| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkTwoPointConicalGradient.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrCoordTransform.h" |
| #include "GrPaint.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "SkTwoPointConicalGradient_gpu.h" |
| |
| // For brevity |
| typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; |
| |
| static const SkScalar kErrorTol = 0.00001f; |
| static const SkScalar kEdgeErrorTol = 5.f * kErrorTol; |
| |
| /** |
| * We have three general cases for 2pt conical gradients. First we always assume that |
| * the start radius <= end radius. Our first case (kInside_) is when the start circle |
| * is completely enclosed by the end circle. The second case (kOutside_) is the case |
| * when the start circle is either completely outside the end circle or the circles |
| * overlap. The final case (kEdge_) is when the start circle is inside the end one, |
| * but the two are just barely touching at 1 point along their edges. |
| */ |
| enum ConicalType { |
| kInside_ConicalType, |
| kOutside_ConicalType, |
| kEdge_ConicalType, |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static void set_matrix_edge_conical(const SkTwoPointConicalGradient& shader, |
| SkMatrix* invLMatrix) { |
| // Inverse of the current local matrix is passed in then, |
| // translate to center1, rotate so center2 is on x axis. |
| const SkPoint& center1 = shader.getStartCenter(); |
| const SkPoint& center2 = shader.getEndCenter(); |
| |
| invLMatrix->postTranslate(-center1.fX, -center1.fY); |
| |
| SkPoint diff = center2 - center1; |
| SkScalar diffLen = diff.length(); |
| if (0 != diffLen) { |
| SkScalar invDiffLen = SkScalarInvert(diffLen); |
| SkMatrix rot; |
| rot.setSinCos(-invDiffLen * diff.fY, invDiffLen * diff.fX); |
| invLMatrix->postConcat(rot); |
| } |
| } |
| |
| class Edge2PtConicalEffect : public GrGradientEffect { |
| public: |
| class GLSLEdge2PtConicalProcessor; |
| |
| static sk_sp<GrFragmentProcessor> Make(const CreateArgs& args) { |
| auto processor = sk_sp<Edge2PtConicalEffect>(new Edge2PtConicalEffect(args)); |
| return processor->isValid() ? std::move(processor) : nullptr; |
| } |
| |
| ~Edge2PtConicalEffect() override {} |
| |
| const char* name() const override { |
| return "Two-Point Conical Gradient Edge Touching"; |
| } |
| |
| // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. |
| SkScalar center() const { return fCenterX1; } |
| SkScalar diffRadius() const { return fDiffRadius; } |
| SkScalar radius() const { return fRadius0; } |
| |
| private: |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const Edge2PtConicalEffect& s = sBase.cast<Edge2PtConicalEffect>(); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fCenterX1 == s.fCenterX1 && |
| this->fRadius0 == s.fRadius0 && |
| this->fDiffRadius == s.fDiffRadius); |
| } |
| |
| Edge2PtConicalEffect(const CreateArgs& args) |
| : INHERITED(args, false /* opaque: draws transparent black outside of the cone. */) { |
| const SkTwoPointConicalGradient& shader = |
| *static_cast<const SkTwoPointConicalGradient*>(args.fShader); |
| fCenterX1 = shader.getCenterX1(); |
| fRadius0 = shader.getStartRadius(); |
| fDiffRadius = shader.getDiffRadius(); |
| this->initClassID<Edge2PtConicalEffect>(); |
| // We should only be calling this shader if we are degenerate case with touching circles |
| // When deciding if we are in edge case, we scaled by the end radius for cases when the |
| // start radius was close to zero, otherwise we scaled by the start radius. In addition |
| // Our test for the edge case in set_matrix_circle_conical has a higher tolerance so we |
| // need the sqrt value below |
| SkASSERT(SkScalarAbs(SkScalarAbs(fDiffRadius) - fCenterX1) < |
| (fRadius0 < kErrorTol ? shader.getEndRadius() * kEdgeErrorTol : |
| fRadius0 * sqrt(kEdgeErrorTol))); |
| |
| // We pass the linear part of the quadratic as a varying. |
| // float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z) |
| fBTransform = this->getCoordTransform(); |
| SkMatrix& bMatrix = *fBTransform.accessMatrix(); |
| SkScalar r0dr = fRadius0 * fDiffRadius; |
| bMatrix[SkMatrix::kMScaleX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMScaleX] + |
| r0dr * bMatrix[SkMatrix::kMPersp0]); |
| bMatrix[SkMatrix::kMSkewX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMSkewX] + |
| r0dr * bMatrix[SkMatrix::kMPersp1]); |
| bMatrix[SkMatrix::kMTransX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMTransX] + |
| r0dr * bMatrix[SkMatrix::kMPersp2]); |
| this->addCoordTransform(&fBTransform); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST |
| |
| // @{ |
| // Cache of values - these can change arbitrarily, EXCEPT |
| // we shouldn't change between degenerate and non-degenerate?! |
| |
| GrCoordTransform fBTransform; |
| SkScalar fCenterX1; |
| SkScalar fRadius0; |
| SkScalar fDiffRadius; |
| |
| // @} |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| class Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor : public GrGradientEffect::GLSLProcessor { |
| public: |
| GLSLEdge2PtConicalProcessor(const GrProcessor&); |
| ~GLSLEdge2PtConicalProcessor() override {} |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| UniformHandle fParamUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedRadius; |
| SkScalar fCachedDiffRadius; |
| |
| // @} |
| |
| private: |
| typedef GrGradientEffect::GLSLProcessor INHERITED; |
| |
| }; |
| |
| void Edge2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* Edge2PtConicalEffect::onCreateGLSLInstance() const { |
