| /* |
| * Double-precision e^x function. |
| * |
| * Copyright (c) 2018, Arm Limited. |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include "libm.h" |
| #include "exp_data.h" |
| |
| #define N (1 << EXP_TABLE_BITS) |
| #define InvLn2N __exp_data.invln2N |
| #define NegLn2hiN __exp_data.negln2hiN |
| #define NegLn2loN __exp_data.negln2loN |
| #define Shift __exp_data.shift |
| #define T __exp_data.tab |
| #define C2 __exp_data.poly[5 - EXP_POLY_ORDER] |
| #define C3 __exp_data.poly[6 - EXP_POLY_ORDER] |
| #define C4 __exp_data.poly[7 - EXP_POLY_ORDER] |
| #define C5 __exp_data.poly[8 - EXP_POLY_ORDER] |
| |
| /* Handle cases that may overflow or underflow when computing the result that |
| is scale*(1+TMP) without intermediate rounding. The bit representation of |
| scale is in SBITS, however it has a computed exponent that may have |
| overflown into the sign bit so that needs to be adjusted before using it as |
| a double. (int32_t)KI is the k used in the argument reduction and exponent |
| adjustment of scale, positive k here means the result may overflow and |
| negative k means the result may underflow. */ |
| static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki) |
| { |
| double_t scale, y; |
| |
| if ((ki & 0x80000000) == 0) { |
| /* k > 0, the exponent of scale might have overflowed by <= 460. */ |
| sbits -= 1009ull << 52; |
| scale = asdouble(sbits); |
| y = 0x1p1009 * (scale + scale * tmp); |
| return eval_as_double(y); |
| } |
| /* k < 0, need special care in the subnormal range. */ |
| sbits += 1022ull << 52; |
| scale = asdouble(sbits); |
| y = scale + scale * tmp; |
| if (y < 1.0) { |
| /* Round y to the right precision before scaling it into the subnormal |
| range to avoid double rounding that can cause 0.5+E/2 ulp error where |
| E is the worst-case ulp error outside the subnormal range. So this |
| is only useful if the goal is better than 1 ulp worst-case error. */ |
| double_t hi, lo; |
| lo = scale - y + scale * tmp; |
| hi = 1.0 + y; |
| lo = 1.0 - hi + y + lo; |
| y = eval_as_double(hi + lo) - 1.0; |
| /* Avoid -0.0 with downward rounding. */ |
| if (WANT_ROUNDING && y == 0.0) |
| y = 0.0; |
| /* The underflow exception needs to be signaled explicitly. */ |
| fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022); |
| } |
| y = 0x1p-1022 * y; |
| return eval_as_double(y); |
| } |
| |
| /* Top 12 bits of a double (sign and exponent bits). */ |
| static inline uint32_t top12(double x) |
| { |
| return asuint64(x) >> 52; |
| } |
| |
| double exp(double x) |
| { |
| uint32_t abstop; |
| uint64_t ki, idx, top, sbits; |
| double_t kd, z, r, r2, scale, tail, tmp; |
| |
| abstop = top12(x) & 0x7ff; |
| if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) { |
| if (abstop - top12(0x1p-54) >= 0x80000000) |
| /* Avoid spurious underflow for tiny x. */ |
| /* Note: 0 is common input. */ |
| return WANT_ROUNDING ? 1.0 + x : 1.0; |
| if (abstop >= top12(1024.0)) { |
| if (asuint64(x) == asuint64(-INFINITY)) |
| return 0.0; |
| if (abstop >= top12(INFINITY)) |
| return 1.0 + x; |
| if (asuint64(x) >> 63) |
| return __math_uflow(0); |
| else |
| return __math_oflow(0); |
| } |
| /* Large x is special cased below. */ |
| abstop = 0; |
| } |
| |
| /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ |
| /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ |
| z = InvLn2N * x; |
| #if TOINT_INTRINSICS |
| kd = roundtoint(z); |
| ki = converttoint(z); |
| #elif EXP_USE_TOINT_NARROW |
| /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ |
| kd = eval_as_double(z + Shift); |
| ki = asuint64(kd) >> 16; |
| kd = (double_t)(int32_t)ki; |
| #else |
| /* z - kd is in [-1, 1] in non-nearest rounding modes. */ |
| kd = eval_as_double(z + Shift); |
| ki = asuint64(kd); |
| kd -= Shift; |
| #endif |
| r = x + kd * NegLn2hiN + kd * NegLn2loN; |
| /* 2^(k/N) ~= scale * (1 + tail). */ |
| idx = 2 * (ki % N); |
| top = ki << (52 - EXP_TABLE_BITS); |
| tail = asdouble(T[idx]); |
| /* This is only a valid scale when -1023*N < k < 1024*N. */ |
| sbits = T[idx + 1] + top; |
| /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ |
| /* Evaluation is optimized assuming superscalar pipelined execution. */ |
| r2 = r * r; |
| /* Without fma the worst case error is 0.25/N ulp larger. */ |
| /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ |
| tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); |
| if (predict_false(abstop == 0)) |
| return specialcase(tmp, sbits, ki); |
| scale = asdouble(sbits); |
| /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there |
| is no spurious underflow here even without fma. */ |
| return eval_as_double(scale + scale * tmp); |
| } |