|  | //===-- primary64.h ---------------------------------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef SCUDO_PRIMARY64_H_ | 
|  | #define SCUDO_PRIMARY64_H_ | 
|  |  | 
|  | #include "bytemap.h" | 
|  | #include "common.h" | 
|  | #include "list.h" | 
|  | #include "local_cache.h" | 
|  | #include "memtag.h" | 
|  | #include "options.h" | 
|  | #include "release.h" | 
|  | #include "stats.h" | 
|  | #include "string_utils.h" | 
|  |  | 
|  | namespace scudo { | 
|  |  | 
|  | // SizeClassAllocator64 is an allocator tuned for 64-bit address space. | 
|  | // | 
|  | // It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in | 
|  | // Regions, specific to each size class. Note that the base of that mapping is | 
|  | // random (based to the platform specific map() capabilities). If | 
|  | // PrimaryEnableRandomOffset is set, each Region actually starts at a random | 
|  | // offset from its base. | 
|  | // | 
|  | // Regions are mapped incrementally on demand to fulfill allocation requests, | 
|  | // those mappings being split into equally sized Blocks based on the size class | 
|  | // they belong to. The Blocks created are shuffled to prevent predictable | 
|  | // address patterns (the predictability increases with the size of the Blocks). | 
|  | // | 
|  | // The 1st Region (for size class 0) holds the TransferBatches. This is a | 
|  | // structure used to transfer arrays of available pointers from the class size | 
|  | // freelist to the thread specific freelist, and back. | 
|  | // | 
|  | // The memory used by this allocator is never unmapped, but can be partially | 
|  | // released if the platform allows for it. | 
|  |  | 
|  | template <typename Config> class SizeClassAllocator64 { | 
|  | public: | 
|  | typedef typename Config::PrimaryCompactPtrT CompactPtrT; | 
|  | static const uptr CompactPtrScale = Config::PrimaryCompactPtrScale; | 
|  | static const uptr GroupSizeLog = Config::PrimaryGroupSizeLog; | 
|  | typedef typename Config::SizeClassMap SizeClassMap; | 
|  | typedef SizeClassAllocator64<Config> ThisT; | 
|  | typedef SizeClassAllocatorLocalCache<ThisT> CacheT; | 
|  | typedef typename CacheT::TransferBatch TransferBatch; | 
|  | typedef typename CacheT::BatchGroup BatchGroup; | 
|  |  | 
|  | static uptr getSizeByClassId(uptr ClassId) { | 
|  | return (ClassId == SizeClassMap::BatchClassId) | 
|  | ? roundUpTo(sizeof(TransferBatch), 1U << CompactPtrScale) | 
|  | : SizeClassMap::getSizeByClassId(ClassId); | 
|  | } | 
|  |  | 
|  | static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } | 
|  |  | 
|  | void init(s32 ReleaseToOsInterval) { | 
|  | DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT))); | 
|  | DCHECK_EQ(PrimaryBase, 0U); | 
|  | // Reserve the space required for the Primary. | 
|  | PrimaryBase = reinterpret_cast<uptr>( | 
|  | map(nullptr, PrimarySize, nullptr, MAP_NOACCESS, &Data)); | 
|  |  | 
|  | u32 Seed; | 
|  | const u64 Time = getMonotonicTime(); | 
|  | if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))) | 
|  | Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12)); | 
|  | const uptr PageSize = getPageSizeCached(); | 
|  | for (uptr I = 0; I < NumClasses; I++) { | 
|  | RegionInfo *Region = getRegionInfo(I); | 
|  | // The actual start of a region is offset by a random number of pages | 
|  | // when PrimaryEnableRandomOffset is set. | 
|  | Region->RegionBeg = getRegionBaseByClassId(I) + | 
|  | (Config::PrimaryEnableRandomOffset | 
|  | ? ((getRandomModN(&Seed, 16) + 1) * PageSize) | 
|  | : 0); | 
|  | Region->RandState = getRandomU32(&Seed); | 
|  | Region->ReleaseInfo.LastReleaseAtNs = Time; | 
|  | } | 
|  | setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval)); | 
|  | } | 
|  |  | 
|  | void unmapTestOnly() { | 
|  | for (uptr I = 0; I < NumClasses; I++) { | 
|  | RegionInfo *Region = getRegionInfo(I); | 
|  | *Region = {}; | 
|  | } | 