| return new Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor(*this); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(Edge2PtConicalEffect); |
| |
| /* |
| * All Two point conical gradient test create functions may occasionally create edge case shaders |
| */ |
| #if GR_TEST_UTILS |
| sk_sp<GrFragmentProcessor> Edge2PtConicalEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; |
| SkScalar radius1 = d->fRandom->nextUScalar1(); |
| SkPoint center2; |
| SkScalar radius2; |
| do { |
| center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); |
| // If the circles are identical the factory will give us an empty shader. |
| // This will happen if we pick identical centers |
| } while (center1 == center2); |
| |
| // Below makes sure that circle one is contained within circle two |
| // and both circles are touching on an edge |
| SkPoint diff = center2 - center1; |
| SkScalar diffLen = diff.length(); |
| radius2 = radius1 + diffLen; |
| |
| RandomGradientParams params(d->fRandom); |
| auto shader = params.fUseColors4f ? |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors4f, params.fColorSpace, params.fStops, |
| params.fColorCount, params.fTileMode) : |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors, params.fStops, |
| params.fColorCount, params.fTileMode); |
| GrTest::TestAsFPArgs asFPArgs(d); |
| sk_sp<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); |
| GrAlwaysAssert(fp); |
| return fp; |
| } |
| #endif |
| |
| Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GLSLEdge2PtConicalProcessor(const GrProcessor&) |
| : fVSVaryingName(nullptr) |
| , fFSVaryingName(nullptr) |
| , fCachedRadius(-SK_ScalarMax) |
| , fCachedDiffRadius(-SK_ScalarMax) {} |
| |
| void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::emitCode(EmitArgs& args) { |
| const Edge2PtConicalEffect& ge = args.fFp.cast<Edge2PtConicalEffect>(); |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| this->emitUniforms(uniformHandler, ge); |
| fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec3f_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSParams"); |
| |
| SkString cName("c"); |
| SkString tName("t"); |
| SkString p0; // start radius |
| SkString p1; // start radius squared |
| SkString p2; // difference in radii (r1 - r0) |
| |
| |
| p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); |
| p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); |
| p2.appendf("%s.z", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); |
| |
| // We interpolate the linear component in coords[1]. |
| SkASSERT(args.fTransformedCoords[0].getType() == args.fTransformedCoords[1].getType()); |
| const char* coords2D; |
| SkString bVar; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| if (kVec3f_GrSLType == args.fTransformedCoords[0].getType()) { |
| fragBuilder->codeAppendf("\tvec3 interpolants = vec3(%s.xy / %s.z, %s.x / %s.z);\n", |
| args.fTransformedCoords[0].c_str(), |
| args.fTransformedCoords[0].c_str(), |
| args.fTransformedCoords[1].c_str(), |
| args.fTransformedCoords[1].c_str()); |
| coords2D = "interpolants.xy"; |
| bVar = "interpolants.z"; |
| } else { |
| coords2D = args.fTransformedCoords[0].c_str(); |
| bVar.printf("%s.x", args.fTransformedCoords[1].c_str()); |
| } |
| |
| // output will default to transparent black (we simply won't write anything |
| // else to it if invalid, instead of discarding or returning prematurely) |
| fragBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor); |
| |
| // c = (x^2)+(y^2) - params[1] |
| fragBuilder->codeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", |
| cName.c_str(), coords2D, coords2D, p1.c_str()); |
| |
| // linear case: t = -c/b |
| fragBuilder->codeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(), |
| cName.c_str(), bVar.c_str()); |
| |
| // if r(t) > 0, then t will be the x coordinate |
| fragBuilder->codeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), |
| p2.c_str(), p0.c_str()); |
| fragBuilder->codeAppend("\t"); |
| this->emitColor(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| ge, |
| tName.c_str(), |
| args.fOutputColor, |
| args.fInputColor, |
| args.fTexSamplers); |
| fragBuilder->codeAppend("\t}\n"); |
| } |
| |
| void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::onSetData( |
| const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { |
| INHERITED::onSetData(pdman, processor); |
| const Edge2PtConicalEffect& data = processor.cast<Edge2PtConicalEffect>(); |
| SkScalar radius0 = data.radius(); |
| SkScalar diffRadius = data.diffRadius(); |
| |
| if (fCachedRadius != radius0 || |
| fCachedDiffRadius != diffRadius) { |
| |
| pdman.set3f(fParamUni, radius0, radius0 * radius0, diffRadius); |
| fCachedRadius = radius0; |
| fCachedDiffRadius = diffRadius; |
| } |
| } |
| |
| void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GenKey(const GrProcessor& processor, |
| const GrShaderCaps&, GrProcessorKeyBuilder* b) { |
| b->add32(GenBaseGradientKey(processor)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // Focal Conical Gradients |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static ConicalType set_matrix_focal_conical(const SkTwoPointConicalGradient& shader, |
| SkMatrix* invLMatrix, SkScalar* focalX) { |
| // Inverse of the current local matrix is passed in then, |
| // translate, scale, and rotate such that endCircle is unit circle on x-axis, |
| // and focal point is at the origin. |
| ConicalType conicalType; |
| const SkPoint& focal = shader.getStartCenter(); |
