const SkJumper_GradientCtx*)ctx; |
| auto t = r; |
| U32 idx = 0; |
| |
| // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. |
| for (size_t i = 1; i < c->stopCount; i++) { |
| idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); |
| } |
| |
| gradient_lookup(c, idx, t, &r, &g, &b, &a); |
| } |
| |
| STAGE(evenly_spaced_2_stop_gradient) { |
| struct Ctx { float f[4], b[4]; }; |
| auto c = (const Ctx*)ctx; |
| |
| auto t = r; |
| r = mad(t, c->f[0], c->b[0]); |
| g = mad(t, c->f[1], c->b[1]); |
| b = mad(t, c->f[2], c->b[2]); |
| a = mad(t, c->f[3], c->b[3]); |
| } |
| |
| STAGE(xy_to_unit_angle) { |
| F X = r, |
| Y = g; |
| F xabs = abs_(X), |
| yabs = abs_(Y); |
| |
| F slope = min(xabs, yabs)/max(xabs, yabs); |
| F s = slope * slope; |
| |
| // Use a 7th degree polynomial to approximate atan. |
| // This was generated using sollya.gforge.inria.fr. |
| // A float optimized polynomial was generated using the following command. |
| // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); |
| F phi = slope |
| * (0.15912117063999176025390625f + s |
| * (-5.185396969318389892578125e-2f + s |
| * (2.476101927459239959716796875e-2f + s |
| * (-7.0547382347285747528076171875e-3f)))); |
| |
| phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); |
| phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi); |
| phi = if_then_else(Y < 0.0f , 1.0f - phi , phi); |
| phi = if_then_else(phi != phi , 0 , phi); // Check for NaN. |
| r = phi; |
| } |
| |
| STAGE(xy_to_radius) { |
| F X2 = r * r, |
| Y2 = g * g; |
| r = sqrt_(X2 + Y2); |
| } |
| |
| SI F solve_2pt_conical_quadratic(const SkJumper_2PtConicalCtx* c, F x, F y, F (*select)(F, F)) { |
| // At this point, (x, y) is mapped into a synthetic gradient space with |
| // the start circle centerd on (0, 0), and the end circle centered on (1, 0) |
| // (see the stage setup). |
| // |
| // We're searching along X-axis for x', such that |
| // |
| // 1) r(x') is a linear interpolation between r0 and r1 |
| // 2) (x, y) is on the circle C(x', 0, r(x')) |
| // |
| // Solving this system boils down to a quadratic equation with coefficients |
| // |
| // a = 1 - (r1 - r0)^2 <- constant, precomputed in ctx->fCoeffA) |
| // |
| // b = -2 * (x + (r1 - r0) * r0) |
| // |
| // c = x^2 + y^2 - r0^2 |
| // |
| // Since the start/end circle centers are the extremes of the [0, 1] interval |
| // on the X axis, the solution (x') is exactly the t we are looking for. |
| |
| const F coeffA = c->fCoeffA, |
| coeffB = -2 * (x + c->fDR*c->fR0), |
| coeffC = x*x + y*y - c->fR0*c->fR0; |
| |
| const F disc = mad(coeffB, coeffB, -4 * coeffA * coeffC); |
| const F sqrt_disc = sqrt_(disc); |
| |
| const F invCoeffA = c->fInvCoeffA; |
| return select((-coeffB + sqrt_disc) * (invCoeffA * 0.5f), |
| (-coeffB - sqrt_disc) * (invCoeffA * 0.5f)); |
| } |
| |
| STAGE(xy_to_2pt_conical_quadratic_max) { |
| r = solve_2pt_conical_quadratic(ctx, r, g, max); |
| } |
| |
| STAGE(xy_to_2pt_conical_quadratic_min) { |
| r = solve_2pt_conical_quadratic(ctx, r, g, min); |
| } |
| |
| STAGE(xy_to_2pt_conical_linear) { |
| auto* c = (const SkJumper_2PtConicalCtx*)ctx; |
| |
| const F coeffB = -2 * (r + c->fDR*c->fR0), |
| coeffC = r*r + g*g - c->fR0*c->fR0; |
| |
| r = -coeffC / coeffB; |
| } |
| |
| STAGE(mask_2pt_conical_degenerates) { |
| auto* c = (SkJumper_2PtConicalCtx*)ctx; |
| |
| // Compute and save a mask for degenerate values. |
| U32 mask = 0xffffffff; |
| |
| // TODO: mtklein kindly volunteered to revisit this at some point. |
| #if defined(JUMPER) |
| // Vector comparisons set all bits, so we can use something like this. |
| mask = mask & (mad(r, c->fDR, c->fR0) >= 0); // R(t) >= 0 |
| mask = mask & (r == r); // t != NaN |
| #else |
| // The portable version is more involved, 'cause we only get one bit back. |
| mask = mask & if_then_else(mad(r, c->fDR, c->fR0) >= 0, U32(0xffffffff), U32(0)); // R(t) >= 0 |
| mask = mask & if_then_else(r == r, U32(0xffffffff), U32(0)); // t != NaN |
| #endif |
| |
| unaligned_store(&c->fMask, mask); |
| } |
| |
| STAGE(apply_vector_mask) { |
| const U32 mask = unaligned_load<U32>((const uint32_t*)ctx); |
| r = bit_cast<F>(bit_cast<U32>(r) & mask); |
| g = bit_cast<F>(bit_cast<U32>(g) & mask); |
| b = bit_cast<F>(bit_cast<U32>(b) & mask); |
| a = bit_cast<F>(bit_cast<U32>(a) & mask); |