|  | if (PrimaryBase) | 
|  | unmap(reinterpret_cast<void *>(PrimaryBase), PrimarySize, UNMAP_ALL, | 
|  | &Data); | 
|  | PrimaryBase = 0U; | 
|  | } | 
|  |  | 
|  | TransferBatch *popBatch(CacheT *C, uptr ClassId) { | 
|  | DCHECK_LT(ClassId, NumClasses); | 
|  | RegionInfo *Region = getRegionInfo(ClassId); | 
|  | ScopedLock L(Region->Mutex); | 
|  | TransferBatch *B = popBatchImpl(C, ClassId); | 
|  | if (UNLIKELY(!B)) { | 
|  | if (UNLIKELY(!populateFreeList(C, ClassId, Region))) | 
|  | return nullptr; | 
|  | B = popBatchImpl(C, ClassId); | 
|  | // if `populateFreeList` succeeded, we are supposed to get free blocks. | 
|  | DCHECK_NE(B, nullptr); | 
|  | } | 
|  | Region->Stats.PoppedBlocks += B->getCount(); | 
|  | return B; | 
|  | } | 
|  |  | 
|  | // Push the array of free blocks to the designated batch group. | 
|  | void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { | 
|  | DCHECK_LT(ClassId, NumClasses); | 
|  | DCHECK_GT(Size, 0); | 
|  |  | 
|  | RegionInfo *Region = getRegionInfo(ClassId); | 
|  | if (ClassId == SizeClassMap::BatchClassId) { | 
|  | ScopedLock L(Region->Mutex); | 
|  | // Constructing a batch group in the free list will use two blocks in | 
|  | // BatchClassId. If we are pushing BatchClassId blocks, we will use the | 
|  | // blocks in the array directly (can't delegate local cache which will | 
|  | // cause a recursive allocation). However, The number of free blocks may | 
|  | // be less than two. Therefore, populate the free list before inserting | 
|  | // the blocks. | 
|  | if (Size == 1 && UNLIKELY(!populateFreeList(C, ClassId, Region))) | 
|  | return; | 
|  | pushBlocksImpl(C, ClassId, Array, Size); | 
|  | Region->Stats.PushedBlocks += Size; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO(chiahungduan): Consider not doing grouping if the group size is not | 
|  | // greater than the block size with a certain scale. | 
|  |  | 
|  | // Sort the blocks so that blocks belonging to the same group can be pushed | 
|  | // together. | 
|  | bool SameGroup = true; | 
|  | for (u32 I = 1; I < Size; ++I) { | 
|  | if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) | 
|  | SameGroup = false; | 
|  | CompactPtrT Cur = Array[I]; | 
|  | u32 J = I; | 
|  | while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) { | 
|  | Array[J] = Array[J - 1]; | 
|  | --J; | 
|  | } | 
|  | Array[J] = Cur; | 
|  | } | 
|  |  | 
|  | ScopedLock L(Region->Mutex); | 
|  | pushBlocksImpl(C, ClassId, Array, Size, SameGroup); | 
|  |  | 
|  | Region->Stats.PushedBlocks += Size; | 
|  | if (ClassId != SizeClassMap::BatchClassId) | 
|  | releaseToOSMaybe(Region, ClassId); | 
|  | } | 
|  |  | 
|  | void disable() { | 
|  | // The BatchClassId must be locked last since other classes can use it. | 
|  | for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) { | 
|  | if (static_cast<uptr>(I) == SizeClassMap::BatchClassId) | 
|  | continue; | 
|  | getRegionInfo(static_cast<uptr>(I))->Mutex.lock(); | 
|  | } | 
|  | getRegionInfo(SizeClassMap::BatchClassId)->Mutex.lock(); | 
|  | } | 
|  |  | 
|  | void enable() { | 
|  | getRegionInfo(SizeClassMap::BatchClassId)->Mutex.unlock(); | 
|  | for (uptr I = 0; I < NumClasses; I++) { | 
|  | if (I == SizeClassMap::BatchClassId) | 
|  | continue; | 
|  | getRegionInfo(I)->Mutex.unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void iterateOverBlocks(F Callback) { | 
|  | for (uptr I = 0; I < NumClasses; I++) { | 
|  | if (I == SizeClassMap::BatchClassId) | 
|  | continue; | 
|  | const RegionInfo *Region = getRegionInfo(I); | 
|  | const uptr BlockSize = getSizeByClassId(I); | 
|  | const uptr From = Region->RegionBeg; | 
|  | const uptr To = From + Region->AllocatedUser; | 
|  | for (uptr Block = From; Block < To; Block += BlockSize) | 
|  | Callback(Block); | 
|  | } | 
|  | } | 
|  |  | 
|  | void getStats(ScopedString *Str) { | 
|  | // TODO(kostyak): get the RSS per region. | 