| const SkPoint& centerEnd = shader.getEndCenter(); |
| SkScalar radius = shader.getEndRadius(); |
| SkScalar invRadius = 1.f / radius; |
| |
| SkMatrix matrix; |
| |
| matrix.setTranslate(-centerEnd.fX, -centerEnd.fY); |
| matrix.postScale(invRadius, invRadius); |
| |
| SkPoint focalTrans; |
| matrix.mapPoints(&focalTrans, &focal, 1); |
| *focalX = focalTrans.length(); |
| |
| if (0.f != *focalX) { |
| SkScalar invFocalX = SkScalarInvert(*focalX); |
| SkMatrix rot; |
| rot.setSinCos(-invFocalX * focalTrans.fY, invFocalX * focalTrans.fX); |
| matrix.postConcat(rot); |
| } |
| |
| matrix.postTranslate(-(*focalX), 0.f); |
| |
| // If the focal point is touching the edge of the circle it will |
| // cause a degenerate case that must be handled separately |
| // kEdgeErrorTol = 5 * kErrorTol was picked after manual testing the |
| // stability trade off versus the linear approx used in the Edge Shader |
| if (SkScalarAbs(1.f - (*focalX)) < kEdgeErrorTol) { |
| return kEdge_ConicalType; |
| } |
| |
| // Scale factor 1 / (1 - focalX * focalX) |
| SkScalar oneMinusF2 = 1.f - *focalX * *focalX; |
| SkScalar s = SkScalarInvert(oneMinusF2); |
| |
| |
| if (s >= 0.f) { |
| conicalType = kInside_ConicalType; |
| matrix.postScale(s, s * SkScalarSqrt(oneMinusF2)); |
| } else { |
| conicalType = kOutside_ConicalType; |
| matrix.postScale(s, s); |
| } |
| |
| invLMatrix->postConcat(matrix); |
| |
| return conicalType; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class FocalOutside2PtConicalEffect : public GrGradientEffect { |
| public: |
| class GLSLFocalOutside2PtConicalProcessor; |
| |
| static sk_sp<GrFragmentProcessor> Make(const CreateArgs& args, SkScalar focalX) { |
| auto processor = |
| sk_sp<FocalOutside2PtConicalEffect>(new FocalOutside2PtConicalEffect(args, focalX)); |
| return processor->isValid() ? std::move(processor) : nullptr; |
| } |
| |
| ~FocalOutside2PtConicalEffect() override {} |
| |
| const char* name() const override { |
| return "Two-Point Conical Gradient Focal Outside"; |
| } |
| |
| bool isFlipped() const { return fIsFlipped; } |
| SkScalar focal() const { return fFocalX; } |
| |
| private: |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const FocalOutside2PtConicalEffect& s = sBase.cast<FocalOutside2PtConicalEffect>(); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fFocalX == s.fFocalX && |
| this->fIsFlipped == s.fIsFlipped); |
| } |
| |
| static bool IsFlipped(const CreateArgs& args) { |
| // eww. |
| return static_cast<const SkTwoPointConicalGradient*>(args.fShader)->isFlippedGrad(); |
| } |
| |
| FocalOutside2PtConicalEffect(const CreateArgs& args, SkScalar focalX) |
| : INHERITED(args, false /* opaque: draws transparent black outside of the cone. */) |
| , fFocalX(focalX) |
| , fIsFlipped(IsFlipped(args)) { |
| this->initClassID<FocalOutside2PtConicalEffect>(); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST |
| |
| SkScalar fFocalX; |
| bool fIsFlipped; |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| class FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor |
| : public GrGradientEffect::GLSLProcessor { |
| public: |
| GLSLFocalOutside2PtConicalProcessor(const GrProcessor&); |
| ~GLSLFocalOutside2PtConicalProcessor() override {} |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| UniformHandle fParamUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| bool fIsFlipped; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedFocal; |
| |
| // @} |
| |
| private: |
| typedef GrGradientEffect::GLSLProcessor INHERITED; |
| |
| }; |
| |
| void FocalOutside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* FocalOutside2PtConicalEffect::onCreateGLSLInstance() const { |
| return new FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor(*this); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalOutside2PtConicalEffect); |
| |
| /* |
| * All Two point conical gradient test create functions may occasionally create edge case shaders |
| */ |
| #if GR_TEST_UTILS |
| sk_sp<GrFragmentProcessor> FocalOutside2PtConicalEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; |
| SkScalar radius1 = 0.f; |
| SkPoint center2; |
| SkScalar radius2; |
| do { |
| center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); |
| // Need to make sure the centers are not the same or else focal point will be inside |
| } while (center1 == center2); |
| |
| SkPoint diff = center2 - center1; |
| SkScalar diffLen = diff.length(); |
| // Below makes sure that the focal point is not contained within circle two |
| radius2 = d->fRandom->nextRangeF(0.f, diffLen); |
| |
| RandomGradientParams params(d->fRandom); |
| auto shader = params.fUseColors4f ? |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors4f, params.fColorSpace, params.fStops, |
| params.fColorCount, params.fTileMode) : |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors, params.fStops, |
| params.fColorCount, params.fTileMode); |
| GrTest::TestAsFPArgs asFPArgs(d); |
| sk_sp<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); |
| GrAlwaysAssert(fp); |
| return fp; |
| } |
| #endif |
| |
| FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor |
| ::GLSLFocalOutside2PtConicalProcessor(const GrProcessor& processor) |
| : fVSVaryingName(nullptr) |
| , fFSVaryingName(nullptr) |
| , fCachedFocal(SK_ScalarMax) { |
| const FocalOutside2PtConicalEffect& data = processor.cast<FocalOutside2PtConicalEffect>(); |
| fIsFlipped = data.isFlipped(); |
| } |
| |
