| /* |
| * Copyright © 2019, VideoLAN and dav1d authors |
| * Copyright © 2019, Michail Alvanos |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "src/ppc/dav1d_types.h" |
| #include "src/ppc/looprestoration.h" |
| |
| #if BITDEPTH == 8 |
| |
| #define REST_UNIT_STRIDE (400) |
| |
| static inline i32x4 iclip_vec(i32x4 v, const i32x4 minv, const i32x4 maxv) { |
| v = vec_max(minv, v); |
| v = vec_min(maxv, v); |
| return v; |
| } |
| |
| #define APPLY_FILTER_H(v, f, ssum1, ssum2) do { \ |
| i16x8 ktmp_u16_high = (i16x8) u8h_to_u16(v); \ |
| i16x8 ktmp_u16_low = (i16x8) u8l_to_u16(v); \ |
| ssum1 = vec_madd(ktmp_u16_high, f, ssum1); \ |
| ssum2 = vec_madd(ktmp_u16_low, f, ssum2); \ |
| } while (0) |
| |
| static void wiener_filter_h_vsx(int32_t *hor_ptr, |
| uint8_t *tmp_ptr, |
| const int16_t filterh[8], |
| const int w, const int h) |
| { |
| const i32x4 zerov = vec_splats(0); |
| const i32x4 seven_vec = vec_splats(7); |
| const i32x4 bitdepth_added_vec = vec_splats(1 << 14); |
| const i32x4 round_bits_vec = vec_splats(3); |
| const i32x4 rounding_off_vec = vec_splats(1<<2); |
| const i32x4 clip_limit_v = vec_splats((1 << 13) - 1); |
| |
| i16x8 filterhvall = vec_vsx_ld(0, filterh); |
| i16x8 filterhv0 = vec_splat( filterhvall, 0); |
| i16x8 filterhv1 = vec_splat( filterhvall, 1); |
| i16x8 filterhv2 = vec_splat( filterhvall, 2); |
| i16x8 filterhv3 = vec_splat( filterhvall, 3); |
| i16x8 filterhv4 = vec_splat( filterhvall, 4); |
| i16x8 filterhv5 = vec_splat( filterhvall, 5); |
| i16x8 filterhv6 = vec_splat( filterhvall, 6); |
| |
| for (int j = 0; j < h + 6; j++) { |
| for (int i = 0; i < w; i+=16) { |
| i32x4 sum1 = bitdepth_added_vec; |
| i32x4 sum2 = bitdepth_added_vec; |
| i32x4 sum3 = bitdepth_added_vec; |
| i32x4 sum4 = bitdepth_added_vec; |
| |
| u8x16 tmp_v0 = vec_ld(0, &tmp_ptr[i]); |
| u8x16 tmp_v7 = vec_ld(0, &tmp_ptr[i+16]); |
| |
| u8x16 tmp_v1 = vec_sld( tmp_v7, tmp_v0, 15); |
| u8x16 tmp_v2 = vec_sld( tmp_v7, tmp_v0, 14); |
| u8x16 tmp_v3 = vec_sld( tmp_v7, tmp_v0, 13); |
| u8x16 tmp_v4 = vec_sld( tmp_v7, tmp_v0, 12); |
| u8x16 tmp_v5 = vec_sld( tmp_v7, tmp_v0, 11); |
| u8x16 tmp_v6 = vec_sld( tmp_v7, tmp_v0, 10); |
| |
| u16x8 tmp_u16_high = u8h_to_u16(tmp_v3); |
| u16x8 tmp_u16_low = u8l_to_u16(tmp_v3); |
| |
| i32x4 tmp_expanded1 = i16h_to_i32(tmp_u16_high); |
| i32x4 tmp_expanded2 = i16l_to_i32(tmp_u16_high); |
| i32x4 tmp_expanded3 = i16h_to_i32(tmp_u16_low); |
| i32x4 tmp_expanded4 = i16l_to_i32(tmp_u16_low); |
| |
| i16x8 ssum1 = (i16x8) zerov; |
| i16x8 ssum2 = (i16x8) zerov; |
| |
| APPLY_FILTER_H(tmp_v0, filterhv0, ssum1, ssum2); |
| APPLY_FILTER_H(tmp_v1, filterhv1, ssum1, ssum2); |
| APPLY_FILTER_H(tmp_v2, filterhv2, ssum1, ssum2); |
| APPLY_FILTER_H(tmp_v3, filterhv3, ssum1, ssum2); |
| APPLY_FILTER_H(tmp_v4, filterhv4, ssum1, ssum2); |
| APPLY_FILTER_H(tmp_v5, filterhv5, ssum1, ssum2); |
| APPLY_FILTER_H(tmp_v6, filterhv6, ssum1, ssum2); |
| |
| sum1 += i16h_to_i32(ssum1) + (tmp_expanded1 << seven_vec); |
| sum2 += i16l_to_i32(ssum1) + (tmp_expanded2 << seven_vec); |
| sum3 += i16h_to_i32(ssum2) + (tmp_expanded3 << seven_vec); |
| sum4 += i16l_to_i32(ssum2) + (tmp_expanded4 << seven_vec); |
| |
| sum1 = (sum1 + rounding_off_vec) >> round_bits_vec; |
| sum2 = (sum2 + rounding_off_vec) >> round_bits_vec; |
| sum3 = (sum3 + rounding_off_vec) >> round_bits_vec; |
| sum4 = (sum4 + rounding_off_vec) >> round_bits_vec; |
| |
| sum1 = iclip_vec(sum1, zerov, clip_limit_v); |
| sum2 = iclip_vec(sum2, zerov, clip_limit_v); |
| sum3 = iclip_vec(sum3, zerov, clip_limit_v); |
| sum4 = iclip_vec(sum4, zerov, clip_limit_v); |
| |
| vec_st(sum1, 0, &hor_ptr[i]); |