|  | uptr TotalMapped = 0; | 
|  | uptr PoppedBlocks = 0; | 
|  | uptr PushedBlocks = 0; | 
|  | for (uptr I = 0; I < NumClasses; I++) { | 
|  | RegionInfo *Region = getRegionInfo(I); | 
|  | if (Region->MappedUser) | 
|  | TotalMapped += Region->MappedUser; | 
|  | PoppedBlocks += Region->Stats.PoppedBlocks; | 
|  | PushedBlocks += Region->Stats.PushedBlocks; | 
|  | } | 
|  | Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu " | 
|  | "allocations; remains %zu\n", | 
|  | TotalMapped >> 20, 0U, PoppedBlocks, | 
|  | PoppedBlocks - PushedBlocks); | 
|  |  | 
|  | for (uptr I = 0; I < NumClasses; I++) | 
|  | getStats(Str, I, 0); | 
|  | } | 
|  |  | 
|  | bool setOption(Option O, sptr Value) { | 
|  | if (O == Option::ReleaseInterval) { | 
|  | const s32 Interval = Max( | 
|  | Min(static_cast<s32>(Value), Config::PrimaryMaxReleaseToOsIntervalMs), | 
|  | Config::PrimaryMinReleaseToOsIntervalMs); | 
|  | atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval); | 
|  | return true; | 
|  | } | 
|  | // Not supported by the Primary, but not an error either. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uptr releaseToOS() { | 
|  | uptr TotalReleasedBytes = 0; | 
|  | for (uptr I = 0; I < NumClasses; I++) { | 
|  | if (I == SizeClassMap::BatchClassId) | 
|  | continue; | 
|  | RegionInfo *Region = getRegionInfo(I); | 
|  | ScopedLock L(Region->Mutex); | 
|  | TotalReleasedBytes += releaseToOSMaybe(Region, I, /*Force=*/true); | 
|  | } | 
|  | return TotalReleasedBytes; | 
|  | } | 
|  |  | 
|  | const char *getRegionInfoArrayAddress() const { | 
|  | return reinterpret_cast<const char *>(RegionInfoArray); | 
|  | } | 
|  |  | 
|  | static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); } | 
|  |  | 
|  | uptr getCompactPtrBaseByClassId(uptr ClassId) { | 
|  | // If we are not compacting pointers, base everything off of 0. | 
|  | if (sizeof(CompactPtrT) == sizeof(uptr) && CompactPtrScale == 0) | 
|  | return 0; | 
|  | return getRegionInfo(ClassId)->RegionBeg; | 
|  | } | 
|  |  | 
|  | CompactPtrT compactPtr(uptr ClassId, uptr Ptr) { | 
|  | DCHECK_LE(ClassId, SizeClassMap::LargestClassId); | 
|  | return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr); | 
|  | } | 
|  |  | 
|  | void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) { | 
|  | DCHECK_LE(ClassId, SizeClassMap::LargestClassId); | 
|  | return reinterpret_cast<void *>( | 
|  | decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr)); | 
|  | } | 
|  |  | 
|  | static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) { | 
|  | const RegionInfo *RegionInfoArray = | 
|  | reinterpret_cast<const RegionInfo *>(RegionInfoData); | 
|  | uptr ClassId; | 
|  | uptr MinDistance = -1UL; | 
|  | for (uptr I = 0; I != NumClasses; ++I) { | 
|  | if (I == SizeClassMap::BatchClassId) | 
|  | continue; | 
|  | uptr Begin = RegionInfoArray[I].RegionBeg; | 
|  | uptr End = Begin + RegionInfoArray[I].AllocatedUser; | 
|  | if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I)) | 
|  | continue; | 
|  | uptr RegionDistance; | 
|  | if (Begin <= Ptr) { | 
|  | if (Ptr < End) | 
|  | RegionDistance = 0; | 
|  | else | 
|  | RegionDistance = Ptr - End; | 
|  | } else { | 
|  | RegionDistance = Begin - Ptr; | 
|  | } | 
|  |  | 
|  | if (RegionDistance < MinDistance) { | 
|  | MinDistance = RegionDistance; | 
|  | ClassId = I; | 
|  | } | 
|  | } | 
|  |  | 
|  | BlockInfo B = {}; | 
|  | if (MinDistance <= 8192) { | 
|  | B.RegionBegin = RegionInfoArray[ClassId].RegionBeg; | 
|  | B.RegionEnd = B.RegionBegin + RegionInfoArray[ClassId].AllocatedUser; | 
|  | B.BlockSize = SizeClassMap::getSizeByClassId(ClassId); | 
|  | B.BlockBegin = | 
|  | B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) * | 
|  | sptr(B.BlockSize)); | 
|  | while (B.BlockBegin < B.RegionBegin) | 
|  | B.BlockBegin += B.BlockSize; | 
|  | while (B.RegionEnd < B.BlockBegin + B.BlockSize) | 