| } |
| |
| STAGE(save_xy) { |
| auto c = (SkJumper_SamplerCtx*)ctx; |
| |
| // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy). |
| // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid |
| // surrounding (x,y) at (0.5,0.5) off-center. |
| F fx = fract(r + 0.5f), |
| fy = fract(g + 0.5f); |
| |
| // Samplers will need to load x and fx, or y and fy. |
| unaligned_store(c->x, r); |
| unaligned_store(c->y, g); |
| unaligned_store(c->fx, fx); |
| unaligned_store(c->fy, fy); |
| } |
| |
| STAGE(accumulate) { |
| auto c = (const SkJumper_SamplerCtx*)ctx; |
| |
| // Bilinear and bicubic filters are both separable, so we produce independent contributions |
| // from x and y, multiplying them together here to get each pixel's total scale factor. |
| auto scale = unaligned_load<F>(c->scalex) |
| * unaligned_load<F>(c->scaley); |
| dr = mad(scale, r, dr); |
| dg = mad(scale, g, dg); |
| db = mad(scale, b, db); |
| da = mad(scale, a, da); |
| } |
| |
| // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center |
| // are combined in direct proportion to their area overlapping that logical query pixel. |
| // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x. |
| // The y-axis is symmetric. |
| |
| template <int kScale> |
| SI void bilinear_x(SkJumper_SamplerCtx* ctx, F* x) { |
| *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f); |
| F fx = unaligned_load<F>(ctx->fx); |
| |
| F scalex; |
| if (kScale == -1) { scalex = 1.0f - fx; } |
| if (kScale == +1) { scalex = fx; } |
| unaligned_store(ctx->scalex, scalex); |
| } |
| template <int kScale> |
| SI void bilinear_y(SkJumper_SamplerCtx* ctx, F* y) { |
| *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f); |
| F fy = unaligned_load<F>(ctx->fy); |
| |
| F scaley; |
| if (kScale == -1) { scaley = 1.0f - fy; } |
| if (kScale == +1) { scaley = fy; } |
| unaligned_store(ctx->scaley, scaley); |
| } |
| |
| STAGE(bilinear_nx) { bilinear_x<-1>(ctx, &r); } |
| STAGE(bilinear_px) { bilinear_x<+1>(ctx, &r); } |
| STAGE(bilinear_ny) { bilinear_y<-1>(ctx, &g); } |
| STAGE(bilinear_py) { bilinear_y<+1>(ctx, &g); } |
| |
| |
| // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample |
| // pixel center are combined with a non-uniform cubic filter, with higher values near the center. |
| // |
| // We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets. |
| // See GrCubicEffect for details of this particular filter. |
| |
| SI F bicubic_near(F t) { |
| // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18 |
| return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f)); |
| } |
| SI F bicubic_far(F t) { |
| // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18) |
| return (t*t)*mad((7/18.0f), t, (-6/18.0f)); |
| } |
| |
| template <int kScale> |
| SI void bicubic_x(SkJumper_SamplerCtx* ctx, F* x) { |
| *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f); |
| F fx = unaligned_load<F>(ctx->fx); |
| |
| F scalex; |
| if (kScale == -3) { scalex = bicubic_far (1.0f - fx); } |
| if (kScale == -1) { scalex = bicubic_near(1.0f - fx); } |
| if (kScale == +1) { scalex = bicubic_near( fx); } |
| if (kScale == +3) { scalex = bicubic_far ( fx); } |
| unaligned_store(ctx->scalex, scalex); |
| } |
| template <int kScale> |
| SI void bicubic_y(SkJumper_SamplerCtx* ctx, F* y) { |
| *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f); |
| F fy = unaligned_load<F>(ctx->fy); |
| |
| F scaley; |
| if (kScale == -3) { scaley = bicubic_far (1.0f - fy); } |
| if (kScale == -1) { scaley = bicubic_near(1.0f - fy); } |
| if (kScale == +1) { scaley = bicubic_near( fy); } |
| if (kScale == +3) { scaley = bicubic_far ( fy); } |
| unaligned_store(ctx->scaley, scaley); |
| } |
| |
| STAGE(bicubic_n3x) { bicubic_x<-3>(ctx, &r); } |
| STAGE(bicubic_n1x) { bicubic_x<-1>(ctx, &r); } |
| STAGE(bicubic_p1x) { bicubic_x<+1>(ctx, &r); } |
| STAGE(bicubic_p3x) { bicubic_x<+3>(ctx, &r); } |
| |
| STAGE(bicubic_n3y) { bicubic_y<-3>(ctx, &g); } |
| STAGE(bicubic_n1y) { bicubic_y<-1>(ctx, &g); } |
| STAGE(bicubic_p1y) { bicubic_y<+1>(ctx, &g); } |
| STAGE(bicubic_p3y) { bicubic_y<+3>(ctx, &g); } |
| |
| STAGE(callback) { |
| auto c = (SkJumper_CallbackCtx*)ctx; |
| store4(c->rgba,0, r,g,b,a); |
| c->fn(c, tail ? tail : kStride); |
| load4(c->read_from,0, &r,&g,&b,&a); |
| } |