| void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::emitCode(EmitArgs& args) { |
| const FocalOutside2PtConicalEffect& ge = args.fFp.cast<FocalOutside2PtConicalEffect>(); |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| this->emitUniforms(uniformHandler, ge); |
| fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec2f_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSParams"); |
| SkString tName("t"); |
| SkString p0; // focalX |
| SkString p1; // 1 - focalX * focalX |
| |
| p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); |
| p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); |
| |
| // if we have a vec3 from being in perspective, convert it to a vec2 first |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); |
| const char* coords2D = coords2DString.c_str(); |
| |
| // t = p.x * focal.x +/- sqrt(p.x^2 + (1 - focal.x^2) * p.y^2) |
| |
| // output will default to transparent black (we simply won't write anything |
| // else to it if invalid, instead of discarding or returning prematurely) |
| fragBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor); |
| |
| fragBuilder->codeAppendf("\tfloat xs = %s.x * %s.x;\n", coords2D, coords2D); |
| fragBuilder->codeAppendf("\tfloat ys = %s.y * %s.y;\n", coords2D, coords2D); |
| fragBuilder->codeAppendf("\tfloat d = xs + %s * ys;\n", p1.c_str()); |
| |
| // Must check to see if we flipped the circle order (to make sure start radius < end radius) |
| // If so we must also flip sign on sqrt |
| if (!fIsFlipped) { |
| fragBuilder->codeAppendf("\tfloat %s = %s.x * %s + sqrt(d);\n", tName.c_str(), |
| coords2D, p0.c_str()); |
| } else { |
| fragBuilder->codeAppendf("\tfloat %s = %s.x * %s - sqrt(d);\n", tName.c_str(), |
| coords2D, p0.c_str()); |
| } |
| |
| fragBuilder->codeAppendf("\tif (%s >= 0.0 && d >= 0.0) {\n", tName.c_str()); |
| fragBuilder->codeAppend("\t\t"); |
| this->emitColor(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| ge, |
| tName.c_str(), |
| args.fOutputColor, |
| args.fInputColor, |
| args.fTexSamplers); |
| fragBuilder->codeAppend("\t}\n"); |
| } |
| |
| void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::onSetData( |
| const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { |
| INHERITED::onSetData(pdman, processor); |
| const FocalOutside2PtConicalEffect& data = processor.cast<FocalOutside2PtConicalEffect>(); |
| SkASSERT(data.isFlipped() == fIsFlipped); |
| SkScalar focal = data.focal(); |
| |
| if (fCachedFocal != focal) { |
| SkScalar oneMinus2F = 1.f - focal * focal; |
| |
| pdman.set2f(fParamUni, SkScalarToFloat(focal), SkScalarToFloat(oneMinus2F)); |
| fCachedFocal = focal; |
| } |
| } |
| |
| void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::GenKey( |
| const GrProcessor& processor, |
| const GrShaderCaps&, GrProcessorKeyBuilder* b) { |
| uint32_t* key = b->add32n(2); |
| key[0] = GenBaseGradientKey(processor); |
| key[1] = processor.cast<FocalOutside2PtConicalEffect>().isFlipped(); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class FocalInside2PtConicalEffect : public GrGradientEffect { |
| public: |
| class GLSLFocalInside2PtConicalProcessor; |
| |
| static sk_sp<GrFragmentProcessor> Make(const CreateArgs& args, SkScalar focalX) { |
| auto processor = |
| sk_sp<FocalInside2PtConicalEffect>(new FocalInside2PtConicalEffect(args, focalX)); |
| return processor->isValid() ? std::move(processor) : nullptr; |
| } |
| |
| ~FocalInside2PtConicalEffect() override {} |
| |
| const char* name() const override { |
| return "Two-Point Conical Gradient Focal Inside"; |
| } |
| |
| SkScalar focal() const { return fFocalX; } |
| |
| typedef FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor GLSLProcessor; |
| |
| private: |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const FocalInside2PtConicalEffect& s = sBase.cast<FocalInside2PtConicalEffect>(); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fFocalX == s.fFocalX); |
| } |
| |
| FocalInside2PtConicalEffect(const CreateArgs& args, SkScalar focalX) |
| : INHERITED(args, args.fShader->colorsAreOpaque()), fFocalX(focalX) { |
| this->initClassID<FocalInside2PtConicalEffect>(); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST |
| |
| SkScalar fFocalX; |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| class FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor |
| : public GrGradientEffect::GLSLProcessor { |
| public: |
| GLSLFocalInside2PtConicalProcessor(const GrProcessor&); |
| ~GLSLFocalInside2PtConicalProcessor() override {} |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| UniformHandle fFocalUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedFocal; |
| |
| // @} |
| |
| private: |
| typedef GrGradientEffect::GLSLProcessor INHERITED; |
| |
| }; |
| |
| void FocalInside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* FocalInside2PtConicalEffect::onCreateGLSLInstance() const { |
| return new FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor(*this); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalInside2PtConicalEffect); |
| |
| /* |
| * All Two point conical gradient test create functions may occasionally create edge case shaders |
| */ |
| #if GR_TEST_UTILS |
| sk_sp<GrFragmentProcessor> FocalInside2PtConicalEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; |
| SkScalar radius1 = 0.f; |
| SkPoint center2; |
| SkScalar radius2; |
| do { |
| center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); |
| // Below makes sure radius2 is larger enouch such that the focal point |
| // is inside the end circle |