|  | B.BlockBegin -= B.BlockSize; | 
|  | } | 
|  | return B; | 
|  | } | 
|  |  | 
|  | AtomicOptions Options; | 
|  |  | 
|  | private: | 
|  | static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog; | 
|  | static const uptr NumClasses = SizeClassMap::NumClasses; | 
|  | static const uptr PrimarySize = RegionSize * NumClasses; | 
|  |  | 
|  | static const uptr MapSizeIncrement = Config::PrimaryMapSizeIncrement; | 
|  | // Fill at most this number of batches from the newly map'd memory. | 
|  | static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; | 
|  |  | 
|  | struct RegionStats { | 
|  | uptr PoppedBlocks; | 
|  | uptr PushedBlocks; | 
|  | }; | 
|  |  | 
|  | struct ReleaseToOsInfo { | 
|  | uptr PushedBlocksAtLastRelease; | 
|  | uptr RangesReleased; | 
|  | uptr LastReleasedBytes; | 
|  | u64 LastReleaseAtNs; | 
|  | }; | 
|  |  | 
|  | struct UnpaddedRegionInfo { | 
|  | HybridMutex Mutex; | 
|  | SinglyLinkedList<BatchGroup> FreeList; | 
|  | uptr RegionBeg = 0; | 
|  | RegionStats Stats = {}; | 
|  | u32 RandState = 0; | 
|  | uptr MappedUser = 0;    // Bytes mapped for user memory. | 
|  | uptr AllocatedUser = 0; // Bytes allocated for user memory. | 
|  | MapPlatformData Data = {}; | 
|  | ReleaseToOsInfo ReleaseInfo = {}; | 
|  | bool Exhausted = false; | 
|  | }; | 
|  | struct RegionInfo : UnpaddedRegionInfo { | 
|  | char Padding[SCUDO_CACHE_LINE_SIZE - | 
|  | (sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {}; | 
|  | }; | 
|  | static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, ""); | 
|  |  | 
|  | uptr PrimaryBase = 0; | 
|  | MapPlatformData Data = {}; | 
|  | atomic_s32 ReleaseToOsIntervalMs = {}; | 
|  | alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses]; | 
|  |  | 
|  | RegionInfo *getRegionInfo(uptr ClassId) { | 
|  | DCHECK_LT(ClassId, NumClasses); | 
|  | return &RegionInfoArray[ClassId]; | 
|  | } | 
|  |  | 
|  | uptr getRegionBaseByClassId(uptr ClassId) const { | 
|  | return PrimaryBase + (ClassId << Config::PrimaryRegionSizeLog); | 
|  | } | 
|  |  | 
|  | static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) { | 
|  | return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale); | 
|  | } | 
|  |  | 
|  | static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) { | 
|  | return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale); | 
|  | } | 
|  |  | 
|  | static uptr compactPtrGroup(CompactPtrT CompactPtr) { | 
|  | return static_cast<uptr>(CompactPtr) >> (GroupSizeLog - CompactPtrScale); | 
|  | } | 
|  | static uptr batchGroupBase(uptr Base, uptr GroupId) { | 
|  | return (GroupId << GroupSizeLog) + Base; | 
|  | } | 
|  |  | 
|  | // Push the blocks to their batch group. The layout will be like, | 
|  | // | 
|  | // FreeList - > BG -> BG -> BG | 
|  | //              |     |     | | 
|  | //              v     v     v | 
|  | //              TB    TB    TB | 
|  | //              | | 
|  | //              v | 
|  | //              TB | 
|  | // | 
|  | // Each BlockGroup(BG) will associate with unique group id and the free blocks | 
|  | // are managed by a list of TransferBatch(TB). To reduce the time of inserting | 
|  | // blocks, BGs are sorted and the input `Array` are supposed to be sorted so | 
|  | // that we can get better performance of maintaining sorted property. | 
|  | // Use `SameGroup=true` to indicate that all blocks in the array are from the | 
|  | // same group then we will skip checking the group id of each block. | 
|  | // | 
|  | // Note that this aims to have a better management of dirty pages, i.e., the | 
|  | // RSS usage won't grow indefinitely. There's an exception that we may not put | 
|  | // a block to its associated group. While populating new blocks, we may have | 
|  | // blocks cross different groups. However, most cases will fall into same | 