| vec_st(sum2, 16, &hor_ptr[i]); |
| vec_st(sum3, 32, &hor_ptr[i]); |
| vec_st(sum4, 48, &hor_ptr[i]); |
| } |
| tmp_ptr += REST_UNIT_STRIDE; |
| hor_ptr += REST_UNIT_STRIDE; |
| } |
| } |
| |
| static inline i16x8 iclip_u8_vec(i16x8 v) { |
| const i16x8 zerov = vec_splats((int16_t)0); |
| const i16x8 maxv = vec_splats((int16_t)255); |
| v = vec_max(zerov, v); |
| v = vec_min(maxv, v); |
| return v; |
| } |
| |
| #define APPLY_FILTER_V(index, f) do { \ |
| i32x4 v1 = vec_ld( 0, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ |
| i32x4 v2 = vec_ld(16, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ |
| i32x4 v3 = vec_ld(32, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ |
| i32x4 v4 = vec_ld(48, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ |
| sum1 = sum1 + v1 * f; \ |
| sum2 = sum2 + v2 * f; \ |
| sum3 = sum3 + v3 * f; \ |
| sum4 = sum4 + v4 * f; \ |
| } while (0) |
| |
| #define LOAD_AND_APPLY_FILTER_V(sumpixelv, hor) do { \ |
| i32x4 sum1 = round_vec; \ |
| i32x4 sum2 = round_vec; \ |
| i32x4 sum3 = round_vec; \ |
| i32x4 sum4 = round_vec; \ |
| APPLY_FILTER_V(0, filterv0); \ |
| APPLY_FILTER_V(1, filterv1); \ |
| APPLY_FILTER_V(2, filterv2); \ |
| APPLY_FILTER_V(3, filterv3); \ |
| APPLY_FILTER_V(4, filterv4); \ |
| APPLY_FILTER_V(5, filterv5); \ |
| APPLY_FILTER_V(6, filterv6); \ |
| sum1 = sum1 >> round_bits_vec; \ |
| sum2 = sum2 >> round_bits_vec; \ |
| sum3 = sum3 >> round_bits_vec; \ |
| sum4 = sum4 >> round_bits_vec; \ |
| i16x8 sum_short_packed_1 = (i16x8) vec_pack(sum1, sum2); \ |
| i16x8 sum_short_packed_2 = (i16x8) vec_pack(sum3, sum4); \ |
| sum_short_packed_1 = iclip_u8_vec(sum_short_packed_1); \ |
| sum_short_packed_2 = iclip_u8_vec(sum_short_packed_2); \ |
| sum_pixel = (u8x16) vec_pack(sum_short_packed_1, sum_short_packed_2); \ |
| } while (0) |
| |
| static inline void wiener_filter_v_vsx(uint8_t *p, |
| const ptrdiff_t stride, |
| const int32_t *hor, |
| const int16_t filterv[8], |
| const int w, const int h) |
| { |
| const i32x4 round_bits_vec = vec_splats(11); |
| const i32x4 round_vec = vec_splats((1 << 10) - (1 << 18)); |
| |
| i32x4 filterv0 = vec_splats((int32_t) filterv[0]); |
| i32x4 filterv1 = vec_splats((int32_t) filterv[1]); |
| i32x4 filterv2 = vec_splats((int32_t) filterv[2]); |
| i32x4 filterv3 = vec_splats((int32_t) filterv[3]); |
| i32x4 filterv4 = vec_splats((int32_t) filterv[4]); |
| i32x4 filterv5 = vec_splats((int32_t) filterv[5]); |
| i32x4 filterv6 = vec_splats((int32_t) filterv[6]); |
| |
| for (int j = 0; j < h; j++) { |
| for (int i = 0; i <(w-w%16); i += 16) { |
| u8x16 sum_pixel; |
| LOAD_AND_APPLY_FILTER_V(sum_pixel, hor); |
| vec_vsx_st(sum_pixel, 0, &p[j * PXSTRIDE(stride) + i]); |
| } |
| // remaining loop |
| if (w & 0xf){ |
| int i=w-w%16; |
| ALIGN_STK_16(uint8_t, tmp_out, 16,); |
| u8x16 sum_pixel; |
| |
| LOAD_AND_APPLY_FILTER_V(sum_pixel, hor); |
| vec_vsx_st(sum_pixel, 0, tmp_out); |
| |
| for (int k=0; i<w; i++, k++) { |
| p[j * PXSTRIDE(stride) + i] = tmp_out[k]; |
| } |
| } |
| } |
| } |
| |
| static inline void padding(uint8_t *dst, const uint8_t *p, |
| const ptrdiff_t stride, const uint8_t (*left)[4], |
| const uint8_t *lpf, int unit_w, const int stripe_h, |
| const enum LrEdgeFlags edges) |
| { |
| const int have_left = !!(edges & LR_HAVE_LEFT); |
| const int have_right = !!(edges & LR_HAVE_RIGHT); |
| |
| // Copy more pixels if we don't have to pad them |
| unit_w += 3 * have_left + 3 * have_right; |
| uint8_t *dst_l = dst + 3 * !have_left; |
| p -= 3 * have_left; |
| lpf -= 3 * have_left; |
| |
| if (edges & LR_HAVE_TOP) { |
| // Copy previous loop filtered rows |
| const uint8_t *const above_1 = lpf; |