| SkScalar increase = d->fRandom->nextUScalar1(); |
| SkPoint diff = center2 - center1; |
| SkScalar diffLen = diff.length(); |
| radius2 = diffLen + increase; |
| // If the circles are identical the factory will give us an empty shader. |
| } while (radius1 == radius2 && center1 == center2); |
| |
| RandomGradientParams params(d->fRandom); |
| auto shader = params.fUseColors4f ? |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors4f, params.fColorSpace, params.fStops, |
| params.fColorCount, params.fTileMode) : |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors, params.fStops, |
| params.fColorCount, params.fTileMode); |
| GrTest::TestAsFPArgs asFPArgs(d); |
| sk_sp<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); |
| GrAlwaysAssert(fp); |
| return fp; |
| } |
| #endif |
| |
| FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor |
| ::GLSLFocalInside2PtConicalProcessor(const GrProcessor&) |
| : fVSVaryingName(nullptr) |
| , fFSVaryingName(nullptr) |
| , fCachedFocal(SK_ScalarMax) {} |
| |
| void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::emitCode(EmitArgs& args) { |
| const FocalInside2PtConicalEffect& ge = args.fFp.cast<FocalInside2PtConicalEffect>(); |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| this->emitUniforms(uniformHandler, ge); |
| fFocalUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kFloat_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSParams"); |
| SkString tName("t"); |
| |
| // this is the distance along x-axis from the end center to focal point in |
| // transformed coordinates |
| GrShaderVar focal = uniformHandler->getUniformVariable(fFocalUni); |
| |
| // if we have a vec3 from being in perspective, convert it to a vec2 first |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); |
| const char* coords2D = coords2DString.c_str(); |
| |
| // t = p.x * focalX + length(p) |
| fragBuilder->codeAppendf("\tfloat %s = %s.x * %s + length(%s);\n", tName.c_str(), |
| coords2D, focal.c_str(), coords2D); |
| |
| this->emitColor(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| ge, |
| tName.c_str(), |
| args.fOutputColor, |
| args.fInputColor, |
| args.fTexSamplers); |
| } |
| |
| void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::onSetData( |
| const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { |
| INHERITED::onSetData(pdman, processor); |
| const FocalInside2PtConicalEffect& data = processor.cast<FocalInside2PtConicalEffect>(); |
| SkScalar focal = data.focal(); |
| |
| if (fCachedFocal != focal) { |
| pdman.set1f(fFocalUni, SkScalarToFloat(focal)); |
| fCachedFocal = focal; |
| } |
| } |
| |
| void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::GenKey( |
| const GrProcessor& processor, |
| const GrShaderCaps&, GrProcessorKeyBuilder* b) { |
| b->add32(GenBaseGradientKey(processor)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // Circle Conical Gradients |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| struct CircleConicalInfo { |
| SkPoint fCenterEnd; |
| SkScalar fA; |
| SkScalar fB; |
| SkScalar fC; |
| }; |
| |
| // Returns focal distance along x-axis in transformed coords |
| static ConicalType set_matrix_circle_conical(const SkTwoPointConicalGradient& shader, |
| SkMatrix* invLMatrix, CircleConicalInfo* info) { |
| // Inverse of the current local matrix is passed in then, |
| // translate and scale such that start circle is on the origin and has radius 1 |
| const SkPoint& centerStart = shader.getStartCenter(); |
| const SkPoint& centerEnd = shader.getEndCenter(); |
| SkScalar radiusStart = shader.getStartRadius(); |
| SkScalar radiusEnd = shader.getEndRadius(); |
| |
| SkMatrix matrix; |
| |
| matrix.setTranslate(-centerStart.fX, -centerStart.fY); |
| |
| SkScalar invStartRad = 1.f / radiusStart; |
| matrix.postScale(invStartRad, invStartRad); |
| |
| radiusEnd /= radiusStart; |
| |
| SkPoint centerEndTrans; |
| matrix.mapPoints(¢erEndTrans, ¢erEnd, 1); |
| |
| SkScalar A = centerEndTrans.fX * centerEndTrans.fX + centerEndTrans.fY * centerEndTrans.fY |
| - radiusEnd * radiusEnd + 2 * radiusEnd - 1; |
| |
| // Check to see if start circle is inside end circle with edges touching. |
| // If touching we return that it is of kEdge_ConicalType, and leave the matrix setting |
| // to the edge shader. kEdgeErrorTol = 5 * kErrorTol was picked after manual testing |
| // so that C = 1 / A is stable, and the linear approximation used in the Edge shader is |
| // still accurate. |
| if (SkScalarAbs(A) < kEdgeErrorTol) { |
| return kEdge_ConicalType; |
| } |
| |
| SkScalar C = 1.f / A; |
| SkScalar B = (radiusEnd - 1.f) * C; |
| |
| matrix.postScale(C, C); |
| |
| invLMatrix->postConcat(matrix); |
| |
| info->fCenterEnd = centerEndTrans; |
| info->fA = A; |
| info->fB = B; |
| info->fC = C; |
| |
| // if A ends up being negative, the start circle is contained completely inside the end cirlce |
| if (A < 0.f) { |
| return kInside_ConicalType; |
| } |
| return kOutside_ConicalType; |
| } |
| |
| class CircleInside2PtConicalEffect : public GrGradientEffect { |
| public: |
| class GLSLCircleInside2PtConicalProcessor; |
| |
| static sk_sp<GrFragmentProcessor> Make(const CreateArgs& args, const CircleConicalInfo& info) { |
| auto processor = |
| sk_sp<CircleInside2PtConicalEffect>(new CircleInside2PtConicalEffect(args, info)); |
| return processor->isValid() ? std::move(processor) : nullptr; |
| } |
| |
| ~CircleInside2PtConicalEffect() override {} |
| |
| const char* name() const override { return "Two-Point Conical Gradient Inside"; } |