|  | // group and they are supposed to be popped soon. In that case, it's not worth | 
|  | // sorting the array with the almost-sorted property. Therefore, we use | 
|  | // `SameGroup=true` instead. | 
|  | // | 
|  | // The region mutex needs to be held while calling this method. | 
|  | void pushBlocksImpl(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size, | 
|  | bool SameGroup = false) { | 
|  | DCHECK_GT(Size, 0U); | 
|  | RegionInfo *Region = getRegionInfo(ClassId); | 
|  |  | 
|  | auto CreateGroup = [&](uptr GroupId) { | 
|  | BatchGroup *BG = nullptr; | 
|  | TransferBatch *TB = nullptr; | 
|  | if (ClassId == SizeClassMap::BatchClassId) { | 
|  | DCHECK_GE(Size, 2U); | 
|  | BG = reinterpret_cast<BatchGroup *>( | 
|  | decompactPtr(ClassId, Array[Size - 1])); | 
|  | BG->Batches.clear(); | 
|  |  | 
|  | TB = reinterpret_cast<TransferBatch *>( | 
|  | decompactPtr(ClassId, Array[Size - 2])); | 
|  | TB->clear(); | 
|  | } else { | 
|  | BG = C->createGroup(); | 
|  | BG->Batches.clear(); | 
|  |  | 
|  | TB = C->createBatch(ClassId, nullptr); | 
|  | TB->clear(); | 
|  | } | 
|  |  | 
|  | BG->GroupId = GroupId; | 
|  | BG->Batches.push_front(TB); | 
|  | BG->PushedBlocks = 0; | 
|  | BG->PushedBlocksAtLastCheckpoint = 0; | 
|  | BG->MaxCachedPerBatch = | 
|  | TransferBatch::getMaxCached(getSizeByClassId(ClassId)); | 
|  |  | 
|  | return BG; | 
|  | }; | 
|  |  | 
|  | auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) { | 
|  | SinglyLinkedList<TransferBatch> &Batches = BG->Batches; | 
|  | TransferBatch *CurBatch = Batches.front(); | 
|  | DCHECK_NE(CurBatch, nullptr); | 
|  |  | 
|  | for (u32 I = 0; I < Size;) { | 
|  | DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); | 
|  | u16 UnusedSlots = | 
|  | static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); | 
|  | if (UnusedSlots == 0) { | 
|  | CurBatch = C->createBatch( | 
|  | ClassId, | 
|  | reinterpret_cast<void *>(decompactPtr(ClassId, Array[I]))); | 
|  | CurBatch->clear(); | 
|  | Batches.push_front(CurBatch); | 
|  | UnusedSlots = BG->MaxCachedPerBatch; | 
|  | } | 
|  | // `UnusedSlots` is u16 so the result will be also fit in u16. | 
|  | u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I)); | 
|  | CurBatch->appendFromArray(&Array[I], AppendSize); | 
|  | I += AppendSize; | 
|  | } | 
|  |  | 
|  | BG->PushedBlocks += Size; | 
|  | }; | 
|  |  | 
|  | BatchGroup *Cur = Region->FreeList.front(); | 
|  |  | 
|  | if (ClassId == SizeClassMap::BatchClassId) { | 
|  | if (Cur == nullptr) { | 
|  | // Don't need to classify BatchClassId. | 
|  | Cur = CreateGroup(/*GroupId=*/0); | 
|  | Region->FreeList.push_front(Cur); | 
|  | } | 
|  | InsertBlocks(Cur, Array, Size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // In the following, `Cur` always points to the BatchGroup for blocks that | 
|  | // will be pushed next. `Prev` is the element right before `Cur`. | 
|  | BatchGroup *Prev = nullptr; | 
|  |  | 
|  | while (Cur != nullptr && compactPtrGroup(Array[0]) > Cur->GroupId) { | 
|  | Prev = Cur; | 
|  | Cur = Cur->Next; | 
|  | } | 
|  |  | 
|  | if (Cur == nullptr || compactPtrGroup(Array[0]) != Cur->GroupId) { | 
|  | Cur = CreateGroup(compactPtrGroup(Array[0])); | 
|  | if (Prev == nullptr) | 
|  | Region->FreeList.push_front(Cur); | 
|  | else | 
|  | Region->FreeList.insert(Prev, Cur); | 
|  | } | 
|  |  | 
|  | // All the blocks are from the same group, just push without checking group | 
|  | // id. | 
|  | if (SameGroup) { | 
|  | InsertBlocks(Cur, Array, Size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The blocks are sorted by group id. Determine the segment of group and | 
|  | // push them to their group together. | 
|  | u32 Count = 1; | 
|  | for (u32 I = 1; I < Size; ++I) { | 
|  | if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) { | 
|  | DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->GroupId); | 