| const uint8_t *const above_2 = above_1 + PXSTRIDE(stride); |
| pixel_copy(dst_l, above_1, unit_w); |
| pixel_copy(dst_l + REST_UNIT_STRIDE, above_1, unit_w); |
| pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, above_2, unit_w); |
| } else { |
| // Pad with first row |
| pixel_copy(dst_l, p, unit_w); |
| pixel_copy(dst_l + REST_UNIT_STRIDE, p, unit_w); |
| pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, p, unit_w); |
| if (have_left) { |
| pixel_copy(dst_l, &left[0][1], 3); |
| pixel_copy(dst_l + REST_UNIT_STRIDE, &left[0][1], 3); |
| pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, &left[0][1], 3); |
| } |
| } |
| |
| uint8_t *dst_tl = dst_l + 3 * REST_UNIT_STRIDE; |
| if (edges & LR_HAVE_BOTTOM) { |
| // Copy next loop filtered rows |
| const uint8_t *const below_1 = lpf + 6 * PXSTRIDE(stride); |
| const uint8_t *const below_2 = below_1 + PXSTRIDE(stride); |
| pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, below_1, unit_w); |
| pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, below_2, unit_w); |
| pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, below_2, unit_w); |
| } else { |
| // Pad with last row |
| const uint8_t *const src = p + (stripe_h - 1) * PXSTRIDE(stride); |
| pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, src, unit_w); |
| pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, src, unit_w); |
| pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, src, unit_w); |
| if (have_left) { |
| pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); |
| pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); |
| pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); |
| } |
| } |
| |
| // Inner UNIT_WxSTRIPE_H |
| for (int j = 0; j < stripe_h; j++) { |
| pixel_copy(dst_tl + 3 * have_left, p + 3 * have_left, unit_w - 3 * have_left); |
| dst_tl += REST_UNIT_STRIDE; |
| p += PXSTRIDE(stride); |
| } |
| |
| if (!have_right) { |
| uint8_t *pad = dst_l + unit_w; |
| uint8_t *row_last = &dst_l[unit_w - 1]; |
| // Pad 3x(STRIPE_H+6) with last column |
| for (int j = 0; j < stripe_h + 6; j++) { |
| pixel_set(pad, *row_last, 3); |
| pad += REST_UNIT_STRIDE; |
| row_last += REST_UNIT_STRIDE; |
| } |
| } |
| |
| if (!have_left) { |
| // Pad 3x(STRIPE_H+6) with first column |
| for (int j = 0; j < stripe_h + 6; j++) { |
| pixel_set(dst, *dst_l, 3); |
| dst += REST_UNIT_STRIDE; |
| dst_l += REST_UNIT_STRIDE; |
| } |
| } else { |
| dst += 3 * REST_UNIT_STRIDE; |
| for (int j = 0; j < stripe_h; j++) { |
| pixel_copy(dst, &left[j][1], 3); |
| dst += REST_UNIT_STRIDE; |
| } |
| } |
| } |
| |
| // FIXME Could split into luma and chroma specific functions, |
| // (since first and last tops are always 0 for chroma) |
| // FIXME Could implement a version that requires less temporary memory |
| // (should be possible to implement with only 6 rows of temp storage) |
| void dav1d_wiener_filter_vsx(uint8_t *p, const ptrdiff_t stride, |
| const uint8_t (*const left)[4], |
| const uint8_t *lpf, |
| const int w, const int h, |
| const LooprestorationParams *const params, |
| const enum LrEdgeFlags edges HIGHBD_DECL_SUFFIX) |
| { |
| const int16_t (*const filter)[8] = params->filter; |
| |
| // Wiener filtering is applied to a maximum stripe height of 64 + 3 pixels |
| // of padding above and below |
| ALIGN_STK_16(uint8_t, tmp, 70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE,); |
| padding(tmp, p, stride, left, lpf, w, h, edges); |
| ALIGN_STK_16(int32_t, hor, 70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE + 64,); |
| |
| wiener_filter_h_vsx(hor, tmp, filter[0], w, h); |
| wiener_filter_v_vsx(p, stride, hor, filter[1], w, h); |
| } |
| #endif |