| |
| SkScalar centerX() const { return fInfo.fCenterEnd.fX; } |
| SkScalar centerY() const { return fInfo.fCenterEnd.fY; } |
| SkScalar A() const { return fInfo.fA; } |
| SkScalar B() const { return fInfo.fB; } |
| SkScalar C() const { return fInfo.fC; } |
| |
| private: |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const CircleInside2PtConicalEffect& s = sBase.cast<CircleInside2PtConicalEffect>(); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fInfo.fCenterEnd == s.fInfo.fCenterEnd && |
| this->fInfo.fA == s.fInfo.fA && |
| this->fInfo.fB == s.fInfo.fB && |
| this->fInfo.fC == s.fInfo.fC); |
| } |
| |
| CircleInside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info) |
| : INHERITED(args, args.fShader->colorsAreOpaque()), fInfo(info) { |
| this->initClassID<CircleInside2PtConicalEffect>(); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST |
| |
| const CircleConicalInfo fInfo; |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| class CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor |
| : public GrGradientEffect::GLSLProcessor { |
| public: |
| GLSLCircleInside2PtConicalProcessor(const GrProcessor&); |
| ~GLSLCircleInside2PtConicalProcessor() override {} |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| UniformHandle fCenterUni; |
| UniformHandle fParamUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedCenterX; |
| SkScalar fCachedCenterY; |
| SkScalar fCachedA; |
| SkScalar fCachedB; |
| SkScalar fCachedC; |
| |
| // @} |
| |
| private: |
| typedef GrGradientEffect::GLSLProcessor INHERITED; |
| |
| }; |
| |
| void CircleInside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* CircleInside2PtConicalEffect::onCreateGLSLInstance() const { |
| return new CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor(*this); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleInside2PtConicalEffect); |
| |
| /* |
| * All Two point conical gradient test create functions may occasionally create edge case shaders |
| */ |
| #if GR_TEST_UTILS |
| sk_sp<GrFragmentProcessor> CircleInside2PtConicalEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; |
| SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0 |
| SkPoint center2; |
| SkScalar radius2; |
| do { |
| center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); |
| // Below makes sure that circle one is contained within circle two |
| SkScalar increase = d->fRandom->nextUScalar1(); |
| SkPoint diff = center2 - center1; |
| SkScalar diffLen = diff.length(); |
| radius2 = radius1 + diffLen + increase; |
| // If the circles are identical the factory will give us an empty shader. |
| } while (radius1 == radius2 && center1 == center2); |
| |
| RandomGradientParams params(d->fRandom); |
| auto shader = params.fUseColors4f ? |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors4f, params.fColorSpace, params.fStops, |
| params.fColorCount, params.fTileMode) : |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors, params.fStops, |
| params.fColorCount, params.fTileMode); |
| GrTest::TestAsFPArgs asFPArgs(d); |
| sk_sp<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); |
| GrAlwaysAssert(fp); |
| return fp; |
| } |
| #endif |
| |
| CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor |
| ::GLSLCircleInside2PtConicalProcessor(const GrProcessor& processor) |
| : fVSVaryingName(nullptr) |
| , fFSVaryingName(nullptr) |
| , fCachedCenterX(SK_ScalarMax) |
| , fCachedCenterY(SK_ScalarMax) |
| , fCachedA(SK_ScalarMax) |
| , fCachedB(SK_ScalarMax) |
| , fCachedC(SK_ScalarMax) {} |
| |
| void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::emitCode(EmitArgs& args) { |
| const CircleInside2PtConicalEffect& ge = args.fFp.cast<CircleInside2PtConicalEffect>(); |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| this->emitUniforms(uniformHandler, ge); |
| fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec2f_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSCenter"); |
| fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec3f_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSParams"); |
| SkString tName("t"); |
| |
| GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni); |
| // params.x = A |
| // params.y = B |
| // params.z = C |
| GrShaderVar params = uniformHandler->getUniformVariable(fParamUni); |
| |
| // if we have a vec3 from being in perspective, convert it to a vec2 first |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); |
| const char* coords2D = coords2DString.c_str(); |
| |
| // p = coords2D |
| // e = center end |
| // r = radius end |
| // A = dot(e, e) - r^2 + 2 * r - 1 |
| // B = (r -1) / A |
| // C = 1 / A |
| // d = dot(e, p) + B |
| // t = d +/- sqrt(d^2 - A * dot(p, p) + C) |
| fragBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D); |
| fragBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(), |
| params.c_str()); |
| fragBuilder->codeAppendf("\tfloat %s = d + sqrt(d * d - %s.x * pDotp + %s.z);\n", |
| tName.c_str(), params.c_str(), params.c_str()); |
| |
| this->emitColor(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| ge, |
| tName.c_str(), |
| args.fOutputColor, |
| args.fInputColor, |
| args.fTexSamplers); |
| } |
| |
| void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::onSetData( |
| const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { |
| INHERITED::onSetData(pdman, processor); |
| const CircleInside2PtConicalEffect& data = processor.cast<CircleInside2PtConicalEffect>(); |
| SkScalar centerX = data.centerX(); |