|  | InsertBlocks(Cur, Array + I - Count, Count); | 
|  |  | 
|  | while (Cur != nullptr && compactPtrGroup(Array[I]) > Cur->GroupId) { | 
|  | Prev = Cur; | 
|  | Cur = Cur->Next; | 
|  | } | 
|  |  | 
|  | if (Cur == nullptr || compactPtrGroup(Array[I]) != Cur->GroupId) { | 
|  | Cur = CreateGroup(compactPtrGroup(Array[I])); | 
|  | DCHECK_NE(Prev, nullptr); | 
|  | Region->FreeList.insert(Prev, Cur); | 
|  | } | 
|  |  | 
|  | Count = 1; | 
|  | } else { | 
|  | ++Count; | 
|  | } | 
|  | } | 
|  |  | 
|  | InsertBlocks(Cur, Array + Size - Count, Count); | 
|  | } | 
|  |  | 
|  | // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest | 
|  | // group id will be considered first. | 
|  | // | 
|  | // The region mutex needs to be held while calling this method. | 
|  | TransferBatch *popBatchImpl(CacheT *C, uptr ClassId) { | 
|  | RegionInfo *Region = getRegionInfo(ClassId); | 
|  | if (Region->FreeList.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | SinglyLinkedList<TransferBatch> &Batches = | 
|  | Region->FreeList.front()->Batches; | 
|  | DCHECK(!Batches.empty()); | 
|  |  | 
|  | TransferBatch *B = Batches.front(); | 
|  | Batches.pop_front(); | 
|  | DCHECK_NE(B, nullptr); | 
|  | DCHECK_GT(B->getCount(), 0U); | 
|  |  | 
|  | if (Batches.empty()) { | 
|  | BatchGroup *BG = Region->FreeList.front(); | 
|  | Region->FreeList.pop_front(); | 
|  |  | 
|  | // We don't keep BatchGroup with zero blocks to avoid empty-checking while | 
|  | // allocating. Note that block used by constructing BatchGroup is recorded | 
|  | // as free blocks in the last element of BatchGroup::Batches. Which means, | 
|  | // once we pop the last TransferBatch, the block is implicitly | 
|  | // deallocated. | 
|  | if (ClassId != SizeClassMap::BatchClassId) | 
|  | C->deallocate(SizeClassMap::BatchClassId, BG); | 
|  | } | 
|  |  | 
|  | return B; | 
|  | } | 
|  |  | 
|  | NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, RegionInfo *Region) { | 
|  | const uptr Size = getSizeByClassId(ClassId); | 
|  | const u16 MaxCount = TransferBatch::getMaxCached(Size); | 
|  |  | 
|  | const uptr RegionBeg = Region->RegionBeg; | 
|  | const uptr MappedUser = Region->MappedUser; | 
|  | const uptr TotalUserBytes = Region->AllocatedUser + MaxCount * Size; | 
|  | // Map more space for blocks, if necessary. | 
|  | if (TotalUserBytes > MappedUser) { | 
|  | // Do the mmap for the user memory. | 
|  | const uptr MapSize = | 
|  | roundUpTo(TotalUserBytes - MappedUser, MapSizeIncrement); | 
|  | const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId); | 
|  | if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) { | 
|  | if (!Region->Exhausted) { | 
|  | Region->Exhausted = true; | 
|  | ScopedString Str; | 
|  | getStats(&Str); | 
|  | Str.append( | 
|  | "Scudo OOM: The process has exhausted %zuM for size class %zu.\n", | 
|  | RegionSize >> 20, Size); | 
|  | Str.output(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (MappedUser == 0) | 
|  | Region->Data = Data; | 
|  | if (UNLIKELY(!map( | 
|  | reinterpret_cast<void *>(RegionBeg + MappedUser), MapSize, | 
|  | "scudo:primary", | 
|  | MAP_ALLOWNOMEM | MAP_RESIZABLE | | 
|  | (useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG : 0), | 
|  | &Region->Data))) { | 
|  | return false; | 
|  | } | 
|  | Region->MappedUser += MapSize; | 
|  | C->getStats().add(StatMapped, MapSize); | 
|  | } | 
|  |  | 
|  | const u32 NumberOfBlocks = Min( | 
|  | MaxNumBatches * MaxCount, | 
|  | static_cast<u32>((Region->MappedUser - Region->AllocatedUser) / Size)); | 
|  | DCHECK_GT(NumberOfBlocks, 0); | 
|  |  | 
|  | constexpr u32 ShuffleArraySize = | 
|  | MaxNumBatches * TransferBatch::MaxNumCached; | 
|  | CompactPtrT ShuffleArray[ShuffleArraySize]; | 
|  | DCHECK_LE(NumberOfBlocks, ShuffleArraySize); | 
|  |  | 
|  | const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId); | 
|  | uptr P = RegionBeg + Region->AllocatedUser; | 
|  | for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) | 
|  | ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P); | 
|  | // No need to shuffle the batches size class. | 
|  | if (ClassId != SizeClassMap::BatchClassId) | 
|  | shuffle(ShuffleArray, NumberOfBlocks, &Region->RandState); | 
|  | for (u32 I = 0; I < NumberOfBlocks;) { | 
|  | // `MaxCount` is u16 so the result will also fit in u16. | 
|  | const u16 N = static_cast<u16>(Min<u32>(MaxCount, NumberOfBlocks - I)); | 
|  | // Note that the N blocks here may have different group ids. Given that | 
|  | // it only happens when it crosses the group size boundary. Instead of | 
|  | // sorting them, treat them as same group here to avoid sorting the | 
|  | // almost-sorted blocks. | 
|  | pushBlocksImpl(C, ClassId, &ShuffleArray[I], N, /*SameGroup=*/true); | 
|  | I += N; | 
|  | } | 
|  |  | 
|  | const uptr AllocatedUser = Size * NumberOfBlocks; | 
|  | C->getStats().add(StatFree, AllocatedUser); | 
|  | Region->AllocatedUser += AllocatedUser; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void getStats(ScopedString *Str, uptr ClassId, uptr Rss) { | 
|  | RegionInfo *Region = getRegionInfo(ClassId); | 
|  | if (Region->MappedUser == 0) | 
|  | return; | 
|  | const uptr InUse = Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks; | 
|  | const uptr TotalChunks = Region->AllocatedUser / getSizeByClassId(ClassId); | 
|  | Str->append("%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " | 
|  | "inuse: %6zu total: %6zu rss: %6zuK releases: %6zu last " | 
|  | "released: %6zuK region: 0x%zx (0x%zx)\n", | 
|  | Region->Exhausted ? "F" : " ", ClassId, | 
|  | getSizeByClassId(ClassId), Region->MappedUser >> 10, | 
|  | Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks, InUse, | 
|  | TotalChunks, Rss >> 10, Region->ReleaseInfo.RangesReleased, | 
|  | Region->ReleaseInfo.LastReleasedBytes >> 10, Region->RegionBeg, | 
|  | getRegionBaseByClassId(ClassId)); | 
|  | } | 
|  |  | 
|  | NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId, | 
|  | bool Force = false) { | 
|  | const uptr BlockSize = getSizeByClassId(ClassId); | 
|  | const uptr PageSize = getPageSizeCached(); | 
|  |  | 
|  | DCHECK_GE(Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks); | 
|  | const uptr BytesInFreeList = | 
|  | Region->AllocatedUser - | 
|  | (Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks) * BlockSize; | 
|  | if (BytesInFreeList < PageSize) | 
|  | return 0; // No chance to release anything. | 
|  | const uptr BytesPushed = (Region->Stats.PushedBlocks - | 
|  | Region->ReleaseInfo.PushedBlocksAtLastRelease) * | 
|  | BlockSize; | 
|  | if (BytesPushed < PageSize) | 
|  | return 0; // Nothing new to release. | 
|  |  | 
|  | bool CheckDensity = BlockSize < PageSize / 16U; | 
|  | // Releasing smaller blocks is expensive, so we want to make sure that a | 
|  | // significant amount of bytes are free, and that there has been a good | 
|  | // amount of batches pushed to the freelist before attempting to release. | 
|  | if (CheckDensity) { | 
|  | if (!Force && BytesPushed < Region->AllocatedUser / 16U) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!Force) { | 
|  | const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs); | 
|  | if (IntervalMs < 0) | 
|  | return 0; | 
|  | if (Region->ReleaseInfo.LastReleaseAtNs + | 
|  | static_cast<u64>(IntervalMs) * 1000000 > | 
|  | getMonotonicTime()) { | 
|  | return 0; // Memory was returned recently. | 
|  | } | 
|  | } | 
|  |  | 
|  | const uptr GroupSize = (1U << GroupSizeLog); | 
|  | const uptr AllocatedUserEnd = Region->AllocatedUser + Region->RegionBeg; | 
|  | ReleaseRecorder Recorder(Region->RegionBeg, &Region->Data); | 
|  | PageReleaseContext Context(BlockSize, Region->AllocatedUser, | 
|  | /*NumberOfRegions=*/1U); | 
|  |  | 
|  | const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId); | 