| SkScalar centerY = data.centerY(); |
| SkScalar A = data.A(); |
| SkScalar B = data.B(); |
| SkScalar C = data.C(); |
| |
| if (fCachedCenterX != centerX || fCachedCenterY != centerY || |
| fCachedA != A || fCachedB != B || fCachedC != C) { |
| |
| pdman.set2f(fCenterUni, SkScalarToFloat(centerX), SkScalarToFloat(centerY)); |
| pdman.set3f(fParamUni, SkScalarToFloat(A), SkScalarToFloat(B), SkScalarToFloat(C)); |
| |
| fCachedCenterX = centerX; |
| fCachedCenterY = centerY; |
| fCachedA = A; |
| fCachedB = B; |
| fCachedC = C; |
| } |
| } |
| |
| void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::GenKey( |
| const GrProcessor& processor, |
| const GrShaderCaps&, GrProcessorKeyBuilder* b) { |
| b->add32(GenBaseGradientKey(processor)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleOutside2PtConicalEffect : public GrGradientEffect { |
| public: |
| class GLSLCircleOutside2PtConicalProcessor; |
| |
| static sk_sp<GrFragmentProcessor> Make(const CreateArgs& args, const CircleConicalInfo& info) { |
| return sk_sp<GrFragmentProcessor>( |
| new CircleOutside2PtConicalEffect(args, info)); |
| } |
| |
| ~CircleOutside2PtConicalEffect() override {} |
| |
| const char* name() const override { return "Two-Point Conical Gradient Outside"; } |
| |
| SkScalar centerX() const { return fInfo.fCenterEnd.fX; } |
| SkScalar centerY() const { return fInfo.fCenterEnd.fY; } |
| SkScalar A() const { return fInfo.fA; } |
| SkScalar B() const { return fInfo.fB; } |
| SkScalar C() const { return fInfo.fC; } |
| SkScalar tLimit() const { return fTLimit; } |
| bool isFlipped() const { return fIsFlipped; } |
| |
| private: |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const CircleOutside2PtConicalEffect& s = sBase.cast<CircleOutside2PtConicalEffect>(); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fInfo.fCenterEnd == s.fInfo.fCenterEnd && |
| this->fInfo.fA == s.fInfo.fA && |
| this->fInfo.fB == s.fInfo.fB && |
| this->fInfo.fC == s.fInfo.fC && |
| this->fTLimit == s.fTLimit && |
| this->fIsFlipped == s.fIsFlipped); |
| } |
| |
| CircleOutside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info) |
| : INHERITED(args, false /* opaque: draws transparent black outside of the cone. */) |
| , fInfo(info) { |
| this->initClassID<CircleOutside2PtConicalEffect>(); |
| const SkTwoPointConicalGradient& shader = |
| *static_cast<const SkTwoPointConicalGradient*>(args.fShader); |
| if (shader.getStartRadius() != shader.getEndRadius()) { |
| fTLimit = shader.getStartRadius() / (shader.getStartRadius() - shader.getEndRadius()); |
| } else { |
| fTLimit = SK_ScalarMin; |
| } |
| |
| fIsFlipped = shader.isFlippedGrad(); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST |
| |
| const CircleConicalInfo fInfo; |
| SkScalar fTLimit; |
| bool fIsFlipped; |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| class CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor |
| : public GrGradientEffect::GLSLProcessor { |
| public: |
| GLSLCircleOutside2PtConicalProcessor(const GrProcessor&); |
| ~GLSLCircleOutside2PtConicalProcessor() override {} |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| UniformHandle fCenterUni; |
| UniformHandle fParamUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| bool fIsFlipped; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedCenterX; |
| SkScalar fCachedCenterY; |
| SkScalar fCachedA; |
| SkScalar fCachedB; |
| SkScalar fCachedC; |
| SkScalar fCachedTLimit; |
| |
| // @} |
| |
| private: |
| typedef GrGradientEffect::GLSLProcessor INHERITED; |
| |
| }; |
| |
| void CircleOutside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* CircleOutside2PtConicalEffect::onCreateGLSLInstance() const { |
| return new CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor(*this); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleOutside2PtConicalEffect); |
| |
| /* |
| * All Two point conical gradient test create functions may occasionally create edge case shaders |
| */ |
| #if GR_TEST_UTILS |
| sk_sp<GrFragmentProcessor> CircleOutside2PtConicalEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; |
| SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0 |
| SkPoint center2; |
| SkScalar radius2; |
| SkScalar diffLen; |
| do { |
| center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); |
| // If the circles share a center than we can't be in the outside case |
| } while (center1 == center2); |
| SkPoint diff = center2 - center1; |
| diffLen = diff.length(); |
| // Below makes sure that circle one is not contained within circle two |
| // and have radius2 >= radius to match sorting on cpu side |
| radius2 = radius1 + d->fRandom->nextRangeF(0.f, diffLen); |
| |
| RandomGradientParams params(d->fRandom); |
| auto shader = params.fUseColors4f ? |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors4f, params.fColorSpace, params.fStops, |
| params.fColorCount, params.fTileMode) : |
| SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, |
| params.fColors, params.fStops, |
| params.fColorCount, params.fTileMode); |
| GrTest::TestAsFPArgs asFPArgs(d); |
| sk_sp<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); |
| GrAlwaysAssert(fp); |
| return fp; |
| } |
| #endif |
| |
| CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor |
| ::GLSLCircleOutside2PtConicalProcessor(const GrProcessor& processor) |
| : fVSVaryingName(nullptr) |
| , fFSVaryingName(nullptr) |
| , fCachedCenterX(SK_ScalarMax) |
| , fCachedCenterY(SK_ScalarMax) |
| , fCachedA(SK_ScalarMax) |
| , fCachedB(SK_ScalarMax) |
| , fCachedC(SK_ScalarMax) |
| , fCachedTLimit(SK_ScalarMax) { |
| const CircleOutside2PtConicalEffect& data = processor.cast<CircleOutside2PtConicalEffect>(); |
| fIsFlipped = data.isFlipped(); |
| } |
| |
| void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::emitCode(EmitArgs& args) { |
| const CircleOutside2PtConicalEffect& ge = args.fFp.cast<CircleOutside2PtConicalEffect>(); |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| this->emitUniforms(uniformHandler, ge); |
| fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec2f_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSCenter"); |
| fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "Conical2FSParams"); |
| SkString tName("t"); |
| |
| GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni); |
| // params.x = A |
| // params.y = B |
| // params.z = C |
| GrShaderVar params = uniformHandler->getUniformVariable(fParamUni); |
| |
| // if we have a vec3 from being in perspective, convert it to a vec2 first |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); |
| const char* coords2D = coords2DString.c_str(); |
| |
| // output will default to transparent black (we simply won't write anything |
| // else to it if invalid, instead of discarding or returning prematurely) |
| fragBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor); |
| |
| // p = coords2D |
| // e = center end |
| // r = radius end |
| // A = dot(e, e) - r^2 + 2 * r - 1 |
| // B = (r -1) / A |
| // C = 1 / A |
| // d = dot(e, p) + B |
| // t = d +/- sqrt(d^2 - A * dot(p, p) + C) |
| |
| fragBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D); |
| fragBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(), |
| params.c_str()); |
| fragBuilder->codeAppendf("\tfloat deter = d * d - %s.x * pDotp + %s.z;\n", params.c_str(), |
| params.c_str()); |
| |
| // Must check to see if we flipped the circle order (to make sure start radius < end radius) |
| // If so we must also flip sign on sqrt |
| if (!fIsFlipped) { |
| fragBuilder->codeAppendf("\tfloat %s = d + sqrt(deter);\n", tName.c_str()); |
| } else { |
| fragBuilder->codeAppendf("\tfloat %s = d - sqrt(deter);\n", tName.c_str()); |
| } |
| |
| fragBuilder->codeAppendf("\tif (%s >= %s.w && deter >= 0.0) {\n", |
| tName.c_str(), params.c_str()); |
| fragBuilder->codeAppend("\t\t"); |
| this->emitColor(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| ge, |
| tName.c_str(), |
| args.fOutputColor, |
| args.fInputColor, |
| args.fTexSamplers); |
| fragBuilder->codeAppend("\t}\n"); |
| } |
| |
| void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::onSetData( |
| const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { |
| INHERITED::onSetData(pdman, processor); |
| const CircleOutside2PtConicalEffect& data = processor.cast<CircleOutside2PtConicalEffect>(); |
| SkASSERT(data.isFlipped() == fIsFlipped); |
| SkScalar centerX = data.centerX(); |
| SkScalar centerY = data.centerY(); |
| SkScalar A = data.A(); |
| SkScalar B = data.B(); |
| SkScalar C = data.C(); |
| SkScalar tLimit = data.tLimit(); |
| |
| if (fCachedCenterX != centerX || fCachedCenterY != centerY || |
| fCachedA != A || fCachedB != B || fCachedC != C || fCachedTLimit != tLimit) { |
| |
| pdman.set2f(fCenterUni, SkScalarToFloat(centerX), SkScalarToFloat(centerY)); |
| pdman.set4f(fParamUni, SkScalarToFloat(A), SkScalarToFloat(B), SkScalarToFloat(C), |
| SkScalarToFloat(tLimit)); |
| |
| fCachedCenterX = centerX; |
| fCachedCenterY = centerY; |
| fCachedA = A; |
| fCachedB = B; |
| fCachedC = C; |
| fCachedTLimit = tLimit; |
| } |
| } |
| |
| void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::GenKey( |
| const GrProcessor& processor, |
| const GrShaderCaps&, GrProcessorKeyBuilder* b) { |
| uint32_t* key = b->add32n(2); |
| key[0] = GenBaseGradientKey(processor); |
| key[1] = processor.cast<CircleOutside2PtConicalEffect>().isFlipped(); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrFragmentProcessor> Gr2PtConicalGradientEffect::Make( |
| const GrGradientEffect::CreateArgs& args) { |
| const SkTwoPointConicalGradient& shader = |
| *static_cast<const SkTwoPointConicalGradient*>(args.fShader); |
| |
| SkMatrix matrix; |
| if (!shader.getLocalMatrix().invert(&matrix)) { |
| return nullptr; |
| } |
| if (args.fMatrix) { |
| SkMatrix inv; |
| if (!args.fMatrix->invert(&inv)) { |
| return nullptr; |
| } |
| matrix.postConcat(inv); |
| } |
| |
| GrGradientEffect::CreateArgs newArgs(args.fContext, args.fShader, &matrix, args.fTileMode, |
| std::move(args.fColorSpaceXform), args.fGammaCorrect); |
| |
| if (shader.getStartRadius() < kErrorTol) { |
| SkScalar focalX; |
| ConicalType type = set_matrix_focal_conical(shader, &matrix, &focalX); |
| if (type == kInside_ConicalType) { |
| return FocalInside2PtConicalEffect::Make(newArgs, focalX); |
| } else if(type == kEdge_ConicalType) { |
| set_matrix_edge_conical(shader, &matrix); |
| return Edge2PtConicalEffect::Make(newArgs); |
| } else { |
| return FocalOutside2PtConicalEffect::Make(newArgs, focalX); |
| } |
| } |
| |
| CircleConicalInfo info; |
| ConicalType type = set_matrix_circle_conical(shader, &matrix, &info); |
| |
| if (type == kInside_ConicalType) { |
| return CircleInside2PtConicalEffect::Make(newArgs, info); |
| } else if (type == kEdge_ConicalType) { |
| set_matrix_edge_conical(shader, &matrix); |
| return Edge2PtConicalEffect::Make(newArgs); |
| } else { |
| return CircleOutside2PtConicalEffect::Make(newArgs, info); |
| } |
| } |
| |
| #endif |