|  | auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) { | 
|  | return decompactPtrInternal(CompactPtrBase, CompactPtr); | 
|  | }; | 
|  | for (BatchGroup &BG : Region->FreeList) { | 
|  | const uptr PushedBytesDelta = | 
|  | BG.PushedBlocks - BG.PushedBlocksAtLastCheckpoint; | 
|  | if (PushedBytesDelta * BlockSize < PageSize) | 
|  | continue; | 
|  |  | 
|  | // Group boundary does not necessarily have the same alignment as Region. | 
|  | // It may sit across a Region boundary. Which means that we may have the | 
|  | // following two cases, | 
|  | // | 
|  | // 1. Group boundary sits before RegionBeg. | 
|  | // | 
|  | //                (BatchGroupBeg) | 
|  | // batchGroupBase  RegionBeg       BatchGroupEnd | 
|  | //        |            |                | | 
|  | //        v            v                v | 
|  | //        +------------+----------------+ | 
|  | //         \                           / | 
|  | //          ------   GroupSize   ------ | 
|  | // | 
|  | // 2. Group boundary sits after RegionBeg. | 
|  | // | 
|  | //               (BatchGroupBeg) | 
|  | //    RegionBeg  batchGroupBase               BatchGroupEnd | 
|  | //        |           |                             | | 
|  | //        v           v                             v | 
|  | //        +-----------+-----------------------------+ | 
|  | //                     \                           / | 
|  | //                      ------   GroupSize   ------ | 
|  | // | 
|  | // Note that in the first case, the group range before RegionBeg is never | 
|  | // used. Therefore, while calculating the used group size, we should | 
|  | // exclude that part to get the correct size. | 
|  | const uptr BatchGroupBeg = | 
|  | Max(batchGroupBase(CompactPtrBase, BG.GroupId), Region->RegionBeg); | 
|  | DCHECK_GE(AllocatedUserEnd, BatchGroupBeg); | 
|  | const uptr BatchGroupEnd = | 
|  | batchGroupBase(CompactPtrBase, BG.GroupId) + GroupSize; | 
|  | const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd | 
|  | ? BatchGroupEnd - BatchGroupBeg | 
|  | : AllocatedUserEnd - BatchGroupBeg; | 
|  | if (AllocatedGroupSize == 0) | 
|  | continue; | 
|  |  | 
|  | // TransferBatches are pushed in front of BG.Batches. The first one may | 
|  | // not have all caches used. | 
|  | const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + | 
|  | BG.Batches.front()->getCount(); | 
|  | const uptr BytesInBG = NumBlocks * BlockSize; | 
|  | // Given the randomness property, we try to release the pages only if the | 
|  | // bytes used by free blocks exceed certain proportion of group size. Note | 
|  | // that this heuristic only applies when all the spaces in a BatchGroup | 
|  | // are allocated. | 
|  | if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize < | 
|  | (100U - 1U - BlockSize / 16U)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BG.PushedBlocksAtLastCheckpoint = BG.PushedBlocks; | 
|  | // Note that we don't always visit blocks in each BatchGroup so that we | 
|  | // may miss the chance of releasing certain pages that cross BatchGroups. | 
|  | Context.markFreeBlocks(BG.Batches, DecompactPtr, Region->RegionBeg); | 
|  | } | 
|  |  | 
|  | if (!Context.hasBlockMarked()) | 
|  | return 0; | 
|  |  | 
|  | auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; }; | 
|  | releaseFreeMemoryToOS(Context, Recorder, SkipRegion); | 
|  |  | 
|  | if (Recorder.getReleasedRangesCount() > 0) { | 
|  | Region->ReleaseInfo.PushedBlocksAtLastRelease = | 
|  | Region->Stats.PushedBlocks; | 
|  | Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); | 
|  | Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); | 
|  | } | 
|  | Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTime(); | 
|  | return Recorder.getReleasedBytes(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace scudo | 
|  |  | 
|  | #endif // SCUDO_PRIMARY64_H_ |